반도체 CMP 연마 패드 시장 : 종류별, 재질별, 용도별, 최종사용자별 - 세계 예측(2026-2032년)
Semiconductor CMP Polishing Pad Market by Type, Material, Application, End User - Global Forecast 2026-2032
상품코드 : 1914419
리서치사 : 360iResearch
발행일 : 2026년 01월
페이지 정보 : 영문 198 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,770,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,224,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,436,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,209,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

반도체 CMP 연마 패드 시장은 2025년에 9억 356만 달러로 평가되었으며, 2026년에는 9억 5,799만 달러로 성장하여 CAGR 6.87%를 기록하며 2032년까지 14억 3,867만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 9억 356만 달러
추정 연도 2026년 9억 5,799만 달러
예측 연도 2032년 14억 3,867만 달러
CAGR(%) 6.87%

반도체 노드의 미세화에 따라 표면 제어가 더욱 엄격해짐에 따라 CMP 연마 패드가 웨이퍼 평탄화 및 공정 재현성에서 매우 중요한 역할을 하는 것을 이해합니다.

화학적 기계적 평탄화(CMP) 연마 패드는 점점 더 미세화되는 리소그래피 노드에서 평탄한 표면을 구현하기 위한 전 세계의 노력을 지원함으로써 현대 반도체 제조의 기초적인 역할을 담당하고 있습니다. 웨이퍼가 여러 연마 공정을 거치는 동안 패드의 기계적 프로파일, 재료 구성, 표면 형상은 웨이퍼 내 균일성, 결함 발생률, 총 소유 비용에 큰 영향을 미칩니다. 따라서 엔지니어와 공정 소유자는 제거율의 안정성과 디싱, 침식, 슬러리 적합성의 균형을 맞추는 다차원적인 최적화 과제로서 패드 선정에 대해 고민하고 있습니다.

패드 미세구조, 컨디셔닝, 공급망 연계의 발전이 웨이퍼 제조 생태계 전반에서 CMP 성능에 대한 기대치를 재구성하고 있는 과정

CMP 연마 패드 기술 및 상업적 역학의 최근 혁신적 변화는 전체 제조 생태계의 기술적 압력과 운영 우선순위의 수렴에 기인합니다. 첫째, 이종 집적화 및 첨단 패키징으로의 추진으로 연마의 복잡성이 증가함에 따라 패드 제조업체는 보다 일관된 미세 구조와 개선된 컨디셔닝 수명 주기로 표면을 설계해야 합니다. 그 결과, 공정 엔지니어들은 현재 장시간 가동 시 입자 발생을 줄이면서 제거율의 변동폭을 좁히는 패드를 요구하고 있습니다.

2025년 관세 조치로 인한 공급망 다변화 및 패드 인증 관행에 미치는 영향에 따른 중요한 운영 대응 및 전략적 조달 변화

2025년에 시행된 관세 정책 변경과 무역 조치는 CMP 연마 패드를 포함한 반도체 소모품 및 장비에 다층적인 운영상의 영향을 미쳤습니다. 원자재, 중간 부품 및 특정 완제품에 영향을 미치는 관세로 인해 조달 부서는 공급업체 배치 및 총착륙비용 모델을 재평가해야 했습니다. 실제로 각 조직은 듀얼 소싱 전략의 가속화와 다른 지역 공급망 내에서 제조 가능한 대체 패드 배합의 인증 대응으로 이에 대응했습니다.

패드 유형, 대상 소재, 디바이스 용도, 최종사용자의 조달 행동을 기술적, 상업적 판단 요소에 매핑하는 엄격한 세분화 프레임워크

정밀한 세분화 프레임워크는 기술 리더와 조달팀이 서로 다른 공정 환경에서 CMP 패드 선택에 대한 적절한 판단을 내리는 데 도움이 됩니다. 유형별로 보면 기존 패드 구조와 폴리머 매트릭스 내에 연마 입자를 봉입한 고정형 연마 패드 설계로 구분됩니다. 각 경로는 제거율 안정성, 평탄도 제어, 컨디셔닝 주파수에서 서로 다른 이점을 제공합니다. 대상 재료를 고려할 때, 구리 배선, 산화물 유전체, 텅스텐 구조물의 연마에서 패드의 거동이 다르기 때문에 패드의 배합 및 표면 형상에 대한 요구 사항은 대상 재료의 슬러리 화학제품에 대한 기계적 및 화학적 반응에 따라 달라집니다.

