¼¼°èÀÇ ¹°·ù¿ë ±â°èÇнÀ ½ÃÀå
Machine Learning in Logistics
»óǰÄÚµå : 1791903
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 583 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,242,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,727,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹°·ù¿ë ±â°èÇнÀ ½ÃÀåÀº 2030³â±îÁö 107¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¹°·ù¿ë ±â°èÇнÀ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 21.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 107¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®´Â CAGR 23.6%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 78¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 16.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 1,030¸¸ ´Þ·¯, Áß±¹Àº CAGR 29.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹°·ù¿ë ±â°èÇнÀ ½ÃÀåÀº 2024³â¿¡ 9¾ï 1,030¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 29.1%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 26¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 16.9%¿Í 19.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 18.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹°·ù¿ë ±â°èÇнÀ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹°·ù ºÐ¾ß¿¡¼­ ¸Ó½Å·¯´×ÀÌ Àα⸦ ²ô´Â ÀÌÀ¯

¹°·ù »ê¾÷Àº µðÁöÅÐ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ¸Ó½Å·¯´×Àº ¿î¿µ ÃÖÀûÈ­, ºñ¿ë Àý°¨, È¿À²¼º Çâ»ó¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸°ø±Þ¸Á °ü¸® ½Ã½ºÅÛÀº ½Ç½Ã°£ ¼ö¿ä ¿¹Ãø, °æ·Î ÃÖÀûÈ­, Àç°í °ü¸®¿¡ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÑ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¹°·ù °èȹÀÇ Á¤È®¼ºÀ» Çâ»ó½Ã۰í, ±â¾÷ÀÌ Áö¿¬À» ÃÖ¼ÒÈ­Çϰí Â÷·® °¡µ¿·üÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è E-Commerce°¡ Áö¼ÓÀûÀ¸·Î È®´ëµÇ°í ´çÀÏ ¹è¼Û¿¡ ´ëÇÑ ±â´ë°¡ ³ô¾ÆÁö¸é¼­ AI¸¦ Ȱ¿ëÇÑ ¹°·ù ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Çõ½ÅÀº ¹°·ù ºÐ¾ß¿¡¼­ ¸Ó½Å·¯´×ÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

ÃÖ±Ù AI, ¿¹Ãø ºÐ¼®, ÀÚÀ² ÀÇ»ç°áÁ¤ ½Ã½ºÅÛÀÇ ¹ßÀüÀº ¹°·ù °ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¸ðµ¨Àº °ú°Å ¹è¼Û µ¥ÀÌÅÍ, ³¯¾¾ ÆÐÅÏ, ±³Åë »óȲÀ» ºÐ¼®ÇÏ¿© ¹è¼Û °æ·Î¸¦ ÃÖÀûÈ­ÇÏ°í ¿¬·á ¼Òºñ¸¦ ÁÙÀÔ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¼ö¿ä ¿¹ÃøÀº ±â¾÷ÀÌ Àç°íÀÇ Çʿ伺À» ¿¹ÃøÇϰí, Àç°í ºÎÁ· ¹× °úÀ× Àç°í »óȲÀ» ¹æÁöÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA)´Â ÇÇÅ·, Æ÷Àå, ºÐ·ùÀÇ È¿À²¼ºÀ» ³ô¿© â°í ¾÷¹«¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ AI¸¦ Ȱ¿ëÇÑ Ãªº¿°ú °¡»óºñ¼­ÀÇ Çõ½ÅÀ» ÅëÇØ ¹è¼ÛÃßÀûÀÇ ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®¿Í ¹®ÀÇ¿¡ ´ëÇÑ ÀÚµ¿ ÀÀ´äÀ» Á¦°øÇÔÀ¸·Î½á °í°´ ¼­ºñ½ºµµ °³¼±Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº?

E-CommerceÀÇ ±Þ°ÝÇÑ ¼ºÀå, Ŭ¶ó¿ìµå ±â¹Ý ¹°·ù Ç÷§ÆûÀÇ Ã¤Åà Ȯ´ë, ºñ¿ë È¿À²ÀûÀÎ °ø±Þ¸Á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹°·ù±â¾÷Àº ¾÷¹« È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ AI¸¦ žÀçÇÑ ÀÚÀ²ÁÖÇà ¹è¼ÛÂ÷·®°ú µå·ÐÀ» ÀÌ¿ëÇÑ ¶ó½ºÆ®¸¶ÀÏ ¹è¼Û ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀº ±â¾÷ÀÌ ¿¬·á ¼Òºñ¸¦ ÃÖÀûÈ­Çϰí ź¼Ò¹ßÀÚ±¹À» ÁÙÀ̱â À§ÇØ ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© ¼¼°è ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù.

¾î¶² °úÁ¦¿Í ¹Ì·¡ ±âȸ°¡ Á¸ÀçÇϴ°¡?

