¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸® ½ÃÀå(2025-2032³â) : ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ - Á¶Á÷ ±Ô¸ðº°, ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµåº°, ¾÷°èº°, Áö¿ªº°, Àü¸Á°ú ¿¹Ãø
Global Machine Learning Model Operationalization Management Market Size, Share & Industry Analysis Report By Organization Size, By Component, By Deployment Mode, By Vertical, By Regional Outlook and Forecast, 2025 - 2032
»óǰÄÚµå : 1768283
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 433 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,048,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,058,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,481,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 39.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 290¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

KBV Cardinal matrix - ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é Amazon Web Services, Inc., Microsoft Corporation ¹× Google LLC´Â ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. 2025³â 3¿ù, Amazon Web Services, Inc.´Â Volkswagen°úÀÇ Çù¾÷À¸·Î AWS µµ±¸¸¦ »ç¿ëÇÏ¿© ÅëÇÕ MLOps ÆÄÀÌÇÁ¶óÀÎÀ» °³¹ßÇÏ°í °øÀå Àüü¿¡¼­ 100°³°¡ ³Ñ´Â ¸Ó½Å·¯´× ÀÌ¿ë »ç·Ê¸¦ °£¼ÒÈ­ÇÏ¿© È®À强À» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ¸ç µµÀÔÀ» °¡¼ÓÈ­Çß½À´Ï´Ù.

COVID-19ÀÇ ¿µÇ⠺м®

COVID-19 Àü¿°º´ µ¿¾È ½ÃÀåÀº ƯÈ÷ Ãʱ⠴ܰ迡¼­ ÁÂÀýÀ» °æÇèÇß½À´Ï´Ù. ´Ù¾çÇÑ »ê¾÷ÀÇ ¸¹Àº ±â¾÷ °¡¿îµ¥ ƯÈ÷ Áß¼Ò±â¾÷µéÀº °æÁ¦ ºÒÈ®½Ç¼º°ú ¿¹»ê Á¦¾àÀ¸·Î ÀÎÇØ MLOps ÀÎÇÁ¶ó¸¦ Æ÷ÇÔÇÑ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ÅõÀÚ¸¦ Å©°Ô ÁÙÀ̰ųª ¿¬±âÇß½À´Ï´Ù. ¼¼°èÀûÀÎ °ø±Þ¸Á È¥¶õ°ú Áß¿äÇÑ ¾÷¹«·ÎÀÇ ¿ì¼± ¼øÀ§ÀÇ ±Þ°ÝÇÑ º¯È­·Î ÀÎÇØ AI/ML ÇÁ·ÎÁ§Æ®ÀÇ ¹èÆ÷°¡ Áö¿¬µÇ°í ¿î¿µ µµ±¸¿Í Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Á¦ÇѵǾú½À´Ï´Ù. °Ô´Ù°¡ À¯ÇàÀº ±¤¹üÀ§ÇÑ ³ëµ¿·Â È¥¶õÀ» ¾ß±âÇÏ°í ¸ðµ¨ °³¹ß°ú Àü°³ ¼Óµµ¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ COVID-19 ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

½ÃÀå ¼ºÀå ¿äÀÎ

±â¾÷ ¿î¿µ¿¡ ´ëÇÑ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML) ±â¼úÀÇ ±Þ¼ÓÇÑ ÅëÇÕÀº ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È ±ÝÀ¶, ÀÇ·á, Á¦Á¶, ¿¡³ÊÁö, ¼Ò¸Å µî ´Ù¾çÇÑ »ê¾÷ÀÇ ±â¾÷µéÀÌ µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÀÚµ¿È­ »Ó¸¸ ¾Æ´Ï¶ó ¿öÅ©Ç÷ο쿡 ÀÎÅÚ¸®Àü½º¸¦ ÅëÇÕÇÏ¿© ¿¹ÃøÀûÀÎ ÀÇ»ç°áÁ¤À» ÃËÁøÇϰí, °í°´ Âü¿©¸¦ °­È­Çϸç, ÀÚ¿ø °ü¸®¸¦ ÃÖÀûÈ­ÇÏ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù. Áï, ±â¾÷ÀÇ AI µµÀÔÀÇ ±ÞÁõ°ú ´ë±Ô¸ð ML ÀÌ´Ï¼ÅÆ¼ºê ¿î¿ëÈ­ÀÇ Çʿ伺ÀÌ MLOps ¼Ö·ç¼Ç ¼ö¿ä¸¦ ¹Ð¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.

