Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ ½ÃÀåÀº 2023³â 5¾ï 2,200¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 21.3%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 20¾ï 1,700¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Ç¸®Äܰú ź¼Ò·Î ±¸¼ºµÈ ¹ÝµµÃ¼ Àç·á¸¦ SiC ¿þÀÌÆÛ¶ó°í Çϴµ¥, SiC ¿þÀÌÆÛ´Â °í¿Â ³»¼º, ¹ÝµµÃ¼, Àý¿¬ ¹× ¿ °ü¸® Àç·á·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ´Â Àü±â Àüµµ¼ºÀ» ¿ÏÈÇÏ°í ½ÅÈ£ °£¼·À» ÃÖ¼ÒÈÇÒ ¼ö Àֱ⠶§¹®¿¡ °íÁÖÆÄ(RF) ¹× Àü·Â ÁõÆø±â¿Í °°Àº °íÁÖÆÄ ¹× °íÃâ·Â ÀüÀÚ±â±â Á¦Á¶¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
Áß±¹ÀÚµ¿Â÷°ø¾÷Çùȸ°¡ ¹ßÇ¥ÇÑ Á¶»ç¿¡ µû¸£¸é SiC¿¡ ´ëÇÑ ÅõÀÚ´Â Áß±¹ÀÇ Àü±âÂ÷ »ý»ê°ú Å« »ó°ü°ü°è°¡ ÀÖÀ¸¸ç, Àü±âÂ÷ »ý»ê·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
°íÁÖÆÄ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Åë½Å ¹× ¹«¼± Åë½Å ½Ã½ºÅÛ µî ÷´Ü ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â »ê¾÷°è¿¡¼´Â ´õ ³ôÀº Á֯ļö¿¡¼ ÀÛµ¿ÇÏ´Â ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ´Â ½ÅÈ£ °£¼·À» ÁÙÀ̰í Àüü µð¹ÙÀ̽º ¼º´ÉÀ» Çâ»ó½ÃŰ´Â °íÀ¯ÇÑ ¹ÝÀý¿¬ Ư¼ºÀ¸·Î ÀÎÇØ ÁõÆø±â ¹× Æ®·£Áö½ºÅÍ¿Í °°Àº ¹«¼± Á֯ļö(RF) ºÎǰ Á¦Á¶¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 5G ³×Æ®¿öÅ©ÀÇ È®»ê°ú Åë½Å ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ÀÎÇØ SiC ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Á¦Á¶ ºñ¿ë
¿þÀÌÆÛ Á¦Á¶¿¡´Â °íµµÀÇ °øÁ¤ÀÌ ÇÊ¿äÇÏ°í °í¼øµµ ¿øÀç·á°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦Á¶ ºñ¿ëÀÌ ³ô½À´Ï´Ù. Á¤¹ÐÇÑ °áÁ¤ ¼ºÀå°ú ¾ö°ÝÇÑ Ç°Áú °ü¸® Á¶Ä¡¸¦ Æ÷ÇÔÇÑ Á¦Á¶ÀÇ º¹À⼺Àº SiC ¿þÀÌÆÛ Á¦Á¶ÀÇ ÃÑ ºñ¿ëÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀå¿¡¼´Â SiC ¿þÀÌÆÛÀÇ °æÀï·Â ÀÖ´Â °¡°Ý Ã¥Á¤¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ´Â »ê¾÷ Àü¹ÝÀÇ º¸±Þ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ±×·¯³ª SiC ¿þÀÌÆÛ Á¦Á¶¿¡ ÇÊ¿äÇÑ Ã·´Ü Àåºñ¿Í ±â¼ú¿¡ ´ëÇÑ ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ëµµ ºñ¿ë À庮À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.
