ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ÄÄÆ÷³ÍÆ® À¯Çüº°, ±â¼ú À¯Çüº°, ¹èÆ÷ ¸ðµåº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)
Computer Vision in Healthcare Market by Component Type, Technology Types, Deployment Modes, Application, End Users - Global Forecast 2025-2030
»óǰÄÚµå : 1806352
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 193 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,522,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,956,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,073,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,769,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀº 2024³â¿¡´Â 27¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2025³â¿¡´Â 31¾ï 6,000¸¸ ´Þ·¯, CAGR 14.68%·Î ¼ºÀåÇϸç, 2030³â±îÁö´Â 62¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 27¾ï 6,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 31¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 62¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 14.68%

Áø´Ü ¹× ¾÷¹« È¿À²¼º Çâ»óÀ» ÅëÇØ ȯÀÚ Ä¡·á¿¡ Çõ¸íÀ» °¡Á®¿Ã ÄÄÇ»ÅÍ ºñÀüÀÇ ¿ªÇÒ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

ÄÄÇ»ÅÍ ºñÀüÀº Çö´ë ÀÇ·á ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ÀÓ»óÀǰ¡ ȯÀÚÀÇ Áø´Ü ¹× Ä¡·á ¸ð´ÏÅ͸µ¿¡¼­ ½Ã°¢Àû µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÇØ¼®ÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. °í±Þ ¿µ»ó ó¸® ¾Ë°í¸®Áò°ú ¸Ó½Å ÀÎÅÚ¸®Àü½º¸¦ Ȱ¿ëÇÏ¿© ÀÇ·á ±â°üÀº ¹æ»ç¼± ½ºÄµ, º´¸® ½½¶óÀ̵å, ½Ç½Ã°£ ºñµð¿À Çǵ忡¼­ ÀÇ¹Ì ÀÖ´Â ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÐ·¯´ÙÀÓÀÇ ÀüȯÀº °íÇØ»óµµ Ä«¸Þ¶ó ½Ã½ºÅÛ, °­·ÂÇÑ ÄÄÇ»ÆÃ Çϵå¿þ¾î, µö·¯´× ¹× ¸Ó½Å·¯´× Ç÷§Æû¿¡ µ¥ÀÌÅ͸¦ °ø±ÞÇÏ´Â °í±Þ ¼¾¼­ÀÇ À¶ÇÕÀ¸·Î ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀüÀÚÀǹ«±â·Ï ½Ã½ºÅÛ³» ¿µ»ó ºÐ¼® ¼ÒÇÁÆ®¿þ¾îÀÇ ¿øÈ°ÇÑ ÅëÇÕÀº »óÈ£ ¿î¿ë¼ºÀ» ³ô¿© º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ È¯ÀÚ Æò°¡¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

È®Àå °¡´ÉÇÑ ÄÄÇ»ÅÍ ºñÀü Ç÷§Æû°ú Áö´ÉÇü ÀÚµ¿È­¸¦ ÅëÇØ ÀÇ·á ¼­ºñ½º Á¦°øÀ» Çü¼ºÇÏ´Â ÆÄ±«ÀûÀÎ ±â¼ú º¯È­¸¦ Æ÷Âø

ÇコÄÉ¾î ±â¼úÀº ÄÄÇ»ÅÍ ºñÀü Ç÷§Æû°ú Áö´ÉÇü ÀÚµ¿È­ÀÇ º¸±ÞÀ¸·Î Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀº °³³ä Áõ¸í ½ÃÇèÀ» ³Ñ¾î ÀÇ·á ¿µ»ó Áø´ÜÀÇ ÇÙ½É ¿ä¼Ò·Î ¹ßÀüÇÏ¿© X-ray, CT ½ºÄµ, MRIÀÇ ÀÌ»ó ¡Èĸ¦ ³î¶ó¿î Á¤È®µµ·Î °¨ÁöÇÏ´Â ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. µö·¯´× ÇÁ·¹ÀÓ¿öÅ©¸¦ À̹ÌÁö ºÐ¼® ¼ÒÇÁÆ®¿þ¾î¿¡ ÅëÇÕÇÏ¿© ¿¹Ãø Áø´Ü °³¹ßÀ» °¡¼ÓÈ­Çϰí, ¸Ó½Å·¯´× Ç÷§ÆûÀº ½ÇÁ¦ ÀÓ»ó µ¥ÀÌÅ͸¦ ÅëÇØ ¾Ë°í¸®ÁòÀ» Áö¼ÓÀûÀ¸·Î °³¼±ÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. Çϵå¿þ¾îÀÇ ¼º´ÉÀÌ ±ÞÁõÇÔ¿¡ µû¶ó °í±Þ ¼¾¼­°¡ ÀåÂøµÈ Ä«¸Þ¶ó ½Ã½ºÅÛÀº °íÈ­ÁúÀÇ À̹ÌÁö¸¦ ÃÔ¿µÇϰí, ¿¬»ê Çϵå¿þ¾î´Â ±×·¡ÇÈ Ã³¸® ÀåÄ¡¸¦ Ȱ¿ëÇÏ¿© º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ½Ç½Ã°£À¸·Î ó¸®ÇÏ°Ô µÇ¾ú½À´Ï´Ù.