지역 조달, 인증 주기 및 지원 모델은 팹과 공급업체가 전 세계 생산 기지 전체에서 패드 성능, 물류 및 공동 개발의 우선순위를 정하는 방식에 영향을 미칩니다.

지역적 동향은 조달 전략, 인증 일정 및 현지 공급업체 생태계에 중점을 두는 방식에 영향을 미칩니다. 아메리카 대륙에서는 제조 투자와 성숙한 노드의 생산능력으로 인해 기존 공정 플랫폼에 최적화된 패드에 대한 수요가 발생하며, 조달 팀은 비용 효율성과 기술 지원을 유지하기 위해 국내 조달과 세계 공급업체 파트너십의 균형을 유지합니다. 유럽, 중동 및 아프리카에서는 규제 환경과 지역화된 공급 네트워크가 인증 프로세스에 영향을 미치고, 신속한 기술 서비스와 물류 솔루션을 제공할 수 있는 지역 공급업체와의 협력을 촉진합니다.

CMP 연마 패드 생태계에서 경쟁 우위를 정의하는 요소: 공급업체의 기술 서비스, 독자적으로 개발한 패드 미세 구조, 협업 개발 모델

연마 패드 공급업체의 경쟁 환경은 기술적 차별화, 현장 지원 능력, 고객의 인증 과정에서 마찰을 줄이는 파트너십을 중심으로 전개되고 있습니다. 주요 공급업체들은 애플리케이션 엔지니어링 팀에 투자하고 팹의 공정 엔지니어와 직접 협력하여 특정 연마 액화 조성 및 대상 재료에 맞게 패드 텍스처, 경도 프로파일 및 기공 구조를 조정합니다. 이러한 기술 서비스는 인증 주기를 단축하고 출시 리스크를 줄이기 위해 제품 수준의 성능과 함께 고객들로부터 점점 더 많은 관심을 받고 있습니다.

프로세스, 조달, 엔지니어링 리더가 수율을 보장하면서 패드 공급 위험 감소, 소모품 수명 연장, 인증 신속화를 실현하기 위한 실천적 조치

업계 리더들은 패드 인증, 조달, 프로세스 관리를 통합하는 전략을 채택하여 수율을 보호하면서 노드 마이그레이션을 가속화해야 합니다. 첫째, 여러 공급업체와의 공동 인증 프로그램에 투자하여 대안을 마련하고 단일 공급처에 대한 의존도를 낮추기 위해 노력합니다. 인증 프로세스를 병행함으로써 팹은 출시 주기를 단축하고, 공급 장애 발생 시에도 연속성을 유지할 수 있습니다. 둘째, 검증된 패드 사용 수명 연장 및 입자 발생 감소 효과가 입증된 패드 배합 및 컨디셔닝 방법을 우선적으로 적용하여 성능 저하 없이 비용 절감을 실현합니다.

1차 제조 현장 참여, 공급업체 기술자 인터뷰, 기술 문헌을 통합한 엄격한 조사 방법을 통해 실용적인 CMP 패드에 대한 인사이트를 도출합니다.

이 조사는 CMP 공정 엔지니어, 조달 책임자, 공급업체 기술팀과의 직접 대화, 기술 문헌, 특허 공개, 장비 통합 사례 연구 및 체계적인 검토를 통합하여 연마 패드의 역학에 대한 균형 잡힌 견해를 구축했습니다. 1차 정보 수집은 공정 수준의 성능 기준(제거율 제어, 웨이퍼 내 균일성, 결함 패턴, 컨디셔닝 수명주기)에 초점을 맞추고, 공급업체 인터뷰는 생산 확장성, 품질 시스템, 현장 지원 모델을 탐구했습니다. 이러한 정성적 정보를 엔지니어링 연구 및 공개된 제조 모범 사례와 대조하여 기술 동향과 새로운 재료 선택을 검증했습니다.

기술적 우선순위와 상업적 우선순위가 수렴하는 가운데, 일관된 평탄화, 낮은 결함률, 보다 견고한 제조 운영을 위한 시스템 수준의 패드 전략이 요구되고 있습니다.