Àü±âÂ÷ÀÇ Àü ¼¼°è È®´ë
ÀÚµ¿Â÷ »ê¾÷ÀÌ Àüµ¿È·Î ÀüȯÇÔ¿¡ µû¶ó ÷´Ü ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, SiC ¿þÀÌÆÛ´Â Àü±âÀÚµ¿Â÷ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ºÎǰÀÇ È¿À²°ú ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. SiC ¿þÀÌÆÛÀÇ °íÀ¯ÇÑ Æ¯¼ºÀÎ °í¿Â ³»¼º ¹× Çâ»óµÈ ÆÄ¿ö Çڵ鸵 ´É·ÂÀº º¸´Ù ¿¡³ÊÁö È¿À²ÀûÀ̰í ÄÄÆÑÆ®ÇÑ Àü±â ±¸µ¿°è °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó SiC ±â¹Ý ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
´Ù¸¥ ¹ÝµµÃ¼ Àç·á¿ÍÀÇ °æÀï
SiC ¿þÀÌÆÛ´Â °í¿Â ÀúÇ× ¹× Çâ»óµÈ Àç·á ó¸® ´É·Â°ú °°Àº °íÀ¯ ÇÑ ÀÌÁ¡À» Á¦°øÇÏÁö¸¸ ½Ç¸®ÄÜ ¹× °¥·ý ºñ¼Ò¿Í °°Àº ±âÁ¸ Àç·á¿ÍÀÇ °æÀï¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½Ç¸®ÄÜÀº ¹ÝµµÃ¼ »ê¾÷¿¡¼ ¿À·£ ±â°£ µ¿¾È Á¸Àç°¨À» º¸¿© ¿ÔÀ¸¸ç, Àß È®¸³µÈ Á¦Á¶ °øÁ¤°ú Àú·ÅÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ³ôÀº ÀüÀÚ À̵¿µµ·Î À¯¸íÇÑ °¥·ý ºñ¼Ò´Â ƯÁ¤ Æ´»õ ½ÃÀå¿¡¼ °æÀïÇϰí ÀÖÀ¸¸ç, SiC ¿þÀÌÆÛÀÇ °úÁ¦´Â ±âÁ¸ Àç·á¿¡¼ ´õ ¿ì¼öÇÏÁö¸¸ ´õ »õ·Î¿î ´ëü Àç·á·Î ÀüȯÇϵµ·Ï ¾÷°è¸¦ ¼³µæÇÏ´Â µ¥ ÀÖ½À´Ï´Ù.
¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ, Á¦Á¶ ½Ã¼³ÀÇ ÀϽÃÀû °¡µ¿ Áß´Ü, °æÁ¦ ºÒÈ®½Ç¼ºÀº SiC ¿þÀÌÆÛÀÇ »ý»ê°ú À¯Åë¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¹ÝµµÃ¼ ¾÷°è´Â Àη ºÎÁ·, ¹°·ù Á¦¾à, ÇÁ·ÎÁ§Æ® ÀÏÁ¤ Áö¿¬À¸·Î ÀÎÇØ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â µ¥ ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ±×·¯³ª COVID-19·Î ÀÎÇÑ °æ±â ħüµµ ´Ù¾çÇÑ ºÐ¾ßÀÇ ÅõÀÚ ¹× ÇÁ·ÎÁ§Æ® µÐÈ·Î À̾îÁ® SiC ¿þÀÌÆÛ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È 6ÀÎÄ¡ SiC ¿þÀÌÆÛ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È 6ÀÎÄ¡ SiC ¿þÀÌÆÛ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿þÀÌÆÛÀÇ Á÷°æÀÌ Ä¿Áö¸é ¹ÝµµÃ¼ ¼ÒÀÚ Á¦Á¶¸¦ À§ÇÑ Ç¥¸éÀûÀÌ Ä¿Á® ¿þÀÌÆÛ ÇÑ Àå´ç ´õ ¸¹Àº ÀüÀÚºÎǰÀ» »ý»êÇÒ ¼ö ÀÖ¾î Á¦Á¶ È¿À²ÀÌ Çâ»óµË´Ï´Ù. ÀÌ´Â ºñ¿ë Àý°¨°ú ±Ô¸ðÀÇ °æÁ¦·Î À̾îÁ® 6ÀÎÄ¡ SiC ¿þÀÌÆÛ¸¦ ´ë·® »ý»ê¿¡ Á¡Á¡ ´õ ¸Å·ÂÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿þÀÌÆÛ Å©±âÀÇ ´ëÇüÈ´Â ¾÷°èÀÇ ¿þÀÌÆÛ ´ëÇüÈ Ãß¼¼¿Í ÀÏÄ¡Çϸç, ±âÁ¸ ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ¹× °øÁ¤°úÀÇ È£È¯¼ºÀ» ÃËÁøÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¹«¼± ÀÎÇÁ¶ó ºÐ¾ß
¹«¼± ÀÎÇÁ¶ó ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. SiC ¿þÀÌÆÛ´Â ¿ì¼öÇÑ Àü±âÀû Ư¼º°ú ³ôÀº Á֯ļö¿¡¼ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ´É·ÂÀ¸·Î À¯¸íÇϸç, ¹«¼± ÀÎÇÁ¶ó ³» Àü·Â ÁõÆø±â ¹× ¼Û¼ö½Å±â¿Í °°Àº ¹«¼± Á֯ļö(RF) ºÎǰ Á¦Á¶¿¡ ÇʼöÀûÀÎ °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ¹«¼± ÀÎÇÁ¶ó ³» Àü·Â ÁõÆø±â ¹× Æ®·£½Ã¹ö¿Í °°Àº ¹«¼± Á֯ļö(RF) ºÎǰ Á¦Á¶¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ½ÅÈ£ °£¼· °¨¼Ò ¹× Àü·Â ó¸® ´É·Â Çâ»ó°ú °°Àº SiC °íÀ¯ÀÇ ÀåÁ¡Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â °í¼º´É ¹«¼± Åë½Å ½Ã½ºÅÛ °³¹ß¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇÕ´Ï´Ù.