2025³â ¹ßÈ¿µÇ´Â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼°¡ ÇコÄɾî ÄÄÇ»ÅÍ ºñÀü °ø±Þ¸Á ¹× ±â¼ú µµÀÔ¿¡ ¹ÌÄ¡´Â ´Ù°¢ÀûÀÎ ¿µÇâ Æò°¡

2025³âºÎÅÍ µµÀԵǴ ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼´Â ÄÄÇ»ÅÍ ºñÀü¿ë ºÎǰÀÇ ¼¼°è °ø±Þ¸Á¿¡ ÀÇÁ¸ÇÏ´Â ÇコÄɾî Á¶Á÷°ú ±â¼ú °ø±Þ¾÷ü¿¡ ¿©·¯ °¡Áö ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦Á¶ °ÅÁ¡¿¡¼­ Á¶´ÞÇÏ´Â ¼¾¼­, ÄÄÇ»ÆÃ Çϵå¿þ¾î, Ä«¸Þ¶ó ½Ã½ºÅÛÀº ¼öÀÔ °ü¼¼ ÀλóÀ¸·Î ÀÎÇØ ¸¹Àº ±â¾÷ÀÌ Á¶´Þ Àü·«À» Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. Ư¼ö À̹ÌÁö ¼¾¼­¿Í ¿¬»ê °¡¼Ó±âÀÇ ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ ¿¹»êÀÌ ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀϺΠÀÌÇØ°ü°èÀÚµéÀº ±¹³» ½ÃÀå¿¡¼­ ´ëü °ø±Þ¾÷ü¸¦ ã°Å³ª Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î¾î ºñ¿ë »ó½ÂÀ» ¿ÏÈ­Çϰí ÀÖ½À´Ï´Ù.

Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ ¹üÁÖ¿¡ °ÉÃÄ ¼ºÀå ±âȸ¸¦ ¹ß°ßÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ¹àÈü´Ï´Ù.

ÇコÄɾî ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀ» Á¤ÀÇµÈ ºÎ¹®¶ó´Â ·»Á ÅëÇØ °ËÅäÇϸé, ¾î¶² ºÐ¾ß°¡ °¡¼ÓÀû ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ´ÂÁö¸¦ ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÄÄÆ÷³ÍÆ® À¯Çüº°·Î Á¤¸®Çϸé Çϵå¿þ¾î, ¼­ºñ½º, ¼ÒÇÁÆ®¿þ¾î¸¦ ¾Æ¿ì¸£´Â dzºÎÇÑ »ýŰ踦 º¼ ¼ö ÀÖ½À´Ï´Ù. Çϵå¿þ¾î¿¡¼­´Â Á¤±³ÇÑ Ä«¸Þ¶ó ½Ã½ºÅÛ, °í¼º´É ÄÄÇ»ÆÃ Çϵå¿þ¾î, °í±Þ ¼¾¼­°¡ Á¤È®ÇÑ À̹ÌÁö ĸó ¹× À̹ÌÁö ó¸®ÀÇ ±âÃʸ¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÅëÇÕ ¹× ¹èÆ÷ ¼­ºñ½º´Â Áö¼ÓÀûÀÎ Áö¿ø ¹× À¯Áöº¸¼ö ¼­ºñ½º¿Í ÇÔ²² ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ È¿°úÀûÀ¸·Î µµÀԵǰí Áö¼ÓÀûÀ¸·Î ¿î¿µµÉ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº º¹ÀâÇÑ ½Å°æ¸ÁÀ» ÇнÀÇÏ´Â µö·¯´× Ç÷§Æû, ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â À̹ÌÁö ºÐ¼® ¿ëµµ, ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¿¹Ãø ¸ðµ¨À» °³¼±ÇÏ´Â ¸Ó½Å·¯´× Ç÷§Æû¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù.

