세계의 데이터센터용 GPU 시장 예측(-2030년) : 배포별, 기능별, 용도별, 최종사용자별, 지역별
Data Center GPU Market by Deployment (Cloud, On-premises), Function (Training, Inference), Application (Generative AI, Machine Learning, Natural Language Processing, Computer Vision), End User (CSP, Enterprises) & Region - Global Forecast to 2030
상품코드:1730661
리서치사:MarketsandMarkets
발행일:2025년 05월
페이지 정보:영문 288 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
세계의 데이터센터용 GPU 시장 규모는 2024년에 873억 2,000만 달러에 달했습니다. 2025-2030년의 예측 기간 중 CAGR은 13.7%로 전망되며, 2030년에는 2,280억 4,000만 달러에 달할 것으로 예측됩니다.
조사 범위
조사 대상연도
2020-2030년
기준연도
2024년
예측 기간
2025-2030년
검토 단위
금액(100만 달러)
부문별
배포별, 기능별, 용도별, 최종사용자별, 지역별
대상 지역
북미, 유럽, 아시아태평양, 기타 지역
데이터센터용 GPU 시장은 인공지능(AI)과 머신러닝(ML)의 확산, 고성능 컴퓨팅에 대한 수요 증가, 클라우드 서비스 확대 등 몇 가지 주요 요인으로 인해 급성장하고 있습니다. 기업은 딥러닝, 대규모 언어 모델, 데이터 분석 개선에 GPU를 활용하고 있습니다. 생성형 AI의 적용과 실시간 추론 시스템의 부상으로 인해 강력한 GPU 인프라의 필요성이 더욱 커지고 있습니다. 하이퍼스케일 데이터센터에 대한 투자와 국가 AI 역량 강화를 위한 정부의 구상도 이러한 성장에 일조하고 있으며, Amazon Web Services, Google Cloud, Microsoft Azure와 같은 주요 클라우드 프로바이더들은 GPU 제공을 강화하고 있습니다. NVIDIA 및 AMD와 같은 기업은 훈련 및 추론 워크로드에 맞게 조정된 고급 GPU를 출시하고 있습니다.
On-Premise 솔루션은 은행, 자동차, 소매, 헬스케어 등의 분야에서 데이터 보호, 저지연, 규제 준수에 대한 요구가 증가함에 따라 가장 높은 CAGR을 나타낼 것으로 예측됩니다. 기업은 타사 클라우드 서비스에 의존하는 것보다 사내 GPU 하드웨어를 통해 기밀 데이터를 관리하고 더 나은 관리를 위해 사내 GPU 하드웨어를 선호하고 있습니다. On-Premise 데이터센터에서는 인프라를 커스터마이징할 수 있고, 자율 시스템이나 고빈도 거래와 같은 실시간 용도에 필수적인 낮은 레이턴시가 필요한 AI 작업의 워크로드를 최적화할 수 있습니다. 인프라에 투자할 수 있게 되었습니다. 아시아태평양, 유럽, 중동 등 클라우드 연결이 제한적이거나 데이터 주권에 대한 우려가 있는 지역에서는 On-Premise 구축이 선호되는 경우가 많습니다.
트레이닝 부문은 대규모 머신러닝 및 AI 모델 개발 및 최적화를 수행하는 기업에 의해 데이터센터용 GPU 시장에서 가장 높은 성장세를 보일 것으로 예측됩니다. 생성형 인공지능(AI), 컴퓨터 비전, 자연 언어 처리 등의 용도를 위한 심층 신경망 훈련에는 GPU가 효과적으로 제공하는 상당한 컴퓨팅 파워가 필요하며, OpenAI의 GPT, Meta의 LLaMA, Google의 Gemini 등 대규모 언어 모델의 등장으로 기술, 금융, 헬스케어 분야에서 강력한 GPU에 대한 수요가 증가하고 있습니다. 이러한 모델들은 수 주에 걸친 대규모 학습과 대규모 데이터세트를 필요로 하므로 전용 GPU 클러스터의 필요성이 증가하고 있습니다. AWS, Microsoft Azure, Google Cloud와 같은 클라우드 프로바이더들은 GPU 기반 트레이닝 인프라를 강화하고 있으며, AI가 비즈니스 혁신의 최전선에 있는 지금, 트레이닝 인프라에 대한 수요는 크게 증가할 것으로 예측됩니다. 인프라에 대한 수요는 크게 증가할 것으로 예측됩니다.
