¼¼°èÀÇ ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀå
Interposer and Fan-out Wafer Level Packaging
»óǰÄÚµå : 1774954
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 483 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀº 2030³â±îÁö 1,368¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 691¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 12.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,368¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÎÅÍÆ÷Àú´Â CAGR 13.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 934¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Fowlp ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 9.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 188¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 16.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀº 2024³â¿¡ 188¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 290¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 16.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 8.6%¿Í 10.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.6%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÎÅÍÆ÷Àú¿Í ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ÀÌ ¹ÝµµÃ¼ ÁýÀûÈ­¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡(FOWLP) ½ÃÀåÀº ¼ÒÇü, °í¼º´É, ¿¡³ÊÁö È¿À²ÀûÀÎ ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ¹ÝµµÃ¼ »ê¾÷¿¡¼­ Å« ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ÆÐŰ¡ ±â¼úÀº ĨÀÇ ÁýÀûµµ¸¦ ³ôÀ̰í Àü±âÀû ¼º´ÉÀ» Çâ»ó½Ã۸ç, °¡ÀüÁ¦Ç°, ÀÚµ¿Â÷ ¹× µ¥ÀÌÅͼ¾ÅͿ뵵ÀÇ ¼ÒÇüÈ­ Ãß¼¼¸¦ Áö¿øÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

ÀÎÅÍÆ÷Àú´Â ¹ÝµµÃ¼ ´ÙÀÌ¿Í Àμâ ȸ·Î ±âÆÇ(PCB)ÀÇ Áß°£Ãþ ¿ªÇÒÀ» ÇÏ¿© Àü·Â ¼Òºñ¿Í ½ÅÈ£ ¼Õ½ÇÀ» ÁÙÀ̸鼭 °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡(FOWLP)Àº ±âÁ¸ÀÇ ¿ÍÀÌ¾î º»µùÀ» ¾ø¾Ö°í ÀÔÃâ·Â(I/O) ¿¬°áÀ» ĨÀÇ ½ÇÀû ³Ê¸Ó·Î ÀçºÐ¹èÇÏ¿© ¿­Àû, Àü±âÀû ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ȹ±âÀûÀÎ ±â¼úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÀÌÁ¾ ÁýÀûÈ­¸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ±â¼ú·Î µîÀåÇÏ¿© ¼­·Î ´Ù¸¥ À¯ÇüÀÇ Ä¨(·ÎÁ÷, ¸Þ¸ð¸® µî)À» ´ÜÀÏ ÆÐŰÁö¿¡ ÅëÇÕÇÏ¿© ¿ì¼öÇÑ ¼º´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

5G Ä¿³ØÆ¼ºñƼ, ÀΰøÁö´É(AI), °í¼º´É ÄÄÇ»ÆÃ(HPC), ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÎÅÍÆ÷Àú¿Í FOWLP ¼Ö·ç¼ÇÀº ¹ÝµµÃ¼ ÆÐŰ¡¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ±âÁ¸ ÆÐŰ¡ ¹æ¹ýÀÇ ÇѰ踦 ±Øº¹Çϰí, µ¥ÀÌÅÍ Ã³¸® ¼Óµµ Çâ»ó, Áö¿¬ ½Ã°£ °¨¼Ò, Àü·Â ¼Òºñ °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ¹× ¸ÖƼ Ĩ ¸ðµâ(MCM) ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº ÀÌ·¯ÇÑ Ã·´Ü ÆÐŰ¡ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ÀÇ Ãֽе¿ÇâÀº?

