Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ SiC ¿þÀÌÆÛ ¿¬¸¶ ½ÃÀåÀº 2023³â¿¡ 4¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¿´°í, 2030³â¿¡´Â 33¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 35.5%·Î Àü¸ÁµË´Ï´Ù.
¿¬¸¶´Â Ç¥¸éÀÇ °áÇÔ°ú °ÅÄ¥±â¸¦ Á¦°ÅÇÏ°í ºÎµå·´°í ÆòÆòÇÑ Ç¥¸éÀ» Á¤È®ÇÑ µÎ²²¿Í ³ôÀº ǰÁú·Î ½ÇÇöÇÕ´Ï´Ù. ÀÌ °øÁ¤¿¡¼´Â ¿¬¸¶Àç¿Í ¿¬¸¶ ÆÐµå¸¦ ÈÇÐ ½½·¯¸®¿Í ÇÔ²² »ç¿ëÇÏ¿© Ç¥¸éÀÇ ¿äöÀ» ¼¼È÷ ÁÙ¿© ¿þÀÌÆÛÀÇ Ç¥¸é Ư¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. SiC ¿þÀÌÆÛÀÇ ¿¬¸¶´Â µð¹ÙÀ̽º ¼º´ÉÀ» ÃÖÀûÈÇÏ°í ¼öÀ²À» Çâ»ó½ÃŰ°í ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ´Â ÀüÀÚ ºÎǰÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
SiC ±â¹Ý ÆÄ¿ö µð¹ÙÀ̽º äÅà Áõ°¡
»ê¾÷ÀÌ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °í¼º´É ÀüÀÚ ½Ã½ºÅÛÀ¸·Î ÀüȯÇÏ´Â µ¿¾È SiC ±â¹Ý ÆÄ¿ö µð¹ÙÀ̽º´Â È¿À²À» À¯ÁöÇÏ¸é¼ ´õ ³ôÀº ¿Âµµ, Àü¾Ð ¹× Á֯ļö¿¡¼ ÀÛµ¿ÇÏ´Â ´É·ÂÀ» ÅëÇØ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. SiC ±â¹ÝÀÇ ÆÄ¿ö µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Á¤¹ÐÇÑ Ç¥¸é ¸¶¹«¸®¸¦ ÇÑ °íǰÁúÀÇ SiC ¿þÀÌÆÛ¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ Á¦Á¶¾÷ü °¢»ç´Â ÷´Ü ¿¬¸¶ ±â¼ú°ú ¼³ºñ¿¡ ´ëÇÑ ÅõÀÚ¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ, SiC ±â¹ÝÀÇ ÆÄ¿ö µð¹ÙÀ̽ºÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ¿¬¸¶µÈ SiC ¿þÀÌÆÛ ¼ö¿ä¸¦ Á÷Á¢ ÀÚ±ØÇØ, SiC ¿þÀÌÆÛ ¿¬¸¶ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Á¦Á¶ ºñ¿ë
½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¿þÀÌÆÛÀÇ ¿¬¸¶ °øÁ¤Àº º¹ÀâÇϰí ÀÚ¿ø Áý¾àÀûÀÎ ¿©·¯ °øÁ¤À» Æ÷ÇÔÇϹǷΠ»ý»ê ºñ¿ëÀÌ ³ô½À´Ï´Ù. ¿¬¸¶±â³ª °èÃø Åø µî SiC ¿þÀÌÆÛÀÇ ¿¬¸¶¿¡ ÇÊ¿äÇÑ ÀåÄ¡´Â Á¤±³Çϰí, Á¶´ÞÀ̳ª À¯Áö¿¡ ºñ¿ëÀÌ µì´Ï´Ù. ¶ÇÇÑ, ÀÌ °øÁ¤¿¡¼ »ç¿ëµÇ´Â ¿¬¸¶ ½½·¯¸® ¹× ¿¬¸¶ ÆÐµå´Â Á¤¹ÐÇÑ Ç¥¸é ¸¶°¨À» ´Þ¼ºÇϱâ À§ÇØ Æ¯º°È÷ Á¦ÇüȵǾî Àç·á ºñ¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Àåºñ¸¦ Á¶ÀÛÇÏ°í ¿¬¸¶ °øÁ¤À» Á¤È®ÇÏ°Ô ¼öÇàÇÏ´Â µ¥ ÇÊ¿äÇÑ Àü¹® Áö½ÄÀº ÀΰǺñ¸¦ ´õ¿í Áõ°¡½ÃŰ°í ½ÃÀå È®´ë¸¦ ¹æÇØÇÕ´Ï´Ù.