클라우드 서비스 프로바이더(CSP) 부문은 규모, AI 인프라 지출 증가, 기업 및 개발자의 요구를 충족시킬 수 있는 능력으로 인해 데이터센터용 GPU 시장에서 가장 큰 시장 점유율을 차지할 것으로 예측됩니다. Google Cloud 등 주요 CSP들은 AI 트레이닝, 추론, 데이터 분석, 클라우드 게임에 대한 수요 증가에 대응하기 위해 GPU 데이터센터를 빠르게 확장하고 있습니다. 이들 CSP는 GPU-as-a-Service 솔루션을 제공하고 있으며, 기업은 막대한 선행 투자 없이도 고급 GPU 기술을 이용할 수 있습니다. 또한 기반 모델과 생성형 AI의 부상으로 CSP들은 수천 개의 GPU를 탑재한 AI 전용 슈퍼컴퓨터를 구축하기 위해 노력하고 있습니다. 세계적인 인프라와 탄탄한 개발자 생태계를 갖춘 CSP는 매출과 수량 측면에서 데이터센터용 GPU 시장을 선도하는 위치에 있습니다.
북미는 첨단인 기술 생태계와 잘 구축된 클라우드 인프라로 인해 데이터센터용 GPU 시장을 선도할 것으로 예측됩니다. 아마존 웹 서비스, 마이크로소프트 Azure, 구글 클라우드 등 주요 클라우드 컴퓨팅 기업은 AI 워크로드, 고성능 컴퓨팅, 데이터 분석을 지원하기 위해 GPU 기반 데이터센터를 구축하고 있습니다. 북미는 또한 헬스케어, 금융, 자동차, 정부 기관 등 다양한 산업 분야에서 강력한 기업 고객 기반을 보유하고 있으며, GPU 가속을 필요로 하는 AI 기반 솔루션에 대한 의존도가 높아지고 있습니다. 막대한 R&D 투자, 유리한 정부 정책, 초기 기술 도입이 이러한 리더십을 지원하고 있습니다.
데이터센터용 GPU 시장의 주요 업계 전문가를 대상으로 광범위한 1차 인터뷰를 실시했으며, 2차 조사를 통해 수집된 다양한 부문 및 하위 부문 시장 규모를 결정하고 검증했습니다. 이 보고서의 주요 참여자는 다음과 같습니다.
세계의 데이터센터용 GPU 시장에 대해 조사했으며, 배포별, 기능별, 용도별, 최종사용자별, 지역별 동향 및 시장에 참여하는 기업의 개요 등을 정리하여 전해드립니다.