¹ÝµµÃ¼ ¾÷°è¿¡¼­´Â ÀÎÅÍÆ÷Àú ¹× FOWLP ½ÃÀåÀ» Çü¼ºÇÏ´Â ¸î °¡Áö Áß¿äÇÑ Æ®·»µå°¡ ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â 2.5D ¹× 3D ÆÐŰÁö ¾ÆÅ°ÅØÃ³ÀÇ Ã¤ÅÃÀ¸·Î, 2.5D ÆÐŰ¡¿¡¼­´Â ½Ç¸®ÄÜ, À¯¸® ¶Ç´Â À¯±â Àç·á·Î ¸¸µé¾îÁø ÀÎÅÍÆ÷Àú ÃþÀÌ ¿©·¯ °³ÀÇ ´ÙÀ̸¦ ¿¬°áÇÏ¿© AI °¡¼Ó±â ¹× ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU)¿Í °°Àº ¿ëµµ¸¦ À§ÇÑ °í´ë¿ªÆø ¸Þ¸ð¸®(HBM)¸¦ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. 3D ÆÐŰ¡Àº ĨÀ» ¼öÁ÷À¸·Î ÀûÃþÇÏ¿© ¼º´É, Àü·Â È¿À² ¹× ÁýÀûµµ¸¦ ´õ¿í Çâ»ó½Ãų ¼ö ÀÖµµ·Ï ĨÀ» ¼öÁ÷À¸·Î ½×¾Æ ¿Ã·Á ¼º´É, Àü·Â È¿À² ¹× ÁýÀûµµ¸¦ ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä Æ®·»µå´Â ¸ð¹ÙÀÏ ¹× Â÷·®¿ë ¿ëµµ¿¡¼­ ÆÒ¾Æ¿ô ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, TSMC, »ï¼º, ÀÎÅÚ°ú °°Àº ÁÖ¿ä ¹ÝµµÃ¼ ¾÷üµéÀº ±âÁ¸ÀÇ Çø³Ä¨ ¹× ¿ÍÀÌ¾î º»µù ±â¼úÀ» ´ëüÇÒ ¼ö ÀÖ´Â FOWLP¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÇ INFO(Integrated Fan-Out) ÆÐŰ¡ ±â¼úÀÇ È®ÀåÀº ¸ð¹ÙÀÏ Ä¨¼Â¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ½º¸¶Æ®Æù ¹× ¿þ¾î·¯ºí ±â±â¸¦ À§ÇÑ ¾ã°í Àü·Â È¿À²ÀÌ ³ôÀº ¼³°è¸¦ Á¦°øÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ADAS, ·¹ÀÌ´õ, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ¿ë Â÷·®¿ë ÆÒ¾Æ¿ô ÆÐŰ¡µµ ADAS, ·¹ÀÌ´õ, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ¿ëÀ¸·Î È®»êµÇ¾î ÀÚÀ² ÁÖÇàÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

ÆÐ³Î ·¹º§ ÆÐŰ¡(PLP)ÀÇ ÃâÇöµµ FOWLP ½ÃÀåÀÇ Áß¿äÇÑ °³Ã´ÀÔ´Ï´Ù. ±âÁ¸ÀÇ ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡°ú ´Þ¸® PLP´Â ´ëÇü ÆÐ³Î¿¡ ¿©·¯ °³ÀÇ Ä¨À» ó¸®Çϱ⠶§¹®¿¡ ¼öÀ²À» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº °¡ÀüÁ¦Ç° ¹× »ê¾÷¿ë IoT(»ç¹°ÀÎÅͳÝ)¸¦ Æ÷ÇÔÇÑ ´ë·® »ý»ê ¿ëµµ¿¡ ƯÈ÷ À¯¿ëÇϸç, ASE, ¾ÚÄÚ, µ¥Ä«Å×Å©³î·ÎÁö½º(Deca Technologies)¿Í °°Àº ±â¾÷µéÀº Á¦Á¶ È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ PLP¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²ÀûÀÎ ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ PLP¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÀÎÅÍÆ÷Àú¿Í ÆÒ¾Æ¿ô ÆÐŰ¡ äÅÿ¡ ¿µÇâÀ» ¹ÌÄ¡´Â À̽´´Â ¹«¾ùÀΰ¡?