°Ô´Ù°¡, ¸Ó½Å·¯´×ÀÇ ÁøÈ­¿¡ µû¶ó ¿öÅ©Ç÷οìÀÇ º¹À⼺°ú ´Ù¾ç¼ºÀÌ Å©°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç, °ß°íÇÑ MLOps ±â´ÉÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿öÅ©Ç÷ο쿡´Â ¹èÆ÷, ¸ð´ÏÅ͸µ, Àç±³À° µî ´Ù°¢ÀûÀÎ ÇÁ·Î¼¼½º°¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç, °¢°¢ ´Ù¸¥ Åø, Æ÷¸Ë, Á¾¼Ó¼ºÀÌ Á¸ÀçÇÕ´Ï´Ù. ¸¹Àº ÆÀÀÌ Amazon SageMaker, Azure ML, Google Vertex AI µîÀÇ ¿£ÅÍÇÁ¶óÀÌÁî±Þ Ŭ¶ó¿ìµå ¼­ºñ½º¸¦ °áÇÕÇÏ¿© »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

MLOps ½ÃÀåÀÌ Á÷¸éÇÏ´Â Å« Á¦¾à Áß Çϳª´Â ¸Ó½Å·¯´× °³¹ß ¶óÀÌÇÁ»çÀÌŬ¿¡¼­ »ç¿ëµÇ´Â Åø, ÇÁ·¹ÀÓ¿öÅ©, Ç÷§ÆûÀÇ Ç¥ÁØÈ­ ºÎÁ· Çö»óÀÔ´Ï´Ù. TensorFlow, PyTorch, MLFlow, Kubeflow, SageMaker µî °¢°¢ÀÇ µ¶ÀÚÀûÀÎ ¹æ¹ý·Ð, Á¾¼Ó¼º ¹× ÀÎÅÍÆäÀ̽º¸¦ °®Ãá ´Ù¾çÇÑ µµ±¸¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

¹ë·ùüÀÎ ºÐ¼®

MLOps(¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®) ½ÃÀåÀÇ ¹ë·ù üÀÎÀº µ¥ÀÌÅÍÀÇ Ãëµæ°ú Áغñ·Î ½ÃÀÛÇÏ¿© Ư¡·® ¿£Áö´Ï¾î¸µ°ú ½ºÅ丮Áö¿¡ ÀÇÇØ °íǰÁúÀÇ ÀÔ·Â µ¥ÀÌÅ͸¦ È®º¸ÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ °³¼±À» À§ÇÑ ¸ðµ¨ ¶óÀÌÇÁ»çÀÌŬ ¿ÀÄɽºÆ®·¹À̼ǿ¡ ÃÊÁ¡ÀÌ ¸ÂÃçÁ® ÀÖÀ¸¸ç ÀÌ´Â º¸¾È, ÄÄÇöóÀ̾ð½º, ÀÎÇÁ¶ó °ü¸®¿¡ ÀÇÇØ Áö¿øµÇ°í, »ç¿ëÀÚÀÇ È°¼ºÈ­¿Í ÅëÇÕÀ» ÅëÇØ È®ÀåµÇ¸ç, ¸¶Áö¸·À¸·Î Áö¿ø, ±³À° ¹× »ýÅÂ°è ¼­ºñ½º¸¦ ÅëÇØ °³¼± »çÇ×À» µ¥ÀÌÅÍ ÇÁ·Î¼¼½º¿¡ Çǵå¹éÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼®

Á¶Á÷ ±Ô¸ðÀÇ Àü¸Á

Á¶Á÷ ±Ô¸ðº°·Î º¸¸é, ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀº ´ë±â¾÷°ú Áß¼Ò±â¾÷(SME)À¸·Î ³ª´µ¾îÁ® ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷ ºÎ¹®Àº ¼öÀÍ Á¡À¯À²ÀÇ 27%¸¦ ȹµæÇß½À´Ï´Ù. Áß¼Ò±â¾÷Àº ÀÇ»ç°áÁ¤, °í°´ Âü¿© ¹× ¿î¿µ ¹Îø¼ºÀ» ³ôÀ̱â À§ÇØ AI ±â¹Ý ÀλçÀÌÆ®¸¦ ºñÁî´Ï½º¿¡ ÅëÇÕÇÏ´Â °¡Ä¡¸¦ Á¡Á¡ ´õ ÀνÄÇϰí ÀÖ½À´Ï´Ù.