CMP 연마 패드는 재료공학과 반도체 제조 경제성의 중요한 접점이며, 최근 동향은 기술적 영역과 상업적 영역을 넘나드는 통합적 의사결정의 필요성을 강조하고 있습니다. 패드 미세 구조 기술 및 고정 연마재 옵션의 기술적 발전은 디싱을 줄이고 균일성을 향상시킬 수 있는 유력한 경로를 제공하지만, 이는 정교한 컨디셔닝 방법 및 슬러리 최적화와 함께 수행되어야 합니다. 동시에, 지역 조달의 유연성과 협력적 공급업체 관계를 통합한 조달 전략은 관세 위험에 대한 노출과 공급망 혼란의 위험을 줄일 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 반도체 CMP 연마 패드 시장 : 유형별

제9장 반도체 CMP 연마 패드 시장 : 소재별

제10장 반도체 CMP 연마 패드 시장 : 용도별

제11장 반도체 CMP 연마 패드 시장 : 최종사용자별

제12장 반도체 CMP 연마 패드 시장 : 지역별

제13장 반도체 CMP 연마 패드 시장 : 그룹별

제14장 반도체 CMP 연마 패드 시장 : 국가별

제15장 미국 반도체 CMP 연마 패드 시장

제16장 중국 반도체 CMP 연마 패드 시장

제17장 경쟁 구도

KSM
영문 목차

영문목차

The Semiconductor CMP Polishing Pad Market was valued at USD 903.56 million in 2025 and is projected to grow to USD 957.99 million in 2026, with a CAGR of 6.87%, reaching USD 1,438.67 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 903.56 million
Estimated Year [2026] USD 957.99 million
Forecast Year [2032] USD 1,438.67 million
CAGR (%) 6.87%

Understanding the pivotal role of CMP polishing pads in wafer planarization and process reproducibility as semiconductor nodes demand tighter surface control

Chemical mechanical planarization (CMP) polishing pads occupy a foundational role in modern semiconductor manufacturing by supporting global efforts to achieve planar surfaces at increasingly fine lithographic nodes. As wafers progress through multiple polishing steps, the pad's mechanical profile, material composition, and surface topography materially influence within-wafer uniformity, defectivity rates, and total cost of ownership. Engineers and process owners thus treat pad selection as a multidimensional optimization problem that balances removal rate stability against dishing, erosion, and slurry compatibility.

Over recent development cycles, polishing pad technologies have evolved to address the competing pressures of reduced feature sizes and heterogeneous integration. Fixed abrasive pads and conventional polymeric pads present distinct trade-offs between planarity control and consumable lifecycle. Meanwhile, tighter specifications for copper, oxide, and tungsten interconnect polishing have elevated the need for application-specific pad formulations and conditioning protocols. Consequently, pad performance now interlinks with slurry chemistry design, end-point detection systems, and automated conditioning systems, creating an ecosystem-level approach to CMP performance.

Given this context, stakeholders across foundries, integrated device manufacturers, and outsourced semiconductor assembly and test providers prioritize pad reliability, supplier technical support, and process reproducibility. These priorities reflect a broader industry preference for predictable process windows that minimize rework, maximize yield stability, and support accelerated node transitions.

How advances in pad microarchitecture, conditioning, and supply-chain collaboration are reshaping CMP performance expectations across wafer fabrication ecosystems

Recent transformative shifts in CMP polishing pad technology and commercial dynamics stem from converging technological pressures and operational priorities across fabrication ecosystems. First, the drive toward heterogeneous integration and advanced packaging has increased polishing complexity, motivating pad manufacturers to engineer surfaces with more consistent microstructure and improved conditioning lifecycles. As a result, process engineers now demand pads that deliver narrower variability in removal rates while reducing particle generation over extended runs.

Second, innovation in pad materials and fixed abrasive architectures has accelerated. Fixed abrasive pads, which embed abrasive particles within the pad matrix, have gained attention for certain metal and dielectric applications where localized control can reduce dishing and erosion. At the same time, refinements in conventional pad chemistry and pore structure aim to improve slurry transport and reduce entrapment risks, which mitigates defectivity. These material-level changes often occur in tandem with advanced conditioning equipment that preserves pad surface topography with more predictable conditioning cycles.

Third, supply-chain resilience and strategic sourcing have become core considerations for procurement and operations teams. The need to optimize inventory strategies and qualification timelines has pushed collaboration between pad suppliers and fabricators, with an emphasis on accelerated qualification protocols and in-situ monitoring to shorten ramp-up times. Collectively, these shifts highlight an industry moving from component-centric procurement to integrated process partnerships that prioritize long-term reproducibility and risk mitigation.