ÀÎÅÍÆ÷Àú¿Í ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ±â¼úÀº ±× ÀåÁ¡¿¡µµ ºÒ±¸ÇÏ°í º¸±Þ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸î °¡Áö ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ºñ¿ë°ú º¹À⼺ÀÔ´Ï´Ù. ½Ç¸®ÄÜ ÀÎÅÍÆ÷Àú, °í¹Ðµµ ¹è¼±Ãþ(RDL), ¹Ì¼¼ ÇÇÄ¡ ¸¶ÀÌÅ©·Î ¹üÇÁÀÇ Á¦Á¶ °øÁ¤Àº °íµµÀÇ Á¦Á¶ ±â¼ú°ú ¾ö°ÝÇÑ °øÁ¤ Á¦¾î°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. ±âÁ¸ ÆÐŰ¡ ¹æ½Ä¿¡ ºñÇØ ÀÌ·¯ÇÑ Ã·´Ü ¼Ö·ç¼ÇÀº ¸¹Àº ¼³ºñ ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦Á¶¾÷ü´Â ºñ¿ë Àý°¨À» ÃÖ¿ì¼± °úÁ¦·Î »ï°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ °úÁ¦´Â FOWLPÀÇ ÈÚ°ú ¼öÀ² ¹®Á¦ÀÔ´Ï´Ù. ÆÐŰ¡ »çÀÌÁî°¡ Ä¿Áü¿¡ µû¶ó °¡°ø Áß ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϱⰡ ¾î·Á¿öÁý´Ï´Ù. ÃʹÚÇü ÀçºÐ¹èÃþ°ú ÀÌÁ¾ ´ÙÀÌ ¹èÄ¡ÀÇ »ç¿ëÀº ±â°èÀû ÀÀ·ÂÀ» À¯¹ßÇÏ¿© ÈÚÀ» À¯¹ßÇϰí Àüü ¼öÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí Á¦Á¶ È¿À²À» Çâ»ó½Ã۱â À§ÇØ ±âÆÇ Àç·á ¹× ¿­ °ü¸®ÀÇ Çõ½ÅÀÌ ¸ð»öµÇ°í ÀÖ½À´Ï´Ù.

Àç·áÀÇ ÇѰè¿Í ½Å·Ú¼º¿¡ ´ëÇÑ ¿ì·Áµµ äÅÃÀÇ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ, À¯¸®, À¯±â ±âÆÇ µî ÀÎÅÍÆ÷Àú Àç·áÀÇ ¼±ÅÃÀº ½ÅÈ£ ¹«°á¼º, ¿­ÀüµµÀ², ±â°èÀû °­µµ µî ¼º´É Ư¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ½Ç¸®ÄÜ ÀÎÅÍÆ÷Àú´Â Àü±âÀû Ư¼ºÀÌ ¿ì¼öÇÏÁö¸¸ °¡°ÝÀÌ ºñ½Î°í ´Ù¸¥ ÆÐŰ¡ ºÎǰ°úÀÇ ¿­ÆØÃ¢ ºÒÀÏÄ¡°¡ ¹ß»ýÇϱ⠽±½À´Ï´Ù. À¯¸® ÀÎÅÍÆ÷Àú´Â Àú·ÅÇÑ ºñ¿ëÀ¸·Î ¿ì¼öÇÑ Àü±â Àý¿¬¼ºÀ» Á¦°øÇÏÁö¸¸, ´ë·® »ý»êÀÇ ½Å·Ú¼ºÀ» ´Þ¼ºÇϱâ À§Çؼ­´Â ´õ ¸¹Àº °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¶ÇÇÑ È®À强°ú °ø±Þ¸Á Á¦¾àÀÌ ÀÌ·¯ÇÑ ÆÐŰ¡ ±â¼úÀÇ Ã¤Åÿ¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÷´Ü ÆÐŰ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷ü´Â Àç·á ºÎÁ·, ÁÖÁ¶ ´É·ÂÀÇ ÇѰè, Ư¼ö ÀåºñÀÇ Çʿ伺 µî °ø±Þ¸Á ¹°·ùÀÇ º´¸ñ Çö»óÀ» ÇØ°áÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹Çϱâ À§Çؼ­´Â ¹ÝµµÃ¼ ÁÖÁ¶, ¹ÝµµÃ¼ Á¶¸³ ¹× Å×½ºÆ® À§Å¹(OSAT) ¾÷ü, ÀüÀÚ ¼³°è ÀÚµ¿È­(EDA) ¾÷ü °£ÀÇ Çù·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀÇ ¼ºÀåÀº °í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, AI ¹× ¸Ó½Å·¯´×ÀÇ ¹ßÀü, 5G ¹× IoT ¿ëµµÀÇ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â °í´ë¿ªÆø ¸Þ¸ð¸®(HBM)¿Í AI °¡¼Ó±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î, AI ¿öÅ©·Îµå´Â ºü¸¥ µ¥ÀÌÅÍ Ã³¸®°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº ½Ç¸®ÄÜ ÀÎÅÍÆ÷Àú ±â¼úÀ» »ç¿ëÇÏ¿© HBMÀ» GPU ¹× FPGA(Field-Programmable Gate Array)¿Í ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. Gate Array)¿Í ÅëÇÕÇÏ¿© ºü¸¥ »óÈ£ ¿¬°á¼º°ú Àü·Â È¿À²À» ½ÇÇöÇϰíÀÚ ÇÕ´Ï´Ù.

