¼¼°èÀÇ ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀå
Fan-Out Wafer Level Packaging
»óǰÄÚµå : 1780783
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 377 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,186,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,559,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 50¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 29¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 50¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠǥÁØ ¹Ðµµ ÆÐŰ¡Àº CAGR 8.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 28¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í¹Ðµµ ÆÐŰ¡ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 10.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7¾ï 9,960¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 14.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀº 2024³â¿¡ 7¾ï 9,960¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 11¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 14.0%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.7%¿Í 8.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ÀÌ ¹ÝµµÃ¼ Çõ½ÅÀÇ ¹Ì·¡·Î ºÎ»óÇϰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡(FOWLP)Àº Àü±âÀû ¼º´É Çâ»ó, ÆûÆÑÅÍ Ãà¼Ò, ¿­ ÀúÇ× °¨¼Ò¸¦ ½ÇÇöÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ¹ÝµµÃ¼ ÆÐŰ¡ ±â¼úÀÇ ÃÖÀü¼±¿¡ ºü¸£°Ô ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÌ Ã·´Ü ÆÐŰ¡ ¼Ö·ç¼ÇÀº Ĩ Å©±â¸¦ ´Ã¸®Áö ¾Ê°íµµ ´õ ¸¹Àº I/O ¿¬°áÀÌ °¡´ÉÇÏ¿© ÄÄÆÑÆ®ÇÑ µð¹ÙÀ̽º¿¡ ³ôÀº ±â´É¼ºÀ» ¿ä±¸ÇÏ´Â ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¿ÍÀÌ¾î º»µùÀ̳ª Çø³Ä¨°ú °°Àº ±âÁ¸ ÆÐŰ¡ ±â¼úÀÌ ¼º´ÉÀÇ ÇѰ迡 µµ´ÞÇÑ °¡¿îµ¥, FOWLP´Â Â÷¼¼´ë ÀüÀÚÁ¦Ç°ÀÇ Áõ°¡ÇÏ´Â ¿ä±¸»çÇ׿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â È®À强 ¹× ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. FOWLPÀÇ ÆÒ¾Æ¿ô ±¸Á¶´Â ĨÀÇ I/O¸¦ ´õ ³ÐÀº ¸éÀûÀ¸·Î ÀçºÐ¹èÇÏ¿© ±âÆÇÀÌ ºÒÇÊ¿äÇÏ°í ±â»ý È¿°ú¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ´Ü¸»±â, AR/VR ´Ü¸»±â, IoT ³ëµåÀÇ ¼º´É¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁö¸é¼­ FOWLP°¡ °í¼Ó ½ÅÈ£ Àü¼ÛÀ» À¯ÁöÇϸ鼭 ¼ÒÇüÈ­¸¦ Áö¿øÇÑ´Ù´Â Á¡¿¡¼­ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É°ú 5G ±â´ÉÀÌ ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ¿¡ ÅëÇյʿ¡ µû¶ó ÆÒ¾Æ¿ô ±â¼úÀÇ ÁÖ¿ä ÀåÁ¡ÀÎ ÀÌÁ¾ ÁýÀûÈ­¸¦ Áö¿øÇÒ ¼ö Àִ ÷´Ü ÆÐŰ¡ ±â¼úÀÌ ´õ¿í ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

ÁýÀûÈ­ ¹× ¼ÒÇüÈ­ Ãß¼¼´Â FOWLP ¼ö¿ä¸¦ ¾î¶»°Ô °ßÀÎÇϰí Àִ°¡?