ºÏ¹Ì, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÇコÄÉ¾î ½ÃÀå¿¡¼­ ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× µµÀÔ µ¿ÇâÀ» °­Á¶ÇÏ´Â ÁÖ¿ä Áö¿ª ÇÏÀ̶óÀÌÆ® ÃßÃâ

Áö¿ª ¿ªÇÐÀº ÇコÄÉ¾î ºÐ¾ß ÄÄÇ»ÅÍ ºñÀü ½ÃÀåÀÇ µµÀÔ ±ËÀûÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÷´Ü »óȯ ±¸Á¶¿Í È®¸³µÈ ±ÔÁ¦ °æ·Î°¡ À̹ÌÁö ó¸® ¼ÒÇÁÆ®¿þ¾î¿Í µö·¯´× Ç÷§ÆûÀÇ ºü¸¥ ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´ÙÀÇ ÁÖ¿ä Çмú ÀÇ·á ¼¾ÅÍ¿Í Áø´Ü ½Ã¼³µéÀº ½Ç½Ã°£ ºñµð¿À ºÐ¼®À» ÁßȯÀÚ Ä¡·á¿¡ Ȱ¿ëÇÏ´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ¼±µµÀûÀ¸·Î ½ÃÇàÇϰí ÀÖÀ¸¸ç, ¿¬±¸¼Ò´Â ¾Ë°í¸®ÁòÀÇ Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ ±â¼ú °ø±Þ¾÷ü¿Í Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä« ½ÃÀå¿¡¼­´Â ¾ÆÁ÷ µµÀÔ Ãʱ⠴ܰ迡 ÀÖÁö¸¸, Áø´Ü ¼­ºñ½º°¡ ÃæºÐÈ÷ Á¦°øµÇÁö ¾Ê´Â Áö¿ªÀ¸·Î Áø´Ü ¼­ºñ½º¸¦ È®´ëÇϱâ À§ÇØ ºñ¿ë È¿À²ÀûÀÎ ¼¾¼­ Çϵå¿þ¾î¿Í Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷ ¸ðµ¨¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ÇコÄɾî Á¦°ø ¹× ¿¬±¸ ºÐ¾ß¿¡¼­ Â÷¼¼´ë ÄÄÇ»ÅÍ ºñÀüÀÇ Áøº¸¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä Çõ½Å°¡ ¹× ½ÅÈï ½ÃÀå ±â¾÷¿¡ ´ëÇÑ Àü·«Àû ÀλçÀÌÆ®¸¦ ÅëÇÕÇß½À´Ï´Ù.

°æÀïÀÇ ¿ªÇÐÀ» ºÐ¼®Çغ¸¸é, ÀÇ·á ±â¼ú ´ë±â¾÷°ú ¹ÎøÇÑ ½ºÅ¸Æ®¾÷ÀÌ È¥ÇյǾî ÇコÄÉ¾î ºÐ¾ßÀÇ ÄÄÇ»ÅÍ ºñÀü ÁøÈ­¸¦ ÁÖµµÇϰí ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÁÖ¿ä Àåºñ Á¦Á¶¾÷üµéÀº µö·¯´×À» Ȱ¿ëÇÏ¿© ÀÌ»ó °¨Áö ¹× ÃøÁ¤À» ÀÚµ¿È­ÇÏ´Â Â÷¼¼´ë À̹ÌÁö ó¸® ¼ÒÇÁÆ®¿þ¾î Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ¼¼°è ±â¼ú ±â¾÷°ú ´ëÇü ÀÇ·á ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ ½Ç½Ã°£ Ä«¸Þ¶ó Çǵå¿Í ¿¹Ãø ºÐ¼®À» ÅëÇÕÇÑ ¼ö¼ú ¾È³» ½Ã½ºÅÛÀÌ °øµ¿ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í º´ÇàÇÏ¿© Àü¹® ¼ÒÇÁÆ®¿þ¾î ¾÷üµéÀº ±âÁ¸ ÀüÀÚÀǹ«±â·Ï ¹× ¿µ»ó ¾ÆÄ«ÀÌºê ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä Ç÷§ÆûÀ» Á¦°øÇÔÀ¸·Î½á ¹ßÆÇÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î »ýŰè Àü¹Ý¿¡ °ÉÃÄ ÄÄÇ»ÅÍ ºñÀü ¼Ö·ç¼ÇÀ» ±¸ÇöÇϰí È®ÀåÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¾÷°è ¸®´õµéÀ» ¾È³»ÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ±ÇÀå »çÇ×À» Á¦°ø