±¸¼º ¿ä¼Ò Àü¸Á

¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀº ÄÄÆ÷³ÍÆ®¸¦ ±â¹ÝÀ¸·Î Ç÷§Æû°ú ¼­ºñ½º·Î ºÐ·ùµË´Ï´Ù. ¼­ºñ½º ºÎ¹®¿¡´Â ¼º°øÀûÀÎ ¸ðµ¨ ±¸ÇöÀ» À§ÇØ ÇʼöÀûÀÎ ÄÁ¼³ÆÃ, ÅëÇÕ, Áö¿ø ¹× À¯Áöº¸¼ö ¼­ºñ½º°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. Á¶Á÷Àº MLOps ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇϰí ÃÖÀûÈ­ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç ¿øÈ°ÇÑ ¹èÆ÷, ÄÄÇöóÀ̾𽺠¹× ¿î¿µ È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇÑ Àü¹®°¡ ¼­ºñ½º¸¦ Ãß±¸ÇÏ´Â °æÇâÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

¹èÆ÷ ¸ðµå Àü¸Á

¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀº ¹èÆ÷ ¸ðµå¸¦ ±â¹ÝÀ¸·Î Ŭ¶ó¿ìµå¿Í On-Premise·Î ºÐ·ùµË´Ï´Ù. ±ÝÀ¶, ¹æ¾î, °Ç°­ °ü¸®¿Í °°Àº ÀϺΠ¾÷°è¿¡¼­´Â ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸¾È, ±ÔÁ¤ Áؼö ¹× °³ÀÎÁ¤º¸ º¸È£ ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ On-Premise(On-premise) ¹èÆ÷°¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù.

¾÷°è Àü¸Á

¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀº ¾÷°èº°·Î º¼ ¶§ BFSI, ÀÇ·á ¹× »ý¸í°úÇÐ, ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡, IT, Åë½Å, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, Á¤ºÎ, °ø°øºÎ¹®, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¹× ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÇ·á ¹× »ý¸í°úÇÐ ºÎ¹®Àº 2024³â¿¡ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå¿¡¼­ 17%ÀÇ ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î º¼ ¶§ ½ÃÀåÀ» ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡ °ÉÃÄ ºÐ¼®ÇÏ¿´½À´Ï´Ù. ºÏ¹ÌÀÇ ¸®´õ½ÊÀº ÁÖ·Î ÀÌ Áö¿ªÀÇ Ã·´Ü µðÁöÅÐ ÀÎÇÁ¶ó, ±â¼ú ¼±µµÀûÀÎ °­·ÂÇÑ Á¸Àç°¨, °Ç°­ °ü¸®, ±ÝÀ¶, ¼Ò¸Å, Åë½Å µîÀÇ ºÐ¾ß¿¡¼­ÀÇ ÀΰøÁö´ÉÀÇ ±¤¹üÀ§ÇÑ µµÀÔ¿¡ ±âÀÎÇÕ´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

MLOps ½ÃÀå¿¡¼­´Â ¹ÎøÇϰí Àü¹®ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ½Å»ý ±â¾÷°ú Áß¼Ò±â¾÷ °£¿¡ Ä¡¿­ÇÑ °æÀïÀÌ ÆîÃÄÁö°í ÀÖ½À´Ï´Ù. ¿ÀǼҽº Åø°ú Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê Ç÷§ÆûÀº ¼öÆòÀû °æÀï ȯ°æÀ» Á¶¼ºÇϰí Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå °³°ü

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀÇ ¹ë·ùüÀÎ ºÐ¼®

Á¦6Àå ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀÇ ÁÖ¿ä °í°´ ±âÁØ

Á¦7Àå ¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦8Àå ¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦9Àå ¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå : Àü°³ ¸ðµåº°

Á¦10Àå ¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå :¾÷°èº°

Á¦11Àå ¼¼°èÀÇ ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀå : Áö¿ªº°

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

Á¦13Àå ¸Ó½Å·¯´× ¸ðµ¨ ¿î¿µ °ü¸®(MLOps) ½ÃÀåÀÇ Çʼö ¼º°ø Á¶°Ç

CSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Machine Learning Model Operationalization Management (MLOps) Market size is expected to reach $29.05 billion by 2032, rising at a market growth of 39.3% CAGR during the forecast period.