´Ù±â´É ¹× ¼ÒÇüÈ­ ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ±ÞÁõÇÏ´Â ¼ö¿ä´Â ±âÁ¸ ÆÐŰ¡ÀÇ ÇѰ踦 ¶Ù¾î³Ñ¾î ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. FOWLP´Â 2D¿Í 3D ÁýÀûÈ­¸¦ ¸ðµÎ Áö¿øÇϱ⠶§¹®¿¡ ¿©·¯ Ĩ°ú ¼öµ¿ ºÎǰÀÌ ÇÔ²² ÆÐŰ¡µÇ´Â ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ±¸¼º¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ´Â RF, Àü·Â °ü¸®, ¸Þ¸ð¸®, ·ÎÁ÷ µîÀÇ ±â´ÉÀ» ´ÜÀÏ Ç÷§Æû¿¡ ÅëÇÕÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ´Â ½º¸¶Æ®ÆùÀ̳ª ¿þ¾î·¯ºí°ú °°Àº °ø°£ Á¦¾àÀÌ ÀÖ´Â ±â±â¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ´õ Å« ±â´ÉÀ» ´õ ÀÛ°í Àç»ç¿ë °¡´ÉÇÑ ºí·ÏÀ¸·Î ºÐÇÒÇϴ Ĩ·¿ ¼³°èÀÇ ÃÖ±Ù ¹ßÀüÀº ³ôÀº »óÈ£¿¬°á ¹Ðµµ¿Í ³·Àº Áö¿¬ ½Ã°£À¸·Î ´Ù¾çÇÑ ´ÙÀ̸¦ »óÈ£¿¬°áÇÏ´Â FOWLPÀÇ °­Á¡°úµµ ÀÏÄ¡ÇÕ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍ, ÀÚµ¿Â÷ ÀüÀå, °í¼º´É ÄÄÇ»ÆÃ(HPC) ȯ°æ¿¡¼­ À̱âÁ¾ ÁýÀûÈ­ÀÇ Áõ°¡´Â ¿ì¼öÇÑ ¿­ ¼º´É°ú Àü±âÀû ½ÅÈ£ ¹«°á¼ºÀ¸·Î ÀÎÇØ FOWLP·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÆÒ¾Æ¿ô ¼Ö·ç¼ÇÀº ÆÐ³Î ·¹º§ ÆÐŰ¡(PLP)°ú ÇÔ²² ¹ßÀüÇÏ¿© ´õ ³ôÀº 󸮷®°ú ÆÐŰÁö ´ç ºñ¿ë Àý°¨À» Á¦°øÇÏ¿© ÀÌ ±â¼úÀÇ ¸Å·ÂÀ» ´õ¿í È®ÀåÇϰí ÀÖ½À´Ï´Ù. Ĩ Á¦Á¶¾÷üµéÀÌ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °í¹Ðµµ ¾ÆÅ°ÅØÃ³¸¦ ÁöÇâÇÏ´Â °¡¿îµ¥, FOWLP´Â ÷´Ü ÀüÀÚÁ¦Ç°ÀÇ Çõ½ÅÀ» ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

´ë±Ô¸ð FOWLP äÅÃÀ» À§ÇØ ¹ÝµµÃ¼ »ýŰè´Â ÀûÀÀÇϰí Àִ°¡?