Consequential operational responses and strategic sourcing shifts driven by 2025 tariff measures that influenced supply-chain diversification and pad qualification practices

Tariff policy changes and trade measures implemented in 2025 introduced layered operational consequences for semiconductor consumables and equipment, including CMP polishing pads. Tariffs that affect raw materials, intermediate components, and certain finished goods forced procurement teams to re-evaluate supplier footprints and total landed cost models. In practice, organizations responded by accelerating dual-sourcing strategies and by qualifying alternative pad formulations that could be manufactured within different regional supply networks.

Beyond immediate sourcing reactions, tariff-driven cost pressure amplified focus on pad longevity and process efficiency. Process engineers increased scrutiny on pad conditioning cycles and defect mitigation practices to offset elevated input costs. Consequently, engineering teams prioritized process windows that reduced pad consumption per wafer and extended usable pad life while preserving planarity and defect control. This pragmatic response reflects a recognition that operational optimization can serve as a hedge against external tariff volatility.

Moreover, tariff impacts encouraged closer collaboration between consumable suppliers and end users to redesign packaging, adjust minimum order quantities, and locate finishing steps closer to fabrication hubs when feasible. These adjustments often required rework of qualification matrices and tighter coordination across supply-chain stakeholders. Collectively, the 2025 tariff environment catalyzed a shift toward more geographically diversified procurement and process adaptations intended to protect yield and support continuity of advanced-node manufacturing.

A rigorous segmentation framework that maps pad types, target materials, device applications, and end-user procurement behaviors to technical and commercial decision drivers

A precise segmentation framework helps technical leaders and procurement teams navigate CMP pad selection across distinct process contexts. When viewed by type, the landscape splits into conventional pad architectures and fixed abrasive pad designs that embed abrasive particles within a polymeric matrix; each path offers different advantages for removal-rate stability, planarity control, and conditioning frequency. Considering material targets emphasizes that pad behavior differs when polishing copper interconnects, oxide dielectrics, or tungsten features, and therefore pad formulation and surface topography requirements vary with the target material's mechanical and chemical response to slurry chemistries.

From an application perspective, pad selection depends on whether the primary focus is logic device fabrication or memory device production, with memory device polishing further differentiated by device class, including DRAM and NAND Flash, each of which imposes distinct tolerance and defectivity expectations. Finally, end-user segmentation clarifies commercial and qualification dynamics because foundries, integrated device manufacturers (IDMs), and outsourced semiconductor assembly and test providers (OSATs) operate under differing procurement cycles, scale requirements, and qualification tolerances. Together, these segmentation lenses guide how process engineers prioritize pad performance, qualification timelines, and supplier partnerships to achieve consistent wafer-level outcomes.

Regional sourcing, qualification rhythms, and support models that influence how fabs and suppliers prioritize pad performance, logistics, and co-development across global production hubs

Regional dynamics shape sourcing strategies, qualification timelines, and the emphasis placed on local supplier ecosystems. In the Americas, fabrication investment and mature-node capacity often create demand for pads optimized for established process platforms, while procurement teams balance domestic sourcing with global supplier partnerships to preserve cost efficiency and technical support. In Europe, Middle East & Africa, the regulatory environment and localized supply networks influence qualification pathways and encourage collaboration with regional suppliers who can provide responsive technical services and logistics solutions.

In Asia-Pacific, a dense concentration of advanced fabs and aggressive node transitions places a premium on pads that deliver repeatable performance at scale, alongside strong field support and rapid qualification cycles. This regional intensity also drives closer integration between pad manufacturers and fabs, with co-development projects and on-site support teams becoming common. Across regions, stakeholders increasingly consider the implications of logistics, lead-time variability, and regional tariff exposures when designing sourcing strategies, making geographic agility an essential component of resilient CMP supply planning.

How supplier technical services, proprietary pad microstructures, and collaborative development models define competitive advantage in the CMP polishing pad ecosystem

The competitive environment for polishing pad suppliers centers on technical differentiation, field support capabilities, and partnerships that reduce qualification friction for customers. Leading suppliers invest in application engineering teams that work directly with fab process engineers to adapt pad textures, hardness profiles, and pore structures to specific slurry chemistries and target materials. These technical services shorten qualification cycles and reduce ramp risk, which customers increasingly value alongside product-level performance.