목차
제1장 서론
제2장 조사 방법
제3장 개요
제4장 주요 인사이트
제5장 시장 개요
서론
시장 역학
Porter's Five Forces 분석
에코시스템 분석
밸류체인 분석
규제 상황
무역 분석
가격 분석
기술 분석
특허 분석
사례 연구 분석
주요 이해관계자와 구입 기준
2025-2026년의 주요 컨퍼런스와 이벤트
투자·자금조달 시나리오, 2023년 1분기-2024년 2분기
고객 비즈니스에 영향을 미치는 동향/혼란
트럼프의 영향의 개요
주요 관세율
다양한 지역에 대한 주요 영향
아시아태평양의 공급망에 대한 영향
USMCA 협정에 기반한 트럼프 관세에서 GPU의 면제와 허점
최종 용도 산업 레벨에 대한 영향
제6장 GPU-AS-A-SERVICE(GPUAAS)의 상황
서론
서비스 모델
IAAS
PAAS
배포
퍼블릭 클라우드
프라이빗 클라우드
하이브리드 클라우드
제7장 데이터센터용 GPU 시장(배포별)
서론
클라우드
온프레미스
제8장 데이터센터용 GPU 시장(기능별)
서론
트레이닝
추론
제9장 데이터센터용 GPU 시장(용도별)
서론
생성형 AI
기계학습
자연언어처리
컴퓨터 비전
제10장 데이터센터용 GPU 시장(최종사용자별)
서론
클라우드 서비스 프로바이더
기업
정부기관
제11장 데이터센터용 GPU 시장(지역별)
서론
북미
북미의 거시경제 전망
미국
캐나다
멕시코
유럽
유럽의 거시경제 전망
독일
영국
프랑스
이탈리아
스페인
폴란드
북유럽
기타
아시아태평양
아시아태평양의 거시경제 전망
중국
한국
일본
인도
호주
인도네시아
말레이시아
태국
베트남
기타
기타 지역
기타 지역의 거시경제 전망
남미
아프리카
중동
제12장 경쟁 구도
개요
주요 참여 기업의 전략/강점, 2022-2025년
매출 분석, 2018-2022년
시장 점유율 분석, 2024년
기업 평가와 재무 지표
브랜드/제품 비교
데이터센터용 GPU 기업 평가 매트릭스 : 주요 참여 기업, 2024년
GPU-as-a-service(GPUAAS) 기업 평가 매트릭스 : 주요 참여 기업, 2024년
GPU-as-a-service(GPUAAS) 기업 평가 매트릭스 : 스타트업/중소기업, 2024년
경쟁 시나리오와 동향
제13장 기업 개요
주요 참여 기업
NVIDIA CORPORATION
ADVANCED MICRO DEVICES, INC.
INTEL CORPORATION
GOOGLE
MICROSOFT
AMAZON WEB SERVICES, INC.
IBM
ALIBABA CLOUD
ORACLE
COREWEAVE.
TENCENT CLOUD
LAMBDA
기타 기업
VAST.AI
RUNPOD
SCALEMATRIX HOLDINGS, INC.
DIGITALOCEAN
JARVISLABS.AI
FLUIDSTACK
OVH SAS
E2E NETWORKS LIMITED
ACE CLOUD
SNOWCELL
LINODE LLC
YOTTA DATA SERVICES PVT LTD.
VULTR
RACKSPACE TECHNOLOGY
GCORE
NEBIUS B.V.
제14장 부록
KSA
영문 목차
영문목차
The global data center GPU market was valued at USD 87.32 billion in 2024. It is projected to reach USD 228.04 billion by 2030, at a CAGR of 13.7% during the forecast period of 2025 to 2030.
Scope of the Report
Years Considered for the Study
2020-2030
Base Year
2024
Forecast Period
2025-2030
Units Considered
Value (USD Million)
Segments
By Deployment, Function, Application, End User and RegionC
Regions covered
North America, Europe, APAC, RoW
The data center GPU market is growing rapidly due to several key factors, including the widespread adoption of artificial intelligence (AI) and machine learning (ML), increased demand for high-performance computing, and expanding cloud services. Enterprises are utilizing GPUs to improve deep learning, large language models, and data analytics. The rise of generative AI applications and real-time inference systems further boosts the need for robust GPU infrastructure. Investments in hyperscale data centers and government initiatives to support national AI capabilities also play a role in this growth. Major cloud providers like Amazon Web Services, Google Cloud, and Microsoft Azure are enhancing their GPU offerings, while companies like NVIDIA and AMD are launching advanced GPUs tailored for training and inference workloads.
"On-premises segment is expected to hold the highest CAGR during the forecast period."
On-premises solutions are expected to have the highest CAGR due to the increasing needs for data protection, low latency, and regulatory compliance in sectors like banking, automotive, retail, and healthcare. Organizations prefer to manage sensitive data with in-house GPU hardware for better control, rather than relying on third-party cloud services. On-premises data centers also allow for customized infrastructure, optimizing workloads for AI tasks that require low latency, which is crucial for real-time applications such as autonomous systems and high-frequency trading. As GPU servers become more affordable, mid-sized enterprises can invest in dedicated infrastructure. On-premises deployment is often preferred in regions with limited cloud connectivity or data sovereignty concerns, such as Asia Pacific, Europe, and the Middle East.