5G¿Í ¿§Áö ÄÄÇ»ÆÃÀ¸·ÎÀÇ Àüȯµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¹«¼± ³×Æ®¿öÅ©´Â °í¼Ó, ÀúÁö¿¬ ÄÄÇ»ÆÃÀ» ¿ä±¸Çϱ⠶§¹®¿¡ ÆÒ¾Æ¿ô ÆÐŰ¡Àº ¹«¼± Á֯ļö(RF) ¹× º£À̽º¹êµå ÇÁ·Î¼¼¼­¿¡ ¸Å·ÂÀûÀÎ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖÀ¸¸ç, 5G äÅÃÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó FOWLP ±â¹Ý RF ÇÁ·ÐÆ®¿£µå ¸ðµâ(FEM)Àº È¿À²ÀûÀÎ ½ÅÈ£ Àü¼Û°ú Àü·Â °ü¸®¸¦ À§ÇØ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, IoT ¿ëµµ´Â ÄÄÆÑÆ®ÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀΠĨ¼ÂÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ÆÐŰ¡ ¼Ö·ç¼ÇÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ÀüÀå ºÐ¾ßÀÇ È®´ëµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ Ä¿³ØÆ¼µåÈ­ ¹× ÀÚÀ²È­°¡ ÁøÇàµÊ¿¡ µû¶ó °í¼º´É ÄÄÇ»ÆÃ, ADAS, ¼¾¼­ À¶ÇÕ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÆÒ¾Æ¿ô ÆÐŰ¡Àº Â÷·®¿ë ¹ÝµµÃ¼ ºÎǰÀÇ ½Å·Ú¼º°ú Àü·Â È¿À²À» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ·¹ÀÌ´õ, LiDAR, Â÷·®¿ë ³×Æ®¿öÅ· ¼Ö·ç¼ÇÀ¸·Î ¼±Åõǰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÀÌÁ¾ ÁýÀûÈ­¿Í Ĩ·¿ ¼³°èÀÇ ¹ßÀüÀº ¹ÝµµÃ¼ ÆÐŰ¡ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¸ð³î¸®½Ä ½Ã½ºÅÛ¿ÂĨ(SoC) ¼³°è´Â Ĩ·¿ ¾ÆÅ°ÅØÃ³·Î ´ëüµÇ°í ÀÖÀ¸¸ç, ÀÎÅÍÆ÷Àú¿Í ÆÒ¾Æ¿ô ÆÐŰ¡À» ÅëÇØ ¿©·¯ ±â´ÉÀÇ ´ÙÀ̸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. AMD, Intel, NVIDIA¿Í °°Àº ±â¾÷µéÀº Á¡Á¡ ´õ º¹ÀâÇØÁö´Â Â÷¼¼´ë ÇÁ·Î¼¼¼­¿¡ ´ëÀÀÇϱâ À§ÇØ Ä¨·¿ ±â¹Ý ¾ÆÅ°ÅØÃ³¸¦ Àû±ØÀûÀ¸·Î äÅÃÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº È®À强À» Çâ»ó½Ã۰í, °³¹ß ºñ¿ëÀ» Àý°¨Çϸç, Àüü ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.

¼ÒÇüÈ­, °í¼º´É, ºñ¿ë È¿À²ÀûÀÎ ¹ÝµµÃ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÀÎÅÍÆ÷Àú ¹× ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·Â, °øÁ¤ ÃÖÀûÈ­, ¹ÝµµÃ¼ ÁÖÁ¶¾÷ü, OSAT Á¦°ø¾÷ü, Àç·á °ø±Þ¾÷ü °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ äÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÷´Ü ÆÐŰ¡ ±â¼úÀÇ ¹Ì·¡°¡ Çü¼ºµÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ÆÐŰ¡ ÄÄÆ÷³ÍÆ®£¦µðÀÚÀÎ(ÀÎÅÍÆ÷Àú, Fowlp), ÆÐŰ¡(2.5D, 3D), µð¹ÙÀ̽º(·ÎÁ÷ IC, LED, ¸Þ¸ð¸® µð¹ÙÀ̽º, MEMS/¼¾¼­, À̹Ì¡£¦¿ÉÅäÀÏ·ºÆ®·Î´Ð½º, ±âŸ), ÃÖÁ¾»ç¿ëÀÚ(°¡Àü, Á¦Á¶, Åë½Å, ÀÚµ¿Â÷, ÇコÄɾî, Ç×°ø¿ìÁÖ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡¿ë ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Interposer and Fan-out Wafer Level Packaging Market to Reach US$136.8 Billion by 2030