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀå¿¡¼­ ´«¿¡ ¶ç´Â ¹ßÀüÀº FOWLP äÅÃÀ» °£¼ÒÈ­Çϱâ À§ÇØ ¹ÝµµÃ¼ ÆÄ¿îµå¸®, OSAT(¹ÝµµÃ¼ Á¶¸³ ¹× Å×½ºÆ® ¾Æ¿ô¼Ò½Ì) Á¦°ø¾÷ü, EDA Åø °³¹ß¾÷ü °£ÀÇ Çù·ÂÀÌ ÁøÇàµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. TSMC, ASE, Amkor, JCET µî ÁÖ¿ä ¾÷üµéÀº È®´ëµÇ´Â ½ÃÀå ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ FOWLP »ý»ê´É·Â È®´ë¿Í °øÁ¤´É·Â Çâ»ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. TSMCÀÇ INFO(Integrated Fan-Out) ±â¼ú°ú ASEÀÇ FOCoS(Fan-Out Chip-on-Substrate) ±â¼úÀº ¸ð¹ÙÀÏ ÄÄÇ»ÆÃ ¹× °í¼º´É ÄÄÇ»ÆÃÀÇ Æ¯Á¤ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇØ ¸ÂÃãÈ­µÈ µ¶ÀÚÀûÀÎ FOWLP ¼Ö·ç¼ÇÀÇ ´ëÇ¥ÀûÀÎ ¿¹ÀÔ´Ï´Ù. ¶ÇÇÑ, ¼³°è ÀÚµ¿È­ ÅøÀÇ ¹ßÀüÀ¸·Î º¹ÀâÇÑ ÆÒ¾Æ¿ô ¾ÆÅ°ÅØÃ³ÀÇ ·¹À̾ƿô ÃÖÀûÈ­, ½ÅÈ£ ¹«°á¼º ºÐ¼®, ¿­ ¸ðµ¨¸µÀ» ºü¸£°Ô ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Àåºñ Á¦Á¶»çµéÀº ´õ Å« ÆÐ³Î, Á¤¹ÐÇÑ ´ÙÀÌ ¹èÄ¡, Ãʹ̼¼ RDL(Àç¹è¼±Ãþ) ÆÐÅÍ´×À» ó¸®Çϱâ À§ÇÑ Àü¿ë ÅøÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾÷°è ¿¬ÇÕÀº ƯÈ÷ ¹ÝµµÃ¼ ÀÚ±ÞÀÚÁ·°ú ±â¼ú ¸®´õ½ÊÀÌ Àü·«Àû ¿ì¼±¼øÀ§ÀÎ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ºÏ¹Ì¿¡¼­ R&D ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ÀÚ±Ý Áö¿øÀ» ÅëÇØ »ýŰ踦 ´õ¿í Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¼½Å͸¦ ³Ñ¾î¼± ´ë·® ¹× °í½Å·Ú¼º FOWLP ¹èÆ÷¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ´Â »ýŰèÀÇ ¼º¼÷µµ¸¦ º¸¿©ÁÝ´Ï´Ù.

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀÇ ±Þ¼ºÀå ¿äÀÎÀº?

ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀÇ ¼ºÀåÀº ÆÐŰ¡ Çõ½Å, ÃÖÁ¾ ¿ëµµ È®´ë, Àü·«Àû Á¦Á¶ ÅõÀÚ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±â¼úÀûÀ¸·Î´Â 5G, AI, IoT µð¹ÙÀ̽ºÀÇ Áö¼ÓÀûÀÎ ÁøÈ­¿¡ µû¶ó ´õ ³ôÀº ¼º´É°ú ¼ÒÇüÈ­°¡ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, FOWLP´Â °ËÁõµÈ È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ °¡Àü, ÀÚµ¿Â÷, HPC ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ Ĩ·¿ ±â¹Ý ¾ÆÅ°ÅØÃ³¿Í ÀÌÁ¾ÁýÀûÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, ¿­È¿À²°ú Àü±âÀû È¿À²ÀÌ ¿ì¼öÇÏ°í °í¹Ðµµ »óÈ£¿¬°áÀÌ °¡´ÉÇÑ ÆÐŰ¡ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ Ãø¸é¿¡¼­´Â ÃʹÚÇü ½º¸¶Æ®Æù, ½º¸¶Æ®¿öÄ¡, ¿§Áö AI µð¹ÙÀ̽ºÀÇ º¸±ÞÀÌ ¿©·¯ Á¦Ç° Ä«Å×°í¸®¿¡¼­ FOWLPÀÇ È°¿ëÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷¿¡¼­ Àüµ¿È­ ¹× ÀÚÀ²ÁÖÇàÀÇ ÃßÁøÀº ¼ÒÇü, °í½Å·Ú¼º, °í¿Â ³»¼º ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖÀ¸¸ç, FOWLP´Â ºÐ¸íÇÑ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, OSAT ¹× ij½ºÆÃÀ» ÅëÇÑ Ã·´Ü ÆÐŰ¡ ¶óÀÎ(ƯÈ÷ ÆÐ³Î ·¹º§ »ý»ê)¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ±Ô¸ðÀÇ °æÁ¦¸¦ °³¼±ÇÏ°í ´ë·® µµÀÔÀ» À§ÇÑ ºñ¿ë À庮À» ³·Ãß°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾Æ¿Í ¹Ì±¹¿¡¼­´Â ¹ÝµµÃ¼ ±â¼ú Çõ½Å°ú ÇöÁö »ý»êÀ» Àå·ÁÇÏ´Â Áö¿ª Á¤Ã¥ÀÌ °ø±Þ¸ÁÀ» ´õ¿í °­È­ÇÏ¿© ±â¼úÀû ¸ð¸àÅÒÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀεéÀÌ °áÇÕµÇ¾î ¼¼°è FOWLP ½ÃÀåÀº Áö¼ÓÀûÀÌ°í °¡¼ÓÈ­µÈ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