"Training segment is projected to record the second-highest CAGR during the forecast period."
The training segment is expected to see the highest growth in the data center GPU market, driven by businesses developing and optimizing large-scale machine learning and AI models. Training deep neural networks for applications like generative AI, computer vision, and natural language processing requires substantial computing power, which GPUs provide effectively. The rise of large language models, including OpenAI's GPT, Meta's LLaMA, and Google's Gemini, is increasing demand for powerful GPUs in technology, finance, and healthcare sectors. These models require extensive training over weeks and large datasets, leading to a need for dedicated GPU clusters. Companies are also creating proprietary AI models for competitive advantage. Cloud providers such as AWS, Microsoft Azure, and Google Cloud are enhancing their GPU-based training infrastructure. With AI at the forefront of business transformation, the demand for training infrastructure is set to grow significantly.
"Cloud service providers (CSPs) are expected to hold the highest share of the end-user market in 2030"
The Cloud Service Providers (CSPs) segment is expected to command the largest market share in the data center GPU market due to their scale, increasing AI infrastructure spending, and ability to meet the needs of enterprises and developers. Major CSPs like Amazon Web Services, Microsoft Azure, and Google Cloud are rapidly expanding their GPU data centers to meet the rising demand for AI training, inference, data analytics, and cloud gaming. They offer GPU-as-a-Service solutions, allowing companies to access advanced GPU technology without significant upfront investments. Additionally, the rise of foundation models and generative AI drives CSPs to create specialized AI supercomputers with thousands of GPUs. With their global infrastructure and robust developer ecosystems, CSPs are well-positioned to lead the data center GPU market in both revenue and volume.
"North America will likely register the second-highest market share in 2030."
North America is expected to lead the data center GPU market due to its advanced technological ecosystem and established cloud infrastructure. Major cloud computing companies like Amazon Web Services, Microsoft Azure, and Google Cloud are creating GPU-based data centers to support AI workloads, high-performance computing, and data analysis. North America also has a strong enterprise customer base across industries like healthcare, finance, automotive, and government, increasingly relying on AI-driven solutions that need GPU acceleration. Significant R&D investments, favorable government policies, and early technology adoption support this leadership.
Extensive primary interviews were conducted with key industry experts in the data center GPU market space to determine and verify the market size for various segments and subsegments gathered through secondary research. The breakdown of primary participants for the report is shown below.
The study contains insights from various industry experts, from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:
By Company Type: Tier 1-60%, Tier 2-10%, and Tier 3-30%
By Designation: C-level executives-10%, Directors-30%, and Others-60%
By Region: Europe-20%, North America-70%, Asia Pacific-5%, and RoW-5%
The data center GPU is dominated by a few globally established players, such as NVIDIA Corporation (US), Advanced Micro Devices, Inc. (US), and Intel Corporation (US). Other players include Google Cloud (US), Microsoft (US), Amazon Web Services, Inc. (US), IBM (US), Alibaba Cloud (Singapore), Oracle (US), Tencent Cloud (China), CoreWeave (US), Vast.ai (US), Lambda (US), DigitalOcean (US), and JarvisLabs.ai (India).
The study includes an in-depth competitive analysis of these key players in the data center GPU market, with their company profiles, recent developments, and key market strategies.
Research Coverage:
The report segments the data center GPU market and forecasts its size by deployment (cloud, on-premises), function (training, inference), application (generative AI, machine learning, natural language processing, computer vision), and end user (cloud service providers, enterprises, and government organizations). It also discusses the market's drivers, restraints, opportunities, and challenges. It gives a detailed view of the market across four main regions (North America, Europe, Asia Pacific, and RoW). The report includes an ecosystem analysis of the key players.
Key Benefits of Buying the Report:
Analysis of key drivers (growing adoption of AI and machine learning, demand for high-performance computing, cloud computing expansion, restraints (high costs of GPUs and infrastructure, short product lifecycle), opportunities (growth in autonomous systems, emergence of edge computing, advancements in quantum computing synergy), and challenges (existence of alternative technologies, stringent regulatory framework, supply chain disruptions)
Service Development/Innovation: Detailed insights on upcoming technologies, research and development activities, and new product launches in the data center GPU market
Market Development: Comprehensive information about lucrative markets - the report analyses the data center GPU market across varied regions
Market Diversification: Exhaustive information about new products and services, untapped geographies, recent developments, and investments in the data center GPU market.
Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players, such as NVIDIA Corporation (US), Advanced Micro Devices, Inc. (US), Intel Corporation (US), Google Cloud (US), Microsoft (US), and Amazon Web Services, Inc. (US)
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKETS COVERED
1.3.2 INCLUSIONS AND EXCLUSIONS
1.3.3 YEARS CONSIDERED
1.4 CURRENCY CONSIDERED
1.5 UNIT CONSIDERED
1.6 LIMITATIONS
1.7 STAKEHOLDERS
1.8 SUMMARY OF CHANGES
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.1.1 List of major secondary sources
2.1.1.2 Key data from secondary sources
2.1.2 PRIMARY DATA
2.1.2.1 List of primary interview participants
2.1.2.2 Breakdown of primaries
2.1.2.3 Key data from primary sources
2.1.2.4 Key industry insights
2.1.3 SECONDARY AND PRIMARY RESEARCH
2.2 MARKET SIZE ESTIMATION
2.2.1 BOTTOM-UP APPROACH
2.2.1.1 Approach to estimate market size using bottom-up analysis (demand side)
2.2.2 TOP-DOWN APPROACH
2.2.2.1 Approach to estimate market size using top-down analysis (supply side)
2.3 MARKET BREAKDOWN AND DATA TRIANGULATION
2.4 RESEARCH ASSUMPTIONS
2.5 RISK ASSESSMENT
2.6 RESEARCH LIMITATIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN DATA CENTER GPU MARKET
4.2 DATA CENTER GPU MARKET, BY DEPLOYMENT
4.3 DATA CENTER GPU MARKET, BY FUNCTION
4.4 DATA CENTER GPU MARKET, BY APPLICATION
4.5 DATA CENTER GPU MARKET, BY END USER
4.6 DATA CENTER GPU MARKET, BY COUNTRY
5 MARKET OVERVIEW
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Growing adoption of AI and machine learning
5.2.1.2 Growing demand for high performance computing (HPC)
5.2.1.3 Cloud computing expansion
5.2.2 RESTRAINTS
5.2.2.1 High costs of GPUs and infrastructure
5.2.2.2 Short product lifecycle
5.2.3 OPPORTUNITIES
5.2.3.1 Growth in autonomous systems
5.2.3.2 Emergence of edge computing
5.2.3.3 Advancements in quantum computing synergy
5.2.4 CHALLENGES
5.2.4.1 Existence of alternative technologies
5.2.4.2 Stringent regulatory framework
5.2.4.3 Supply chain disruptions
5.3 PORTER'S FIVE FORCES ANALYSIS
5.4 ECOSYSTEM ANALYSIS
5.5 VALUE CHAIN ANALYSIS
5.6 REGULATORY LANDSCAPE
5.6.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.6.2 STANDARDS
5.6.3 REGULATIONS
5.6.3.1 North America
5.6.3.1.1 US
5.6.3.1.2 Canada
5.6.3.2 Europe
5.6.3.2.1 Germany
5.6.3.2.2 France
5.6.3.3 Asia Pacific
5.6.3.3.1 Japan
5.6.3.3.2 China
5.6.3.4 RoW
5.6.3.4.1 Brazil
5.6.3.4.2 South Africa
5.7 TRADE ANALYSIS
5.7.1 IMPORT DATA (HS CODE 847330)
5.7.2 EXPORT SCENARIO (HS CODE 847330)
5.8 PRICING ANALYSIS
5.8.1 INDICATIVE PRICING TREND OF DATA CENTER GPU OFFERED BY KEY PLAYERS, BY FUNCTION, 2024 (USD)
5.8.2 INDICATIVE PRICING TREND OF DATA CENTER GPUS, BY KEY PLAYER, 2024
5.8.3 AVERAGE SELLING PRICE OF DATA CENTER GPUS, BY REGION, 2021-2024 (USD)