ÄÄÇ»ÅÍ ºñÀü ±â¼úÀÇ º¯ÇõÀû ÀáÀç·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ±â¼úÀû, Á¶Á÷Àû Ãø¸éÀ» ´Ù·ç´Â ÀÏ·ÃÀÇ ÁýÁßÀûÀÎ Àü·«À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, ÀÇ·á ±â°üÀº ÀÓ»ó ¿öÅ©Ç÷ο츦 Áß´ÜÇÏÁö ¾Ê°í Ä«¸Þ¶ó ½Ã½ºÅÛ ¹× ÄÄÇ»ÆÃ °¡¼Ó±âÀÇ ÇâÈÄ ¾÷±×·¹À̵忡 ´ëÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº Àå±âÀûÀ¸·Î ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨Çϰí À̹ÌÁö ó¸® ´É·ÂÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µÑ°, ÀÇ·á ¼­ºñ½º Á¦°ø ¾÷ü´Â Á¾ÇÕÀûÀÎ ÅëÇÕ ¹× Á¤ºñ Áö¿øÀ» º¸ÀåÇϱâ À§ÇØ ¼­ºñ½º Àü¹®°¡¿Í ±ä¹ÐÈ÷ Çù·ÂÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù. À̸¦ ÅëÇØ ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÏ°í ¼Ö·ç¼Ç ¼ö¸íÁֱ⠵¿¾È ½Ã½ºÅÛ ¼º´ÉÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿©·¯ ÃâóÀÇ °ËÁõÀ» ÅëÇØ ÇコÄɾî ÄÄÇ»ÅÍ ºñÀü ½ÃÀå°ú µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ºÐ¼®Çϱâ À§ÇØ Ã¤ÅÃµÈ ¾ö°ÝÇÑ ¿¬±¸ ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë

ÀÌ º¸°í¼­ÀÇ Á¶»ç °á°ú´Â ÇコÄɾî ÄÄÇ»ÅÍ ºñÀü µ¿Çâ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇϱâ À§ÇØ °í¾ÈµÈ ¾ö°ÝÇÑ Á¶»ç¹æ¹ýÀ» ÅëÇØ µµÃâµÈ °á°úÀÔ´Ï´Ù. 1Â÷ Á¶»ç·Î ÀǷ῵»ó Áø´Ü Àü¹®°¡, ÀÇ·áÁ¤º¸ ´ã´çÀÚ, Àåºñ Á¦Á¶¾÷ü, ±â¼ú ¼Ö·ç¼Ç ÇÁ·Î¹ÙÀÌ´õ µî ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚµé°úÀÇ ½ÉÃþ ÀÎÅͺ並 ÁøÇàÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ µµÀÔ °úÁ¦, ÀÓ»óÀû ¿ä±¸»çÇ×, »õ·Î¿î ÀÌ¿ë »ç·Ê¿¡ ´ëÇÑ ÁúÀû ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù. 2Â÷ Á¶»ç´Â ±â¼ú ¿ª·®°ú ÄÄÇöóÀ̾𽺠°í·Á»çÇ׿¡ ´ëÇÑ °ËÅ並 À§ÇØ ÇǾºä Àú³Î, ¾÷°è °£Ç๰, ±ÔÁ¦ °ü·Ã ¹®¼­¿¡ ´ëÇÑ Ã¼°èÀûÀÎ °ËÅ並 ÅëÇØ ÀÌ·ç¾îÁ³½À´Ï´Ù.