ÇÁ·Î¼¼½º À¯Çü(Ç¥ÁØ ¹Ðµµ ÆÐŰ¡, °í¹Ðµµ ÆÐŰ¡, ¹üÇÎ), ºñÁî´Ï½º ¸ðµ¨(OSAT, ÁÖÁ¶, IDM), ¿ëµµ(°¡Àü ¿ëµµ, »ê¾÷ ¿ëµµ, ÀÚµ¿Â÷ ¿ëµµ, ÇコÄÉ¾î ¿ëµµ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ¿ëµµ, IT¡¤Åë½Å ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Fan-Out Wafer Level Packaging Market to Reach US$5.0 Billion by 2030

The global market for Fan-Out Wafer Level Packaging estimated at US$2.9 Billion in the year 2024, is expected to reach US$5.0 Billion by 2030, growing at a CAGR of 9.1% over the analysis period 2024-2030. Standard-Density Packaging, one of the segments analyzed in the report, is expected to record a 8.5% CAGR and reach US$2.8 Billion by the end of the analysis period. Growth in the High-Density Packaging segment is estimated at 10.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$799.6 Million While China is Forecast to Grow at 14.0% CAGR

The Fan-Out Wafer Level Packaging market in the U.S. is estimated at US$799.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.1 Billion by the year 2030 trailing a CAGR of 14.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.7% and 8.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.1% CAGR.

Global Fan-Out Wafer Level Packaging Market - Key Trends & Drivers Summarized

Why Is Fan-Out Wafer Level Packaging Emerging as the Future of Semiconductor Innovation?

Fan-out wafer level packaging (FOWLP) has rapidly ascended to the forefront of semiconductor packaging technologies due to its ability to deliver enhanced electrical performance, reduced form factor, and lower thermal resistance. This advanced packaging solution allows for a higher number of I/O connections without increasing chip size, making it ideally suited for applications that demand high functionality in compact devices. With traditional packaging technologies like wire bonding and flip chip reaching their performance limits, FOWLP provides a scalable and cost-efficient alternative that meets the growing demands of next-generation electronics. Its fan-out structure enables redistribution of the chip’s I/Os over a larger area, eliminating the need for a substrate and reducing parasitic effects. The rising performance expectations in consumer electronics-especially in smartphones, wearables, AR/VR devices, and IoT nodes-are driving adoption, as FOWLP supports miniaturization while maintaining high-speed signal transmission. Additionally, the increased integration of artificial intelligence and 5G capabilities in compact form factors further necessitates advanced packaging techniques that can support heterogeneous integration, a key advantage of fan-out technology.

How Are Advancements in Integration and Miniaturization Driving FOWLP Demand?