÷´Ü Àü·Â ÀåÄ¡¿Í ÇÏÀÌ¿£µå °¡Á¬À» Àú·ÅÇÑ °¡°ÝÀ¸·Î äÅÃÇÏ¸é¼ ¾Æ½Ã¾ÆÅÂÆò¾ç Àüü¿¡¼ ÀüÀÚ Á¦Ç° ¼Òºñ°¡ Áõ°¡ÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ±¹³» ÁÖ¿ä Åë½Å»çµéÀÇ 5G ÀÎÇÁ¶ó ±¸ÃàÀº SiC ¿þÀÌÆÛ »ê¾÷ÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹³» ÀÚµ¿Â÷ÀÇ Àüµ¿È Ãß¼¼¿¡ µû¶ó ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
À¯·´ Áö¿ªÀº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ »ç¿ë Áõ°¡¿Í Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ºü¸¥ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ ½ÃÀåÀÇ ¼ºÀåÀº µ¶ÀÏÀ» ºñ·ÔÇÑ À¯·´ ±¹°¡µéÀÇ ÀÚµ¿Â÷ ºÎ¹® ½ÃÀå °³Ã´¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·áÀÇ Ç°Áú, È®À强 ¹× ºñ¿ë È¿À²¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ ¹ÝÀý¿¬¼º SiC ¿þÀÌÆÛ Á¦Á¶ °øÁ¤ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Semi-Insulating Silicon Carbide Wafer Market is accounted for $522 million in 2023 and is expected to reach $2,017 million by 2030 growing at a CAGR of 21.3% during the forecast period. A semiconductor material composed of silicon and carbon is referred to as a SiC wafer. SiC wafers are known for their high-temperature resistance, semiconductors, insulation, and thermal management materials. Semi-Insulating Silicon Carbide Wafer play a crucial role in the fabrication of high-frequency and high-power electronic devices, such as radio frequency (RF) and power amplifiers, due to their ability to mitigate electrical conductivity and minimize signal interference.
According to a study published by the China Association of Automobile Manufacturers; SiC investments are largely correlated with China's EV production, and they increase with the increase in EV production.
Growing demand for high-frequency electronics
As industries increasingly rely on advanced technologies, particularly in telecommunications and wireless communication systems, there is a surge in the need for electronic devices capable of operating at higher frequencies. Semi-insulating SiC wafers play a pivotal role in the fabrication of radio frequency (RF) components, such as amplifiers and transistors, due to their unique semi-insulating properties that reduce signal interference and enhance overall device performance. Furthermore, with the ongoing deployment of 5G networks and the continuous evolution of communication technologies, the demand for SiC wafers rises sharply.