The global market for Interposer and Fan-out Wafer Level Packaging estimated at US$69.1 Billion in the year 2024, is expected to reach US$136.8 Billion by 2030, growing at a CAGR of 12.1% over the analysis period 2024-2030. Interposers, one of the segments analyzed in the report, is expected to record a 13.7% CAGR and reach US$93.4 Billion by the end of the analysis period. Growth in the Fowlp segment is estimated at 9.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$18.8 Billion While China is Forecast to Grow at 16.5% CAGR

The Interposer and Fan-out Wafer Level Packaging market in the U.S. is estimated at US$18.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$29.0 Billion by the year 2030 trailing a CAGR of 16.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.6% and 10.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.6% CAGR.

Global Interposer and Fan-out Wafer Level Packaging Market - Key Trends & Drivers Summarized

How Are Interposers and Fan-out Wafer Level Packaging Transforming Semiconductor Integration?

The interposer and fan-out wafer level packaging (FOWLP) market has gained significant momentum in the semiconductor industry as demand for compact, high-performance, and energy-efficient electronic devices continues to rise. These advanced packaging technologies are designed to enhance chip integration, improve electrical performance, and support miniaturization trends in consumer electronics, automotive, and data center applications.

Interposers act as intermediate layers between semiconductor dies and the printed circuit board (PCB), facilitating high-speed data transfer while reducing power consumption and signal loss. Meanwhile, fan-out wafer level packaging (FOWLP) is a revolutionary technology that eliminates traditional wire bonding, enhancing thermal and electrical performance by redistributing input/output (I/O) connections beyond the chip footprint. These technologies have emerged as key enablers of heterogeneous integration, allowing different types of chips (e.g., logic and memory) to be combined into a single package for superior performance.

As demand for 5G connectivity, artificial intelligence (AI), high-performance computing (HPC), and advanced driver assistance systems (ADAS) grows, interposer and FOWLP solutions are becoming essential in semiconductor packaging. These innovations address the limitations of traditional packaging methods, enabling faster data processing, reduced latency, and lower power consumption. The shift towards system-in-package (SiP) and multi-chip module (MCM) architectures has further accelerated the adoption of these advanced packaging solutions.

What Are the Latest Trends in Interposer and Fan-out Wafer Level Packaging?

The semiconductor industry is witnessing several key trends that are shaping the interposer and FOWLP market. One of the most significant trends is the adoption of 2.5D and 3D packaging architectures. In 2.5D packaging, an interposer layer (often made of silicon, glass, or organic materials) connects multiple dies, enabling high-bandwidth memory (HBM) integration for applications such as AI accelerators and graphics processing units (GPUs). In 3D packaging, chips are stacked vertically, further enhancing performance, power efficiency, and integration density.

Another major trend is the increasing demand for fan-out solutions in mobile and automotive applications. Leading semiconductor companies, including TSMC, Samsung, and Intel, are investing heavily in FOWLP to replace traditional flip-chip and wire-bonding techniques. The expansion of TSMC’s Integrated Fan-Out (InFO) packaging technology has revolutionized mobile chipsets, providing thinner and more power-efficient designs for smartphones and wearable devices. Similarly, automotive-grade fan-out packaging is gaining traction for ADAS, radar, and infotainment systems, supporting the shift toward autonomous driving.

The emergence of panel-level packaging (PLP) is another crucial development in the FOWLP market. Unlike traditional wafer-level packaging, PLP processes multiple chips on a large panel, increasing yield and reducing costs. This approach is particularly beneficial for high-volume applications, including consumer electronics and industrial IoT (Internet of Things). Companies such as ASE, Amkor, and Deca Technologies are investing in PLP to enhance manufacturing efficiency and meet the growing demand for cost-effective packaging solutions.

