¼¼°èÀÇ ÀÚ±â Áöµµ ÇнÀ ½ÃÀå
Self-Supervised Learning
»óǰÄÚµå : 1784113
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 287 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚ±â Áöµµ ÇнÀ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 780¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 146¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚ±â Áöµµ ÇнÀ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 32.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 780¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚ¿¬¾î 󸮴 CAGR 33.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 518¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 28.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 40¾ï ´Þ·¯, Áß±¹Àº CAGR 41.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚ±â Áöµµ ÇнÀ ½ÃÀåÀº 2024³â¿¡ 40¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 201¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 41.9%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 25.9%¿Í 29.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 27.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚ±â Áöµµ ÇнÀ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚ±â Áöµµ ÇнÀÀÌ AI¿Í ¸Ó½Å·¯´×¿¡ Çõ¸íÀ» °¡Á®¿Ã ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀÚ±â Áöµµ ÇнÀ(SSL)Àº ÀΰøÁö´É(AI)À» À籸ÃàÇÏ´Â °ÍÀ¸·Î, ´ë±Ô¸ðÀÇ Àΰ£ ÁÖ¼®À» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í ¶óº§ÀÌ ºÙÁö ¾ÊÀº ¿ø½Ã µ¥ÀÌÅͷκÎÅÍ ±â°è°¡ ÇнÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÔ´Ï´Ù. ¶óº§ÀÌ ºÎÂøµÈ µ¥ÀÌÅͼ¼Æ®¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ÀÇ Áöµµ ÇнÀ ¸ðµ¨°ú ´Þ¸®, SSLÀº ¹«Áöµµ ¹× ¹ÝÁöµµ ÇнÀ ±â¼úÀ» Ȱ¿ëÇÏ¿© ÆÐÅÏÀ» ½Äº°Çϰí ÀÇ»ç°áÁ¤À» °³¼±ÇÕ´Ï´Ù. ÀÌ È¹±âÀûÀÎ Á¢±Ù ¹æ½ÄÀº ÀÚ¿¬¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, ¿¹Ãø ºÐ¼®ÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ AI ¸ðµ¨ ÇнÀ¿¡ ÇÊ¿äÇÑ ºñ¿ë°ú ½Ã°£À» Àý°¨ÇÏ´Â µ¿½Ã¿¡ AI ¸ðµ¨ ÇнÀ¿¡ ÇÊ¿äÇÑ ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. AI¸¦ ÅëÇÑ ÀÚµ¿È­°¡ Á¡Á¡ ´õ Áß¿äÇØÁö´Â °¡¿îµ¥, µö·¯´×ÀÇ ¿¬±¸¿Í ÀÀ¿ë¿¡ ÀÖ¾î ÀÚ±â Áöµµ ÇнÀÀÌ °ÔÀÓ Ã¼ÀÎÀú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ÀÚ±â Áöµµ ÇнÀÀ» °­È­ÇÏ´Â ±â¼ú ¹ßÀüÀ̶õ?

ÄÜÆ®¶ó½ºÆ® ÇнÀ, Æ®·£½ºÆ÷¸Ó ±â¹Ý ¸ðµ¨, »ý¼ºÇü AIÀÇ Çõ½ÅÀº ÀÚ±â Áöµµ ÇнÀ ¾Ë°í¸®ÁòÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. OpenAIÀÇ GPT³ª ±¸±ÛÀÇ BERT¿Í °°Àº ´ë±Ô¸ð AI ¾ÆÅ°ÅØÃ³´Â ¾ð¾î ÀÌÇØ¿Í ¹®¸Æ ÀνÄÀ» °­È­Çϱâ À§ÇØ SSL ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. °­È­ÇнÀ°ú SSLÀÇ ÅëÇÕÀ¸·Î ÀÚÀ²ÁÖÇàÂ÷, RPA(·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­)¿Í °°Àº ÀÚÀ² ½Ã½ºÅÛÀÌ ½Ç½Ã°£À¸·Î ÀûÀÀÇü ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Æä´õ·¹ÀÌÆ¼µå ·¯´×À» ÅëÇØ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϸ鼭 ºÐ»êµÈ ³×Æ®¿öÅ© »ó¿¡¼­ ÀÚ±â Áöµµ ÇнÀÀÌ °¡´ÉÇÑ AI ¸ðµ¨À» ÇнÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº AI ´É·ÂÀÇ ÇѰ踦 ¶Ù¾î³Ñ¾î ´õ¿í °­·ÂÇϰí È®Àå °¡´ÉÇÑ ¸Ó½Å·¯´× ¾ÖÇø®ÄÉÀ̼ÇÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ÀÚ±â Áöµµ ÇнÀÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â »ê¾÷Àº?

ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ÀÇ·á ¿µ»ó ºÐ¼®, Áúº´ ¿¹Ãø, AI Áö¿ø Áø´Ü¿¡ SSLÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¼­ºñ½º ¾÷°è¿¡¼­´Â »ç±â ŽÁö, À§Çè Æò°¡, ¾Ë°í¸®Áò °Å·¡¿¡ ÀÚ±â Áöµµ ÇнÀ ¸ðµ¨À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ Á¦Á¶¾÷ü¿Í ·Îº¿ ±â¾÷µéÀº ȯ°æ Àνİú ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °­È­Çϱâ À§ÇØ SSLÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¹× ¹Ìµð¾î ¾÷°è´Â Ãßõ ¿£Áø°ú ÄÁÅÙÃ÷ÀÇ °³ÀÎÈ­¸¦ Çâ»ó½Ã۱â À§ÇØ ÀÚ±â Áöµµ ÇнÀÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. AI¸¦ ÅëÇÑ ÀÚµ¿È­°¡ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® ÀâÀ¸¸é¼­ SSL µµÀÔÀº ºü¸£°Ô °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚ±â Áöµµ ÇнÀ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

AI¸¦ ÅëÇÑ ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, µö·¯´× ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀü, ºñ¿ë È¿À²ÀûÀÎ AI ±³À°¿¡ ´ëÇÑ Çʿ伺 µîÀÌ ÀÚ±â Áöµµ ÇнÀ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý °³ÀÎÈ­, À½¼º ÀνÄ, Áö´ÉÇü ÀÚµ¿È­ÀÇ È®´ë´Â ½ÃÀå µµÀÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI °³¹ß¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø°ú AI ¿¬±¸¿¡ ´ëÇÑ ±â¾÷ÀÇ ÅõÀÚ°¡ AI ¸ðµ¨ÀÇ Çõ½Å°ú È®»êÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ AI ±â¹Ý ¼Ö·ç¼ÇÀ» Áö¼ÓÀûÀ¸·Î È®´ëÇÔ¿¡ µû¶ó SSL ½ÃÀåÀº ºñ¾àÀûÀÎ ¼ºÀåÀ» ÀÌ·ê °ÍÀÔ´Ï´Ù.

ºÎ¹®

±â¼ú(ÀÚ¿¬¾î ó¸®, ÄÄÇ»ÅÍ ºñÀü, À½¼º ó¸®), ÃÖÁ¾»ç¿ë(ÇコÄɾî, BFSI, ÀÚµ¿Â÷¡¤¿î¼Û, Á¤º¸±â¼ú, ±¤°í¡¤¹Ìµð¾î, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Self-Supervised Learning Market to Reach US$78.0 Billion by 2030

The global market for Self-Supervised Learning estimated at US$14.6 Billion in the year 2024, is expected to reach US$78.0 Billion by 2030, growing at a CAGR of 32.2% over the analysis period 2024-2030. Natural Language Processing, one of the segments analyzed in the report, is expected to record a 33.2% CAGR and reach US$51.8 Billion by the end of the analysis period. Growth in the Computer Vision segment is estimated at 28.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.0 Billion While China is Forecast to Grow at 41.9% CAGR

The Self-Supervised Learning market in the U.S. is estimated at US$4.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$20.1 Billion by the year 2030 trailing a CAGR of 41.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 25.9% and 29.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 27.3% CAGR.

Global Self-Supervised Learning Market - Key Trends & Drivers Summarized

Why Is Self-Supervised Learning Revolutionizing AI And Machine Learning?

Self-Supervised Learning (SSL) is reshaping artificial intelligence (AI) by enabling machines to learn from raw, unlabeled data without requiring extensive human annotation. Unlike traditional supervised learning models, which rely on labeled datasets for training, SSL leverages unsupervised and semi-supervised learning techniques to identify patterns and improve decision-making. This breakthrough approach is reducing the cost and time required for AI model training while enhancing performance in natural language processing (NLP), computer vision, and predictive analytics. With industries increasingly relying on AI automation, self-supervised learning is emerging as a game-changer in deep learning research and applications.

What Technological Advancements Are Enhancing Self-Supervised Learning?

Innovations in contrastive learning, transformer-based models, and generative AI are significantly improving self-supervised learning algorithms. Large-scale AI architectures such as OpenAI’s GPT and Google’s BERT are utilizing SSL techniques to enhance language understanding and context recognition. The integration of reinforcement learning with SSL is enabling autonomous systems, such as self-driving cars and robotic process automation (RPA), to make real-time adaptive decisions. Additionally, federated learning is allowing self-supervised AI models to train across decentralized networks while preserving data privacy. These advancements are pushing the boundaries of AI capabilities, enabling more robust and scalable machine learning applications.

Which Industries Are Driving The Adoption Of Self-Supervised Learning?

The healthcare sector is leveraging SSL for medical imaging analysis, disease prediction, and AI-assisted diagnostics. Financial services are adopting self-supervised models for fraud detection, risk assessment, and algorithmic trading. Autonomous vehicle manufacturers and robotics firms are utilizing SSL to enhance environmental perception and real-time decision-making. The entertainment and media industry is using self-supervised learning to improve recommendation engines and content personalization. As AI-driven automation becomes essential across industries, SSL adoption is expected to accelerate rapidly.

What Factors Are Fueling The Growth Of The Self-Supervised Learning Market?

The growth in the self-supervised learning market is being fueled by increasing demand for AI automation, advancements in deep learning architectures, and the need for cost-efficient AI training. The expansion of AI-driven personalization, voice recognition, and intelligent automation is further driving market adoption. Additionally, regulatory support for AI development and enterprise investments in AI research are accelerating the innovation and deployment of self-supervised learning models. As industries continue to scale AI-driven solutions, the SSL market is set for exponential growth.

SCOPE OF STUDY:

The report analyzes the Self-Supervised Learning market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Natural Language Processing, Computer Vision, Speech Processing); End-Use (Healthcare, BFSI, Automotive & Transportation, Information Technology, Advertising & Media, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â