¼¼°èÀÇ °ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´× ½ÃÀå
Machine Learning in Supply Chain Management
»óǰÄÚµå : 1782849
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 339 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,218,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,655,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´× ¼¼°è ½ÃÀåÀº 2030³â±îÁö 87¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´× ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 26.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 87¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò´Â CAGR 23.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 51¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ±¸¼º¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 32.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 4,920¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 25.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´× ½ÃÀåÀº 2024³â¿¡ 5¾ï 4,920¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 25.7%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 24.2%¿Í 23.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 18.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ °ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´× ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´×ÀÌ Àα⸦ ²ô´Â ÀÌÀ¯´Â?

°ø±Þ¸Á °ü¸®´Â ¼¼°è È¥¶õ, ¼ö¿ä º¯µ¿, ½Å¼ÓÇϰí È¿À²ÀûÀÎ ¹è¼Û¿¡ ´ëÇÑ °í°´ÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×Àº ½Ç½Ã°£ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí, ¼ö¿ä ¿¹ÃøÀ» °³¼±Çϰí, Àç°í ¼öÁØÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á °ø±Þ¸Á ¿î¿µÀ» Çõ½ÅÇϰí ÀÖ½À´Ï´Ù. E-Commerce, Àû½Ã »ý»ê, ¸ÖƼä³Î À¯Åë ¸ðµ¨ÀÇ ºÎ»óÀ¸·Î ±â¾÷µéÀº AI¸¦ Ȱ¿ëÇÑ ºÐ¼®À» ÅëÇØ °ø±Þ¸Á °¡½Ã¼ºÀ» ³ôÀ̰í À§ÇèÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ AI¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

Çõ½ÅÀº °ø±Þ¸Á °ü¸®¿ë ¸Ó½Å·¯´×ÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

AI¸¦ Ȱ¿ëÇÑ ºÐ¼®, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ÀÚµ¿È­ÀÇ ¹ßÀüÀ¸·Î °ø±Þ¸ÁÀº ´õ¿í ź·ÂÀûÀÌ°í ¹ÎøÇÏ°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¼ö¿ä º¯µ¿À» ¿¹ÃøÇϰí, ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, â°í Àç°í ¼öÁØÀ» ÃÖÀûÈ­ÇÏ´Â ¿¹Ãø ºÐ¼®¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý °æ·Î ÃÖÀûÈ­ µµ±¸´Â ¹°·ù È¿À²¼ºÀ» °³¼±Çϰí, ¿î¼Û ºñ¿ëÀ» Àý°¨Çϸç, ¸¶Áö¸· 1¸¶ÀÏ ¹è¼Û Á¤È®µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ºí·ÏüÀΰú ÅëÇÕµÈ AI ¼Ö·ç¼ÇÀº °ø±Þ¸ÁÀÇ Åõ¸í¼ºÀ» Çâ»ó½Ã۰í, Á¦Á¶¾÷ü¿¡¼­ ÃÖÁ¾ ¼ÒºñÀÚ±îÁö »óǰÀÇ ½Ç½Ã°£ ÃßÀûÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

½ÃÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è °ø±Þ¸ÁÀÇ º¹À⼺, ºü¸¥ ¹è¼Û¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡ Áõ°¡, ¸®½ºÅ© °ü¸® °³¼±¿¡ ´ëÇÑ ¿ä±¸´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. COVID-19 ÆÒµ¥¹ÍÀº ±â¾÷µéÀÌ È¥¶õÀ» ¿ÏÈ­ÇÏ°í ¾÷¹« È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ AI¸¦ Ȱ¿ëÇÑ °ø±Þ¸Á ¼Ö·ç¼ÇÀÇ µµÀÔÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á¿Í ±ÔÁ¦ Áؼö ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ ±â¾÷µéÀº ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ°í Æó±â¹°À» ÁÙÀÌ´Â AI ±â¹Ý ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¾î¶² °úÁ¦¿Í ¹Ì·¡ ±âȸ°¡ Á¸ÀçÇÒ±î?