High manufacturing costs
The production of these wafers involves sophisticated processes and requires high-purity raw materials, contributing to elevated manufacturing expenses. The complexity of manufacturing, which includes precise crystal growth and stringent quality control measures, adds to the overall cost of SiC wafer production. As a result, the market faces challenges in offering competitive pricing for these wafers, impacting their broader adoption across industries. However, the high initial investment required for the advanced equipment and technologies involved in SiC wafer fabrication further contributes to the cost barrier.
Global expansion of electric vehicles
As the automotive industry undergoes a transformative shift towards electrification, the demand for advanced power electronics is on the rise. SiC wafers play a crucial role in enhancing the efficiency and performance of power electronics components in EVs. With their unique properties, including high-temperature tolerance and improved power handling capabilities, SiC wafers contribute to the development of more energy-efficient and compact electric drivetrains. The increasing adoption of electric vehicles worldwide amplifies the need for SiC-based power electronics, leading to a higher demand for these wafers.
Competition from other semiconductor materials
While SiC wafers offer unique advantages such as high-temperature tolerance and improved power handling capabilities, they face competition from established materials like silicon and gallium arsenide. Silicon, in particular, has a long-standing presence in the semiconductor industry, and its well-established manufacturing processes and lower costs can make it a preferred choice for certain applications. Gallium arsenide, known for its high electron mobility, competes in specific niche markets. The challenge for SiC wafers lies in convincing industries to transition from traditional materials to newer, albeit superior, alternatives.
The global disruptions in supply chains, temporary shutdowns of manufacturing facilities, and economic uncertainties significantly affected the production and distribution of SiC wafers. The semiconductor industry faced challenges in meeting demand as a result of workforce shortages, logistics constraints, and delays in project timelines. However, the pandemic-induced economic downturn also led to a slowdown in investments and projects across various sectors, influencing the demand for SiC wafers.
The 6 Inch SiC Wafer segment is expected to be the largest during the forecast period
The Wireless Infrastructure segment is expected to have the highest CAGR during the forecast period
Wireless Infrastructure segment is expected to have the highest CAGR during the forecast period. With the global expansion of wireless communication technologies, particularly the deployment of 5G networks, there is an escalating demand for high-frequency electronic components. SiC wafers, known for their superior electrical properties and ability to operate efficiently at elevated frequencies, are essential in the fabrication of radio frequency (RF) components such as power amplifiers and transceivers within wireless infrastructure. Furthermore, the inherent benefits of SiC, including reduced signal interference and enhanced power handling capabilities, make these wafers indispensable for the development of reliable and high-performance wireless communication systems.
The adoption of high-tech power devices and high-end gadgets at lower prices has increased the consumption of electronics products throughout the Asia Pacific region, which held the largest share over the projection period. The development of a 5G infrastructure network by major telecom companies in the nation is contributing to the growth of the SiC wafer industry. Furthermore, as more automobiles in the nation become electrified, there is a greater need for semi-insulating silicon carbide wafer.
Europe region is growing at a rapid pace over the extrapolated period, due to the increased use of power electronics and the increasing shift towards renewable energy sources. The growth of the semi-insulating silicon carbide wafer market is being assisted and encouraged by the developments in the automotive sector in European nations such as Germany. Furthermore, ongoing advancements in the manufacturing processes of semi-insulating SiC wafers, aimed at improving material quality, scalability, and cost-effectiveness, act as drivers for market growth in the region.
Key players in the market
Some of the key players in Semi-Insulating Silicon Carbide Wafer market include Belden Inc, CETC Solar Energy Holdings Co., Ltd, Datwyler Holding Inc, GM Plast A/S, Prysmian Group, ROHM CO., LTD, SK siltron Co. Ltd, STMicroelectronics and TankeBlue CO., LTD.
In May 2022, Rhombus Energy Solutions, a EV charging and power conversion technology company, announced that Wolfspeed is supplying SiC technology to improve the efficiency, power density and quicker charging time of their products
In March 2022, Showa Denko starts mass production of a 6-inch diameter silicon carbide single crystal wafer which will improve downsizing and energy efficiency of a power module.
In March 2022, SK Siltron to Invest KRW1tr to Expand Wafer Production Facilities. The company announced that it has decided to invest 1.05 trillion won over the next three years to expand its facilities for 300 mm wafers, which are located in Gumi National Industrial Complex 3.