What Challenges Are Impacting the Adoption of Interposers and Fan-out Packaging?

Despite their advantages, interposer and fan-out wafer level packaging technologies face several challenges that impact their widespread adoption. One of the primary challenges is cost and complexity. The manufacturing process for silicon interposers, high-density redistribution layers (RDLs), and fine-pitch micro-bumps requires advanced fabrication techniques and stringent process control, increasing production costs. Compared to traditional packaging methods, these advanced solutions require substantial capital investment, making cost reduction a key priority for manufacturers.

Another significant challenge is warpage and yield issues in FOWLP. As packaging sizes increase, maintaining structural integrity during processing becomes more difficult. The use of ultra-thin redistribution layers and heterogeneous die placement can lead to mechanical stress, causing warpage and impacting overall yield. Innovations in substrate materials and thermal management are being explored to address these challenges and improve manufacturing efficiency.

Material limitations and reliability concerns also pose barriers to adoption. The selection of interposer materials, including silicon, glass, and organic substrates, influences performance characteristics such as signal integrity, thermal conductivity, and mechanical strength. Silicon interposers, while offering excellent electrical properties, are expensive and prone to thermal expansion mismatch with other packaging components. Glass interposers provide lower cost and superior electrical insulation but require further development to achieve high-volume production reliability.

Additionally, scalability and supply chain constraints impact the adoption of these packaging technologies. As demand for advanced packaging grows, manufacturers must address bottlenecks in supply chain logistics, including material shortages, limited foundry capacity, and the need for specialized equipment. Collaborative efforts between semiconductor foundries, outsourced semiconductor assembly and test (OSAT) providers, and electronic design automation (EDA) companies are crucial for overcoming these challenges.

What Factors Are Driving the Growth of the Interposer and Fan-out Wafer Level Packaging Market?

The growth in the interposer and fan-out wafer level packaging market is driven by several factors, including increasing demand for high-performance computing, advancements in AI and machine learning, and the expansion of 5G and IoT applications. One of the primary drivers is the rising need for high-bandwidth memory (HBM) and AI accelerators. With AI workloads requiring rapid data processing, semiconductor manufacturers are integrating HBM with GPUs and field-programmable gate arrays (FPGAs) using silicon interposer technology to achieve high-speed interconnectivity and power efficiency.

The global transition to 5G and edge computing is another major factor fueling market growth. Next-generation wireless networks require high-speed, low-latency computing, making fan-out packaging an attractive solution for radio frequency (RF) and baseband processors. As 5G adoption accelerates, FOWLP-based RF front-end modules (FEMs) are becoming essential for efficient signal transmission and power management. Additionally, IoT applications demand compact and energy-efficient chipsets, further boosting the need for interposer and fan-out packaging solutions.

The expanding automotive electronics sector is also contributing to market growth. As vehicles become more connected and autonomous, the demand for high-performance computing, ADAS, and sensor fusion technologies has increased. Fan-out packaging is playing a critical role in enhancing the reliability and power efficiency of automotive semiconductor components, making it a preferred choice for radar, LiDAR, and in-vehicle networking solutions.

Furthermore, advancements in heterogeneous integration and chiplet design are driving innovation in semiconductor packaging. Traditional monolithic system-on-chip (SoC) designs are being replaced by chiplet architectures, where multiple functional dies are integrated using interposers and fan-out packaging. This approach improves scalability, reduces development costs, and enhances overall system performance. Companies such as AMD, Intel, and NVIDIA are actively adopting chiplet-based architectures to address the growing complexity of next-generation processors.

As the demand for miniaturized, high-performance, and cost-efficient semiconductor solutions continues to rise, the interposer and fan-out wafer level packaging market is expected to experience sustained growth. Ongoing R&D efforts, process optimizations, and strategic partnerships among semiconductor foundries, OSAT providers, and material suppliers will further accelerate adoption, shaping the future of advanced packaging technologies.

SCOPE OF STUDY:

The report analyzes the Interposer and Fan-out Wafer Level Packaging market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Packaging Component & Design (Interposers, Fowlp); Packaging (2.5D, 3D); Device (Logic ICs, LEDs, Memory Devices, MEMS / Sensors, Imaging & Optoelectronics, Others); End-User (Consumer Electronics, Manufacturing, Communications, Automotive, Healthcare, Aerospace)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â