AI µµÀÔ¿¡ µû¸¥ ³ôÀº ºñ¿ë, °ø±Þ¸Á ³×Æ®¿öÅ© Àü¹ÝÀÇ µ¥ÀÌÅÍ ÅëÇÕ ¹®Á¦, »çÀ̹ö º¸¾È À§Çè µîÀÇ ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª AI¸¦ Ȱ¿ëÇÑ °ø±Þ¸Á ¸®½ºÅ© °ü¸® ¼Ö·ç¼ÇÀÇ È®´ë, ÀÚµ¿ ÀÇ»ç°áÁ¤À» À§ÇÑ ÀÚ°¡ ÇнÀ ¾Ë°í¸®ÁòÀÇ °³¹ß, AI¸¦ Ȱ¿ëÇÑ Áö¼Ó°¡´É¼º ÃßÀû µµ±¸ÀÇ Ã¤Åÿ¡´Â ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ÀÚÀ² â°í °ü¸®, ·Îº¿À» ÅëÇÑ °ø±Þ¸Á ¿î¿µ, AI ±â¹Ý Á¶´Þ Àü·«¿¡¼­ AIÀÇ Áö¼ÓÀûÀÎ ÁøÈ­´Â °ø±Þ¸Á °ü¸®¿¡ ¶Ç ´Ù¸¥ Çõ¸íÀ» °¡Á®¿Ã °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼ÒÇÁÆ®¿þ¾î ±¸¼º¿ä¼Ò, ¼­ºñ½º ±¸¼º¿ä¼Ò), µðÇ÷ÎÀÌ¸ÕÆ®(Ŭ¶ó¿ìµå ±â¹Ý µðÇ÷ÎÀÌ¸ÕÆ®, ¿ÂÇÁ·¹¹Ì½º µðÇ÷ÎÀÌ¸ÕÆ®), Á¶Á÷(´ë±â¾÷, Áß¼Ò±â¾÷), ¾ÖÇø®ÄÉÀ̼Ç(¼ö¿ä ¿¹Ãø ¾ÖÇø®ÄÉÀ̼Ç, °ø±ÞÀÚ°ü°è°ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ¸®½ºÅ© °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, Á¦Ç° ¼ö¸íÁֱ⠰ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ÆÇ¸Å¡¤¾÷¹« °èȹ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç), ÃÖÁ¾»ç¿ëÀÚ(¼Ò¸Å¡¤E-Commerce ÃÖÁ¾»ç¿ëÀÚ, Á¦Á¶ ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, ½Äǰ ¹× À½·á ÃÖÁ¾»ç¿ëÀÚ, ¼ÒºñÀç ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Machine Learning in Supply Chain Management Market to Reach US$8.7 Billion by 2030

The global market for Machine Learning in Supply Chain Management estimated at US$2.1 Billion in the year 2024, is expected to reach US$8.7 Billion by 2030, growing at a CAGR of 26.9% over the analysis period 2024-2030. Software Component, one of the segments analyzed in the report, is expected to record a 23.8% CAGR and reach US$5.1 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 32.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$549.2 Million While China is Forecast to Grow at 25.7% CAGR

The Machine Learning in Supply Chain Management market in the U.S. is estimated at US$549.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 25.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 24.2% and 23.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 18.9% CAGR.

Global Machine Learning in Supply Chain Management Market - Key Trends & Drivers Summarized

Why Is Machine Learning in Supply Chain Management Gaining Popularity?

Supply chain management is becoming increasingly complex due to global disruptions, fluctuating demand, and increasing customer expectations for fast and efficient deliveries. Machine learning is transforming supply chain operations by providing real-time insights, improving demand forecasting, and optimizing inventory levels. With the rise of e-commerce, just-in-time manufacturing, and multi-channel distribution models, businesses are leveraging AI-powered analytics to enhance supply chain visibility and minimize risks.

How Are Innovations Enhancing the Performance of Machine Learning in Supply Chain Management?

Advancements in AI-driven analytics, cloud computing, and automation are making supply chains more resilient and agile. Machine learning algorithms are being used for predictive analytics to anticipate demand fluctuations, detect anomalies, and optimize warehouse inventory levels. AI-driven route optimization tools are improving logistics efficiency, reducing transportation costs, and enhancing last-mile delivery accuracy. Blockchain-integrated AI solutions are also improving supply chain transparency, enabling real-time tracking of goods from manufacturers to end consumers.

What Are the Key Market Drivers?

The increasing complexity of global supply chains, rising consumer expectations for faster deliveries, and the need for improved risk management are key factors driving market growth. The COVID-19 pandemic has further accelerated the adoption of AI-powered supply chain solutions as companies seek to mitigate disruptions and enhance operational efficiency. Additionally, sustainability concerns and regulatory compliance requirements are pushing companies to adopt AI-driven solutions that optimize energy consumption and reduce waste.

What Challenges and Future Opportunities Exist?

Challenges include the high cost of AI implementation, data integration issues across supply chain networks, and cybersecurity risks. However, opportunities exist in the expansion of AI-driven supply chain risk management solutions, the development of self-learning algorithms for automated decision-making, and the adoption of AI-powered sustainability tracking tools. The continued evolution of AI in autonomous warehouse management, robotic supply chain operations, and AI-driven procurement strategies will further revolutionize supply chain management.

SCOPE OF STUDY:

The report analyzes the Machine Learning in Supply Chain Management market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Services Component); Deployment (Cloud-based Deployment, On-Premise Deployment); Organization (Large Enterprises, Small & Medium-Sized Enterprises); Application (Demand Forecasting Application, Supplier Relationship Management Application, Risk Management Application, Product Lifecycle Management Application, Sales & Operations Planning Application, Other Applications); End-User (Retail & E-commerce End-User, Manufacturing End-User, Healthcare End-User, Automotive End-User, Food & Beverage End-User, Consumer Goods End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â