Strategic partnerships and supply agreements now emphasize collaborative development, with suppliers offering joint problem-solving around conditioning strategies and in-situ monitoring to extend pad life and reduce defectivity. Intellectual property around pad microstructure design, fabrication processes, and conditioning tooling contributes to competitive advantage, as does the capacity to deliver consistent product quality at commercial volumes. Meanwhile, aftermarket services such as on-site training, rapid replacement logistics, and tailored performance analytics create additional differentiation, enabling suppliers to move beyond a transactional model toward long-term process stewardship.

Practical actions for process, procurement, and engineering leaders to de-risk pad supply, extend consumable life, and accelerate qualification while safeguarding yield

Industry leaders should adopt an integrated strategy that aligns pad qualification, procurement, and process control to accelerate node transitions while protecting yield. First, invest in joint qualification programs with multiple suppliers to establish fallback options and reduce single-source exposure. By running parallel qualification streams, fabs can shorten ramp cycles and maintain continuity if supply disruptions occur. Second, prioritize pad formulations and conditioning regimes that demonstrably extend usable pad life and reduce particle generation, enabling cost mitigation without sacrificing performance.

Third, deepen technical partnerships with suppliers by co-developing pad surface microstructures and conditioning protocols that match slurry chemistries to specific copper, oxide, or tungsten processes. This co-engineering approach reduces rework and improves first-pass yields. Fourth, align procurement practices with regional logistics realities to mitigate tariff and lead-time risks; consider localized finishing or assembly steps to limit cross-border exposure. Finally, establish measurable KPIs around within-wafer uniformity, defectivity attributable to pad performance, and pad lifespan, and use those KPIs to drive continuous improvement and supplier accountability. These actions will strengthen resilience while enabling more predictable, scalable polishing outcomes.

A rigorous methodology blending primary fabrication engagement, supplier technical interviews, and engineering literature synthesis to produce actionable CMP pad insights

This research synthesis combines primary engagement with CMP process engineers, procurement leads, and supplier technical teams alongside a structured review of engineering literature, patent disclosures, and equipment integration case studies to construct a balanced view of polishing pad dynamics. Primary insight gathering focused on process-level performance criteria-removal rate control, within-wafer uniformity, defectivity patterns, and conditioning lifecycle-while supplier interviews explored production scalability, quality systems, and field-support models. These qualitative inputs were triangulated with engineering studies and publicly available fabrication best practices to validate technical trends and emergent material choices.

Analytical rigor was applied through cross-functional review cycles that involved subject-matter experts in materials science, process integration, and supply-chain management. Wherever possible, findings emphasize observable operational responses and engineering trade-offs rather than speculative projections. The methodology privileges reproducible process metrics and documented qualification experiences to ensure recommendations remain actionable for fab managers, procurement executives, and R&D teams seeking to align pad selection with broader fabrication objectives.

Converging technical and commercial priorities point toward system-level pad strategies that enable consistent planarization, lower defectivity, and more resilient fabrication operations

CMP polishing pads represent a critical junction between materials engineering and semiconductor manufacturing economics, and recent developments underscore the need for integrated decision-making across technical and commercial domains. Technological advances in pad microarchitecture and fixed abrasive options offer compelling pathways to reduce dishing and improve uniformity, but they must be matched with refined conditioning practices and slurry optimization. Simultaneously, procurement strategies that incorporate regional sourcing flexibility and collaborative supplier relationships mitigate tariff exposure and supply-chain disruption risk.

In conclusion, the path to sustained CMP performance rests on treating pads as part of a broader process system rather than as isolated consumables. By aligning co-development, qualification, and operational KPIs, fabs can achieve more predictable planarity, lower defectivity, and longer pad lifecycles. These outcomes in turn support higher yields and smoother node transitions, equipping manufacturers to meet the increasing demands of advanced logic and memory device production with greater confidence.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Semiconductor CMP Polishing Pad Market, by Type

9. Semiconductor CMP Polishing Pad Market, by Material

10. Semiconductor CMP Polishing Pad Market, by Application

11. Semiconductor CMP Polishing Pad Market, by End User

12. Semiconductor CMP Polishing Pad Market, by Region

13. Semiconductor CMP Polishing Pad Market, by Group

14. Semiconductor CMP Polishing Pad Market, by Country

15. United States Semiconductor CMP Polishing Pad Market

16. China Semiconductor CMP Polishing Pad Market

17. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기