The MLOps market for large enterprises is witnessing significant trends driven by increasing AI adoption and digital transformation initiatives. One key trend is the shift toward automated and continuous integration/continuous deployment (CI/CD) pipelines tailored specifically for ML models. Large enterprises are embracing end-to-end MLOps platforms that support model versioning, reproducibility, and governance to manage vast ML lifecycle complexities.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In August, 2024, DataRobot, Inc. teamed up with Nutanix to offer a turnkey on-premises AI solution, integrating Nutanix's GPT-in-a-Box with DataRobot's AI platform. This collaboration addresses MLOp's needs by enabling rapid deployment, governance, and management of AI models in secure environments, catering to enterprises with stringent data security and compliance requirements. Moreover, In October, 2024, H2O.ai, Inc. announced the partnership with Singtel Digital InfraCo to provide Generative AI-as-a-Service in the Asia-Pacific region. By integrating H2O.ai's AI suite with Singtel's Paragon platform, they offer a cost-effective, full-stack AI platform, enabling organizations to efficiently develop and deploy AI applications with robust data protection.

KBV Cardinal Matrix - Machine Learning Model Operationalization Management (MLOps) Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Amazon Web Services, Inc., Microsoft Corporation, and Google LLC are the forerunners in the Machine Learning Model Operationalization Management (MLOps) Market. In March, 2025, Amazon Web Services, Inc. teamed up with Volkswagen to create the Digital Production Platform (DPP), enhancing production efficiency by up to 30%. They developed a unified MLOps pipeline using AWS tools, such as SageMaker and Step Functions, streamlining over 100 machine learning use cases across plants, thereby improving scalability, reducing costs, and accelerating deployment. Companies such as IBM Corporation, DataRobot, Inc., and Databricks, Inc. are some of the key innovators in Machine Learning Model Operationalization Management (MLOps) Market.

COVID-19 Impact Analysis

During the COVID-19 pandemic, the market experienced several setbacks, particularly in the early stages. Many enterprises across various sectors, especially small and medium-sized businesses, significantly reduced or postponed their investments in digital transformation initiatives, including MLOps infrastructure, due to economic uncertainty and constrained budgets. The global disruption in supply chains and a sudden shift in priorities toward essential operations led to delays in AI/ML project rollouts and limited the demand for operationalization tools and platforms. Moreover, the pandemic caused widespread workforce disruptions, which negatively affected the pace of model development and deployment. Thus, the COVID-19 pandemic had negative impact on the market.

Market Growth Factors

The rapid integration of artificial intelligence (AI) and machine learning (ML) technologies into enterprise operations has become a significant catalyst driving the Machine Learning Model Operationalization Management (MLOps) market. Over the past few years, businesses across sectors such as finance, healthcare, manufacturing, energy, and retail have accelerated their digital transformation journeys. This shift is not just about automation but also about embedding intelligence into workflows to drive predictive decision-making, enhance customer engagement, and optimize resource management. In conclusion, the surge in enterprise AI adoption and the need to operationalize ML initiatives at scale are propelling the demand for MLOps solutions.

Additionally, As machine learning evolves, the complexity and diversity of workflows have grown significantly, leading to an increased need for robust MLOps capabilities. Modern ML development goes far beyond simple linear pipelines. It includes a multifaceted set of processes-data ingestion, feature engineering, model training, hyperparameter tuning, deployment, monitoring, and retraining-each with distinct tools, formats, and dependencies. In today's ML environment, it's common to see teams working with a mix of open-source frameworks like TensorFlow, PyTorch, Scikit-learn, XGBoost, and enterprise-grade cloud services such as Amazon SageMaker, Azure ML, or Google Vertex AI. In essence, the rising complexity and diversity of ML workflows demand structured, scalable, and collaborative operational solutions.