¹Ì·¡ ÀÇ·á ¼­ºñ½º Á¦°ø ¸ðµ¨°ú ¿¬±¸ Çõ½ÅÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ÄÄÇ»ÅÍ ºñÀüÀÇ º¯ÇõÀû ¿ªÇÒ¿¡ ´ëÇÑ °á·ÐÀû ÀλçÀÌÆ® Á¦°ø

°í¼º´É À̹ÌÁö ó¸® Çϵå¿þ¾î, ÷´Ü ±â°èÇнÀ Ç÷§Æû, È®Àå °¡´ÉÇÑ ¹èÆ÷ ¸ðµ¨ÀÇ À¶ÇÕÀº ÀÇ·á ¼­ºñ½º Á¦°øÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿¹°íÇϰí ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ¼Ö·ç¼ÇÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó Áø´Ü °æ·Î°¡ À籸¼ºµÇ°í, ¾÷¹« ¿öÅ©Ç÷ο찡 ÃÖÀûÈ­µÇ¸ç, ¿¬±¸ ¹× ½Å¾à °³¹ß ³ë·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÁøÈ­ÇÏ´Â ¹«¿ª Á¤Ã¥, ¼¼ºÐÈ­¿¡ ´ëÇÑ ÀλçÀÌÆ®, Áö¿ªÀû äÅà ÆÐÅÏÀÇ ´©ÀûµÈ ¿µÇâÀº Àü·«Àû ¹Îø¼º°ú Çù·ÂÀû Çõ½ÅÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇÐ º¯È­¿¡ Àû±ØÀûÀ¸·Î ÀûÀÀÇÏ´Â ÇコÄɾî Á¶Á÷Àº ȯÀÚ °á°ú¸¦ °³¼±Çϰí, ÀÚ¿ø ¹èºÐÀ» ÇÕ¸®È­Çϸç, °æÀï ¿ìÀ§¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ÄÄÆ÷³ÍÆ® À¯Çüº°

Á¦9Àå ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ±â¼ú À¯Çüº°

Á¦10Àå ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ¹èÆ÷ ¸ðµåº°

Á¦11Àå ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ¿ëµµº°

Á¦12Àå ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÇコÄɾî¿ë ÄÄÇ»ÅÍ ºñÀü ½ÃÀå

Á¦16Àå °æÀï ±¸µµ

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Computer Vision in Healthcare Market was valued at USD 2.76 billion in 2024 and is projected to grow to USD 3.16 billion in 2025, with a CAGR of 14.68%, reaching USD 6.29 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.76 billion
Estimated Year [2025] USD 3.16 billion
Forecast Year [2030] USD 6.29 billion
CAGR (%) 14.68%

Unveiling the Role of Computer Vision in Revolutionizing Patient Care Through Enhanced Diagnostics and Operational Efficiency

Computer vision has emerged as a critical enabler in modern healthcare, transforming the way clinicians capture and interpret visual data across patient diagnostics and treatment monitoring. By leveraging advanced imaging algorithms and machine intelligence, healthcare organizations can extract meaningful insights from radiological scans, pathology slides, and real-time video feeds. This paradigm shift is founded upon the convergence of high-resolution camera systems, powerful compute hardware, and sophisticated sensors that feed data into deep learning and machine learning platforms. Furthermore, the seamless integration of image analysis software within electronic health record systems enhances interoperability, enabling more timely and accurate patient assessments.

In addition to diagnostic improvements, computer vision technologies streamline operational workflows by automating routine tasks such as image triage and quality assurance. This automation not only reduces manual errors but also accelerates turnaround times, resulting in better resource utilization and enhanced patient throughput. The maturation of cloud-based and on-premise deployment options offers healthcare providers the flexibility to scale solutions in alignment with security policies and infrastructure constraints. As the industry continues to navigate regulatory frameworks and data privacy requirements, the foundational role of computer vision in advancing precision medicine and operational efficiency becomes increasingly apparent.

Capturing the Disruptive Technological Shifts Reshaping Healthcare Delivery Through Scalable Computer Vision Platforms and Intelligent Automation Practices

Healthcare technology is undergoing a period of profound transformation driven by the widespread adoption of computer vision platforms and intelligent automation. Artificial intelligence has progressed beyond proof-of-concept trials to become a core component in medical imaging, enabling systems to detect anomalies in X-rays, CT scans, and MRIs with remarkable precision. The integration of deep learning frameworks into image analysis software has accelerated the development of predictive diagnostics, while machine learning platforms empower continuous improvement of algorithms through real-world clinical data. As hardware capabilities have surged, camera systems equipped with advanced sensors capture high-fidelity images, and compute hardware harnesses graphics processing units to process complex algorithms in real time.

Parallel to these technological leaps, healthcare providers are rethinking traditional workflows to accommodate new digital modalities. Remote patient monitoring tools paired with computer vision enable clinicians to assess vital signs and movement patterns without direct contact, a capability that became indispensable during global health crises. In the surgical suite, intraoperative guidance systems are gaining traction, offering augmented reality overlays and automated instrument tracking to support minimally invasive procedures. When combined with integration and deployment services, these innovations are reducing operational bottlenecks and aligning clinical care with the increasing demand for personalized and efficient treatment pathways.