The surging need for multi-functional and miniaturized semiconductor devices is pushing the limits of conventional packaging and fueling demand for fan-out wafer level packaging. FOWLP supports both 2D and 3D integration, making it ideal for system-in-package (SiP) configurations where multiple chips or passives are packaged together. This becomes especially valuable in space-constrained devices like smartphones and wearables, where integrating functionalities like RF, power management, memory, and logic onto a single platform is increasingly critical. Recent advances in chiplet design, where larger functions are divided into smaller, reusable blocks, also align with FOWLP’s strengths in interconnecting diverse dies with high interconnect density and low latency. Moreover, the rise of heterogeneous integration in data centers, automotive electronics, and high-performance computing (HPC) environments is accelerating the transition to FOWLP due to its superior thermal performance and electrical signal integrity. Fan-out solutions are also evolving with panel-level packaging (PLP), offering higher throughput and reduced cost per package, further broadening the technology’s appeal. As chipmakers move toward energy-efficient, high-density architectures, FOWLP is emerging as a critical enabler for innovation in advanced electronics.

Is the Semiconductor Ecosystem Adapting to Enable Large-Scale FOWLP Adoption?

A notable development in the fan-out wafer level packaging market is the increasing collaboration between semiconductor foundries, OSAT (outsourced semiconductor assembly and test) providers, and EDA tool developers to streamline FOWLP adoption. Major players such as TSMC, ASE, Amkor, and JCET are investing heavily in expanding their FOWLP production capacities and refining process capabilities to meet growing market demand. TSMC’s InFO (Integrated Fan-Out) and ASE’s FOCoS (Fan-Out Chip-on-Substrate) technologies are leading examples of proprietary FOWLP solutions tailored for specific applications in mobile and high-performance computing. Additionally, advancements in design automation tools are enabling faster layout optimization, signal integrity analysis, and thermal modeling for complex fan-out architectures. Equipment manufacturers are also developing specialized tools to handle larger panels, precise die placement, and ultra-fine RDL (redistribution layer) patterning-all essential for consistent FOWLP yields. Governments and industry alliances are further supporting the ecosystem with funding for R&D initiatives, particularly in Asia-Pacific and North America, where semiconductor self-sufficiency and technological leadership are strategic priorities. These developments indicate a maturing ecosystem that is increasingly capable of supporting high-volume, high-reliability FOWLP deployment across sectors.

What Factors Are Driving the Rapid Growth of the Fan-Out Wafer Level Packaging Market?

The growth in the fan-out wafer level packaging market is driven by several factors related to packaging innovation, end-use expansion, and strategic manufacturing investments. On the technology front, the continued evolution of 5G, AI, and IoT devices is demanding higher performance and greater miniaturization, for which FOWLP offers a proven, scalable solution. The increasing adoption of chiplet-based architectures and heterogeneous integration across consumer electronics, automotive, and HPC applications is fueling demand for packaging technologies that allow dense interconnectivity with superior thermal and electrical efficiency. From an end-use perspective, the proliferation of ultra-thin smartphones, smartwatches, and edge AI devices is expanding FOWLP usage across multiple product categories. In the automotive industry, the push toward electrification and autonomous driving is creating strong demand for compact, reliable, and high-temperature-tolerant packaging solutions, where FOWLP has a distinct advantage. Additionally, increased investments by OSATs and foundries in advanced packaging lines-especially panel-level production-are improving economies of scale and lowering cost barriers for mass adoption. Regional policies encouraging semiconductor innovation and local manufacturing, particularly in Asia and the U.S., are further strengthening the supply chain and driving technological momentum. Collectively, these drivers are setting the stage for sustained and accelerated growth in the global FOWLP market.

SCOPE OF STUDY:

The report analyzes the Fan-Out Wafer Level Packaging market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Process Type (Standard-Density Packaging, High-Density Packaging, Bumping); Business Model (OSAT, Foundry, IDM); Application (Consumer Electronics Application, Industrial Application, Automotive Application, Healthcare Application, Aerospace & Defense Application, IT & Telecommunications Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â