Market Restraining Factors

One of the major restraints facing the MLOps market is the lack of standardization across tools, frameworks, and platforms used in the machine learning development lifecycle. Unlike traditional software engineering, which has matured with broadly accepted development, testing, and deployment frameworks, the machine learning ecosystem is fragmented. Organizations use a wide variety of tools such as TensorFlow, PyTorch, MLFlow, Kubeflow, SageMaker, and others-each with its own methodologies, dependencies, and interfaces. In summary, the lack of standardization across the MLOps toolchain acts as a major barrier to streamlined deployment, governance, and scalability.

Value Chain Analysis

The MLOps (Machine Learning Model Operationalization Management) Market value chain starts with data acquisition and preparation, followed by feature engineering and storage to ensure high-quality input data. Next is model development and experimentation, leading into validation and governance to ensure model robustness and regulatory compliance. After deployment, the focus shifts to monitoring and management for performance tracking, and model lifecycle orchestration for continuous improvement. This is supported by security, compliance, and infrastructure management, and extended through user enablement and integration. Finally, support, training, and ecosystem services close the loop, feeding improvements back into data processes.

Market Share Analysis

Organization Size Outlook

By organization size, the machine learning model operationalization management (MLOps) market is divided into large enterprise and small & medium enterprise (SME). The small & medium enterprise segment garnered 27% revenue share in the machine learning model operationalization management (MLOps) market in 2024. SMEs are increasingly recognizing the value of integrating AI-driven insights into their operations to improve decision-making, customer engagement, and operational agility.

Component Outlook

On the basis of component, the machine learning model operationalization management (MLOps) market is classified into platform and service. The service segment recorded 28% revenue share in the machine learning model operationalization management (MLOps) market in 2024. This segment includes consulting, integration, support, and maintenance services that are crucial for successful MLOps implementation. As organizations face challenges in adopting and optimizing MLOps frameworks, they increasingly seek expert services to ensure seamless deployment, compliance, and operational efficiency.

Deployment Mode Outlook

Based on deployment mode, the machine learning model operationalization management (MLOps) market is characterized into cloud and on-premises. The on-premises segment procured 30% revenue share in the machine learning model operationalization management (MLOps) market in 2024. Despite the rising popularity of cloud solutions, certain industries such as finance, defense, and healthcare continue to prefer on-premises deployment due to stringent data security, compliance, and privacy requirements. These setups allow organizations to maintain full control over their infrastructure and sensitive data.

Vertical Outlook

Based on vertical, the machine learning model operationalization management (MLOps) market is segmented into BFSI, healthcare & life sciences, retail & e-commerce, IT & telecom, energy & utilities, government & public sector, media & entertainment, and others. The healthcare & life sciences segment acquired 17% revenue share in the machine learning model operationalization management (MLOps) market in 2024. Hospitals, pharmaceutical companies, research institutions, and biotech firms are increasingly leveraging AI for patient diagnostics, medical imaging analysis, clinical decision support, genomics, and drug development.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The north america segment recorded 40% revenue share in the machine learning model operationalization management (MLOps) market in 2024. This leadership position is primarily attributed to the region's advanced digital infrastructure, strong presence of tech giants, and widespread adoption of artificial intelligence across sectors such as healthcare, finance, retail, and telecommunications.

Market Competition and Attributes

The MLOps market sees intense competition among startups and mid-sized firms offering agile, specialized solutions. These players focus on automation, scalability, and integration across the ML lifecycle. Open-source tools and cloud-native platforms level the playing field, fostering innovation. Collaboration with enterprises and academia further drives growth, making the market dynamic and opportunity-rich for emerging vendors.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Machine Learning Model Operationalization Management (MLOps) Market Report Segmentation

By Organization Size

By Component

By Deployment Mode

By Vertical

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Value Chain Analysis of Machine Learning Model Operationalization Management (MLOps) Market

Chapter 6. Key Customer Criteria of Machine Learning Model Operationalization Management (MLOps) Market

Chapter 7. Global Machine Learning Model Operationalization Management (MLOps) Market by Organization Size

Chapter 8. Global Machine Learning Model Operationalization Management (MLOps) Market by Component

Chapter 9. Global Machine Learning Model Operationalization Management (MLOps) Market by Deployment Mode

Chapter 10. Global Machine Learning Model Operationalization Management (MLOps) Market by Vertical

Chapter 11. Global Machine Learning Model Operationalization Management (MLOps) Market by Region

Chapter 12. Company Profiles

Chapter 13. Winning Imperatives of Machine Learning Model Operationalization Management (MLOps) Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â