Àü±âÀÚµ¿Â÷ÀÇ ¼ºÀå
ÀÌ»êÈź¼Ò ¹èÃâ·®°ú ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ¼¼°è Àüµ¿ ¸ðºô¸®Æ¼·ÎÀÇ À̵¿ÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, Àü±âÂ÷¿¡ ÀÖ¾î¼ SiC ±â¹ÝÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. SiC´Â ±âÁ¸ÀÇ ½Ç¸®ÄÜ ±â¹Ý µð¹ÙÀ̽º¿¡ ºñÇØ Àü·Â È¿À² Çâ»ó, ¹æ¿ °¨¼Ò, Àü·Â ¹Ðµµ Çâ»ó µî ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖÀ¸¸ç, Àü±âÀÚµ¿Â÷ Àü·Â º¯È¯ ¹× ¸ðÅÍ ±¸µ¿ ½Ã½ºÅÛ¿¡ ÀÌ»óÀûÀÎ ¿É¼Ç µÇ¾î Àֱ⠶§¹®¿¡ SiC ¿þÀÌÆÛ ¿¬¸¶ ¼ºñ½º ¼ö¿ä¸¦ ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù.
Ç¥¸é °áÇÔ ¹× ¼öÀ² ¼Õ½Ç
½ºÅ©·¡Ä¡, ±¸µ¢ÀÌ, ÆÄƼŬ°ú °°Àº Ç¥¸é °áÇÔÀº ÀåÄ¡ ¼º´É°ú ½Å·Ú¼ºÀ» ÀúÇϽÃŰ¸ç ¼öÀ² ÀúÇÏ ¹× Á¦Á¶ ºñ¿ë Áõ°¡·Î À̾îÁý´Ï´Ù. ÀÌ·¯ÇÑ °áÇÔÀº SiC Àç·áÀÇ °æµµ¿Í Ã뼺, ¿¬¸¶ ÆÄ¶ó¹ÌÅÍÀÇ º¯µ¿, ºÒ¼ø¹°ÀÇ Á¸Àç µî ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. Ç¥¸é °áÇÔÀ¸·Î ÀÎÇÑ ¼öÀ² °¨¼Ò´Â ¼öÀͼº¿¡ ¿µÇâÀ» ÁÙ »Ó¸¸ ¾Æ´Ï¶ó °í°´ ¸¸Á·µµ ¹× ºê·£µå Æò°¡¿¡µµ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. µû¶ó¼ Ç¥¸é °áÇÔ°ú ¼öÀ² ¼Õ½ÇÀº ½ÃÀå ¼ö¿ä¸¦ ¹æÇØÇÏ´Â ¿ä¼ÒÀÔ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ À¯ÇàÀº SiC ¿þÀÌÆÛ ¿¬¸¶ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀÇ Ãʱ⠴ܰ迡¼´Â À̵¿ Á¦ÇÑ ¹× ºÀ¼â Á¶Ä¡·Î ÀÎÇØ Á¦Á¶ ½Ã¼³ÀÇ ÀϽà Æó¼â ¹× »ý»ê ÀÏÁ¤ Áö¿¬ÀÌ ¹ß»ýÇÏ¿© SiC ¿þÀÌÆÛ ¹× ¿¬¸¶ ¼ºñ½º °ø±Þ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ °³ÀÎ ¼Òºñ °¨¼Ò¿Í ÀÚµ¿Â÷ ¹× ÀüÀÚ±â±â¿Í °°Àº ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷ÀÇ È¥¶õÀº SiC ±â¹Ý ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼ö¿ä¸¦ ÁÙÀÌ°í ½ÃÀå ÀüüÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÈÇÐ ±â°è ¿¬¸¶ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
ÈÇÐ ±â°è ¿¬¸¶ ºÎ¹®ÀÌ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÌ °øÁ¤Àº SiC ¿þÀÌÆÛÀÇ Ç¥¸é¿¡ ÈÇÐ ½½·¯¸®¸¦ µµÆ÷ÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵˴ϴÙ. ÀÌ ½½·¯¸®¿¡´Â ¿ë¾×¿¡ ÇöŹµÈ ¿¬¸¶ ÀÔÀÚ°¡ Æ÷ÇԵǾî ÀÖ¾î Ç¥¸é Àç·á¿Í ¹ÝÀÀÇÏ¿© Àç·á Á¦°Å¸¦ µµ¿ÍÁÝ´Ï´Ù. CMP´Â SiC ¿þÀÌÆÛ ¿¬¸¶¿¡¼ Àç·á Á¦°ÅÀÇ Á¤¹ÐÇÑ Á¦¾î, ¿ì¼öÇÑ Ç¥¸é ǰÁú, ³ôÀº 󸮷® µî ¸î °¡Áö ÀåÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ÈÇÐÀû Èû°ú ±â°èÀû ÈûÀ» °áÇÕÇÏ¿© CMP´Â ÷´Ü SiC ¹ÝµµÃ¼ µð¹ÙÀ̽º¿¡ ¿ä±¸µÇ´Â ¾ö°ÝÇÑ Ç¥¸é »ç¾çÀ» ´Þ¼ºÇÏ¿© µð¹ÙÀ̽º ¼º´É, ¼öÀ² ¹× ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿¬¸¶ ÆÐµå ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¬¸¶ ÆÐµå ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀ» ´Þ¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¬¸¶ ÆÐµå´Â SiC ¿þÀÌÆÛÀÇ ¿¬¸¶¿¡ ³Î¸® »ç¿ëµÇ´Â CMP °øÁ¤¿¡ ÇʼöÀûÀÎ ºÎǰÀÔ´Ï´Ù. ¿¬¸¶ ÆÐµå´Â ÀϹÝÀûÀ¸·Î Æú¸®¿ì·¹Åº°ú ÇÕ¼º Æú¸®¸Ó¿Í °°Àº ºÎµå·´°í ź·ÂÀÖ´Â Àç·á·Î ¸¸µé¾îÁý´Ï´Ù. ¿¬¸¶ ÆÐµå´Â ¿¬¸¶ Áß¿¡ Á¦¾îµÈ ¾Ð·ÂÀ» °¡ÇÏ¸é¼ ¿¬¸¶ ½½·¯¸®¸¦ À¯ÁöÇÏ°í ¿þÀÌÆÛ Ç¥¸é¿¡ ±ÕÀÏÇÏ°Ô ºÐ»êµÇµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¿¬¸¶ ÆÐµåÀÇ Á¶¼º ¹× ±¸Á¶´Â ±ÕÀÏÇÑ Àç·á Á¦°Å¸¦ º¸ÀåÇÏ°í ¿þÀÌÆÛ Ç¥¸éÀÇ °áÇÔÀ» ÃÖ¼ÒÈÇϱâ À§ÇØ ½ÅÁßÇÏ°Ô ¼³°èµÇ¾ú½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿Â÷, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, Åë½Å, ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â µî ´Ù¾çÇÑ »ê¾÷¿¡¼ SiC ±â¹Ý ¹ÝµµÃ¼ µð¹ÙÀ̽º ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀϺ»°ú ´ë¸¸ °°Àº ³ª¶ó¿¡´Â È®¸³µÈ ¹ÝµµÃ¼ Á¦Á¶¾÷ü³ª ¿¬±¸±â°üÀÌ Á¸ÀçÇØ, SiC ¿þÀÌÆÛ ¿¬¸¶ ±â¼úÀÇ Áøº¸¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬±¸±â°üµéÀº SiC ±â¹Ý µð¹ÙÀ̽ºÀÇ ¼º´É°ú È¿À²À» Çâ»ó½Ã۱â À§ÇÑ ¿¬±¸°³¹ß Ȱµ¿¿¡ Àû±ØÀûÀ¸·Î ³ë·ÂÇϰí ÀÖÀ¸¸ç, À̴ ÷´Ü ¿þÀÌÆÛ ¿¬¸¶ ±â¼ú ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼºÀÌ ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÎ¹®ÀÇ °·ÂÇÑ Á¸Àç´Â ÷´Ü ÀÎÇÁ¶ó¿Í ¼÷·ÃµÈ ³ëµ¿·Â°ú ÇÔ²² ÀÌ Áö¿ªÀÇ SiC ¿þÀÌÆÛ ¿¬¸¶ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±â¾÷Àº ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ½ÅÀç»ý ¿¡³ÊÁö, Åë½Å µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ´Â °íǰÁú SiC ¿þÀÌÆÛ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÃÖ÷´Ü ¿¬¸¶ ±â¼ú ¹× ±â¼ú °³¹ßÀÇ ÃÖÀü¼±¿¡ ¼ ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global SiC Wafer Polishing Market is accounted for $0.40 billion in 2023 and is expected to reach $3.35 billion by 2030 growing at a CAGR of 35.5% during the forecast period. It involves the removal of surface imperfections and roughness to achieve a smooth, flat surface with precise thickness and high quality. This process utilizes abrasive materials and polishing pads combined with chemical slurries to gradually reduce surface irregularities and enhance the wafer's surface properties. SiC wafer polishing is essential for optimizing device performance, improving yield, and ensuring the reliability of electronic components used in various applications, including power electronics, automotive, and aerospace.
Rising adoption of SiC-based power devices
As industries transition towards more energy-efficient and high-performance electronic systems, SiC-based power devices have gained traction due to their ability to operate at higher temperatures, voltages, and frequencies while maintaining efficiency. This growing demand for SiC-based power devices necessitates high-quality SiC wafers with precise surface finishes, prompting manufacturers to invest in advanced polishing techniques and equipment. Thus, the rising adoption of SiC-based power devices directly fuels the demand for polished SiC wafers, driving growth in the SiC wafer polishing market.