AI ÅëÇÕÀÇ ³ôÀº ºñ¿ë, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, ±âÁ¸ ¹°·ù¾÷üµéÀÇ ±â¼úÀû º¯È­¿¡ ´ëÇÑ ÀúÇ× µîÀÌ ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¹Ì·¡ÀÇ ±âȸ´Â Â÷·® °ü¸®¸¦ À§ÇÑ AI ±â¹Ý ¿¹Áöº¸ÀüÀÇ È®´ë, Åõ¸í¼º Çâ»óÀ» À§ÇÑ AI ±â¹Ý ºí·ÏüÀÎ ¹°·ù ¼Ö·ç¼ÇÀÇ °³¹ß, 5G Áö¿ø ½º¸¶Æ® ¹°·ù ³×Æ®¿öÅ©ÀÇ ÅëÇÕ¿¡ ÀÖ½À´Ï´Ù. AI¸¦ žÀçÇÑ ÀÚÀ² â°í¿Í ½º¸¶Æ® ¿î¼Û ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ÁøÈ­´Â ¹°·ù »ê¾÷À» ´õ¿í ÀçÁ¤ÀÇÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), ¹èÆ÷(Ŭ¶ó¿ìµå ±â¹Ý, ¿ÂÇÁ·¹¹Ì½º), Á¶Á÷(´ë±â¾÷, Áß¼Ò±â¾÷), ¾ÖÇø®ÄÉÀ̼Ç(Àç°í °ü¸®, °ø±Þ¸Á¡¤Ç÷¡´×, ¿î¼Û °ü¸®, â°í °ü¸®, Çø´ °ü¸®, ¸®½ºÅ© & º¸¾È¡¤, ±âŸ), ÃÖÁ¾»ç¿ëÀÚ(¼Ò¸Å & E-Commerce, Á¦Á¶¾÷, ÇコÄɾî, ÀÚµ¿Â÷, ½Äǰ ¹× À½·á, ¼ÒºñÀç, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Äõ¸® ÇÏ´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Machine Learning in Logistics Market to Reach US$10.7 Billion by 2030

The global market for Machine Learning in Logistics estimated at US$3.3 Billion in the year 2024, is expected to reach US$10.7 Billion by 2030, growing at a CAGR of 21.5% over the analysis period 2024-2030. Software Component, one of the segments analyzed in the report, is expected to record a 23.6% CAGR and reach US$7.8 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 16.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$910.3 Million While China is Forecast to Grow at 29.1% CAGR

The Machine Learning in Logistics market in the U.S. is estimated at US$910.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.6 Billion by the year 2030 trailing a CAGR of 29.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.9% and 19.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 18.1% CAGR.

Global Machine Learning in Logistics Market - Key Trends & Drivers Summarized

Why Is Machine Learning in Logistics Gaining Popularity?

The logistics industry is undergoing a digital transformation, with machine learning playing a pivotal role in optimizing operations, reducing costs, and enhancing efficiency. Traditional supply chain management systems often struggle with real-time demand forecasting, route optimization, and inventory management. Machine learning algorithms, powered by big data analytics, are improving accuracy in logistics planning, helping companies minimize delays and optimize fleet utilization. As global e-commerce continues to expand and same-day delivery expectations rise, the demand for AI-driven logistics solutions is growing rapidly.

How Are Innovations Enhancing the Performance of Machine Learning in Logistics?

Recent advancements in AI, predictive analytics, and autonomous decision-making systems are revolutionizing logistics management. Machine learning models analyze historical shipping data, weather patterns, and traffic conditions to optimize delivery routes and reduce fuel consumption. AI-powered demand forecasting helps companies anticipate inventory needs, preventing stockouts and overstock situations. Additionally, robotic process automation (RPA) is streamlining warehouse operations by enhancing picking, packing, and sorting efficiency. Innovations in AI-driven chatbots and virtual assistants are also improving customer service by providing real-time shipment tracking updates and automated responses to inquiries.

What Are the Key Market Drivers?

The rapid growth of e-commerce, increasing adoption of cloud-based logistics platforms, and rising demand for cost-efficient supply chain solutions are driving market expansion. Logistics companies are also investing in AI-powered autonomous delivery vehicles and drone-based last-mile delivery solutions to improve operational efficiency. Additionally, sustainability concerns are pushing companies to use machine learning for optimizing fuel consumption and reducing carbon footprints, aligning with global environmental goals.

What Challenges and Future Opportunities Exist?

Challenges include the high cost of AI integration, data privacy concerns, and resistance to technological change among traditional logistics providers. However, future opportunities lie in expanding AI-driven predictive maintenance for fleet management, developing AI-powered blockchain logistics solutions for enhanced transparency, and integrating 5G-enabled smart logistics networks. The continued evolution of AI-powered autonomous warehouses and smart transportation systems will further redefine the logistics industry.

SCOPE OF STUDY:

The report analyzes the Machine Learning in Logistics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Services Component); Deployment (Cloud-based Deployment, On-Premise Deployment); Organization (Large Enterprises, Small & Medium-Sized Enterprises); Application (Inventory Management Application, Supply Chain Planning Application, Transportation Management Application, Warehouse Management Application, Fleet Management Application, Risk & Security Application, Other Applications); End-User (Retail & E-commerce End-User, Manufacturing End-User, Healthcare End-User, Automotive End-User, Food & Beverage End-User, Consumer Goods End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â