High Production Costs
The process of polishing silicon carbide (SiC) wafers involves several complex and resource-intensive steps, contributing to elevated production expenses. The equipment required for SiC wafer polishing, such as polishing machines and metrology tools, is sophisticated and expensive to procure and maintain. Additionally, the abrasive slurries and polishing pads used in the process are specially formulated to achieve precise surface finishes, adding to material costs. The expertise required to operate the equipment and perform the polishing process accurately further increases labor expenses, which hampers market expansion.
Growth in electric vehicles
The global shift towards electric mobility to reduce carbon emissions and dependence on fossil fuels is driving the demand for SiC-based power electronics in electric vehicles. SiC offers several advantages over traditional silicon-based devices, including higher power efficiency, reduced heat dissipation, and increased power density, making it an ideal choice for power conversion and motor drive systems in electric vehicles, stimulating demand for SiC wafer polishing services.
Surface defects and yield loss
Surface defects such as scratches, pits, and particles can impair device performance and reliability, leading to yield loss and increased manufacturing costs. These defects can arise due to various factors, including the hardness and brittleness of SiC material, variations in polishing parameters, and the presence of impurities. Yield loss due to surface defects not only impacts profitability but also affects customer satisfaction and brand reputation. Therefore, surface defects and yield loss are the elements hindering market demand.
Covid-19 Impact
The COVID-19 pandemic had a significant impact on the SiC wafer polishing market. During the initial phases of the pandemic, restrictions on movement and lockdown measures led to temporary closures of manufacturing facilities and delays in production schedules, affecting the supply of SiC wafers and polishing services. Moreover, reduced consumer spending and disruptions in end-user industries such as automotive and electronics also dampened demand for SiC-based semiconductor devices, impacting overall market growth.
The chemical-mechanical polishing segment is expected to be the largest during the forecast period
The chemical-mechanical polishing segment is estimated to hold the largest share. This process begins with the application of chemical slurry onto the surface of the SiC wafer. The slurry contains abrasive particles suspended in a solution that reacts with the surface material, aiding in material removal. CMP offers several advantages in SiC wafer polishing, including precise control over material removal, excellent surface quality, and high throughput. Moreover, by combining chemical and mechanical forces, CMP can achieve the stringent surface specifications required for advanced SiC semiconductor devices, improving device performance, yield, and reliability.
The polishing pads segment is expected to have the highest CAGR during the forecast period
The polishing pads segment is anticipated to have lucrative growth during the forecast period. These pads are essential components of the CMP process, which is widely used for polishing SiC wafers. Polishing pads are typically made of a soft, resilient material such as polyurethane or a synthetic polymer. They are designed to hold and distribute the abrasive slurry evenly across the wafer surface while applying controlled pressure during polishing. The composition and structure of the polishing pad are carefully engineered to ensure uniform material removal and minimize defects on the wafer surface.
Asia Pacific commanded the largest market share during the extrapolated period owing to increasing demand for SiC-based semiconductor devices across various industries such as automotive, power electronics, telecommunications, and consumer electronics. The presence of established semiconductor manufacturers and research institutions in countries like Japan and Taiwan has contributed to the advancement of SiC wafer polishing technologies. These institutions are actively involved in research and development activities aimed at enhancing the performance and efficiency of SiC-based devices, thereby driving the demand for advanced wafer polishing techniques.
North America is expected to witness profitable growth over the projection period. North America's strong presence in the electronics and semiconductor sectors, coupled with its advanced infrastructure and skilled workforce, has propelled the growth of the SiC wafer polishing market in the region. Companies in the region are at the forefront of developing cutting-edge polishing techniques and technologies to meet the growing demand for high-quality SiC wafers used in various applications, including automotive, aerospace, renewable energy, and telecommunications.
Key players in the market
Some of the key players in the SiC Wafer Polishing Market include DuPont Incorporated, Entegris, 3M, Fujimi Corporation, Engis Corporation, JSR Corporation, Ferro Corporation, Kemet, Lapmaster Wolters, Advanced Abrasives Corporation and Logitech Ltd.
In September 2023, DuPont announced that it entered into a strategic collaboration relationship with YMT, a Korean printed circuit board (PCB) materials manufacturer listed on the KOSDAQ exchange. This collaboration combines DuPont's circuit imaging material expertise and YMT's local network, which can best address the local customer needs with faster response, better service, and a total solution.
In June 2023, DuPont Incorporated and JetCool Technologies Inc. announced a collaboration to increase adoption of advanced liquid cooling technology, enabling thermal management for semiconductors, data centers and other high-performance computing applications.
In March 2023, 3M announced collaboration with Guardhat, an industry-leading connected safety software company. Given the importance of connectivity as a key ingredient in safety programs, 3M is transferring its Safety Inspection Management (SIM) software to Guardhat.