Assessing the Multifaceted Impact of New United States Tariffs Effective 2025 on Healthcare Computer Vision Supply Chains and Technology Adoption

Beginning in 2025, the introduction of updated United States tariffs has introduced multifaceted challenges for healthcare organizations and technology vendors reliant on global supply chains for computer vision components. Sensors, compute hardware, and camera systems sourced from key manufacturing hubs are now subject to higher import duties, prompting many enterprises to reassess procurement strategies. The increased cost of specialized imaging sensors and compute accelerators has amplified budgetary pressures, leading some stakeholders to explore alternative suppliers within domestic markets or engage in strategic partnerships to mitigate cost escalations.

As a result, there has been a notable push toward reshoring and nearshoring initiatives aimed at bolstering supply chain resilience. Providers are evaluating cloud-based deployment models that reduce upfront hardware investments, while others are accelerating adoption of open architecture solutions to preserve interoperability across heterogeneous environments. Despite these adjustments, the tariffs have underscored the importance of diversifying technology portfolios and investing in in-house development of core components to ensure long-term stability. By adopting a holistic approach to vendor selection and embracing integration and support services, healthcare organizations can navigate the new trade landscape without compromising on the precision and reliability of computer vision applications. These strategic shifts underscore the sector's adaptive capacity, as stakeholders refine legal and financial frameworks to address emerging geopolitical and trade considerations.

Revealing Critical Segmentation Insights to Uncover Growth Opportunities Across Hardware Software Services Technologies Deployment Modes Applications and End User Categories

In examining the healthcare computer vision market through the lens of defined segments, it becomes clear which areas are poised for accelerated growth. When organized by component type, the landscape reveals a rich ecosystem encompassing hardware, services, and software. Within hardware, sophisticated camera systems, high-performance compute hardware, and advanced sensors form the foundation for accurate image capture and processing. Integration and deployment services, alongside ongoing support and maintenance offerings, ensure that these systems are implemented effectively and remain operational. Software solutions range from deep learning platforms that train complex neural networks to image analysis applications that deliver actionable insights and machine learning platforms that refine predictive models over time.

Further segmentation by technology types highlights the interplay between artificial intelligence, deep learning, and machine learning, each contributing distinct capabilities in data interpretation and decision support. When considering deployment modes, organizations must weigh the advantages of scalable cloud-based frameworks against the control afforded by on-premise installations. Applications are equally diverse, encompassing diagnostic imaging, patient monitoring and rehabilitation tools, research and drug discovery support systems, as well as surgical assistance and intraoperative guidance technologies. Finally, end users span diagnostic centers, hospitals and clinics, and research laboratories, each with unique operational requirements and regulatory considerations that shape adoption patterns across the healthcare spectrum.

Deriving Key Regional Insights Highlighting Performance Drivers and Adoption Trends Across Americas Europe Middle East Africa and Asia Pacific Healthcare Markets

Regional dynamics play a pivotal role in shaping the trajectory of computer vision adoption across healthcare markets. In the Americas, advanced reimbursement structures and established regulatory pathways have facilitated rapid integration of imaging software and deep learning platforms. Leading academic medical centers and diagnostic facilities in the United States and Canada are pioneering pilot programs that leverage real-time video analytics for critical care, while research laboratories are collaborating with technology vendors to refine algorithmic accuracy. Latin American markets, though in earlier stages of adoption, are demonstrating growing interest in cost-effective sensor hardware and cloud-based deployment models to extend diagnostic services into underserved communities.

Across Europe, the Middle East, and Africa, regulatory harmonization efforts and investment in digital health initiatives are fostering a robust environment for computer vision applications. European Union guidelines on medical device software are guiding product development, while Gulf Cooperation Council states are investing heavily in telemedicine and intelligent imaging. In sub-Saharan Africa, partnerships between local providers and international technology firms are addressing infrastructure gaps through portable camera systems and machine learning platforms. Meanwhile, the Asia-Pacific region exhibits the strongest growth momentum, with nations such as China, Japan, and India leading the charge in large-scale deployments of deep learning frameworks. Southeast Asian healthcare networks are increasingly embracing integration and deployment services to support scalable solutions, reflecting a commitment to innovation across both public and private sectors.

Synthesizing Strategic Insights on Leading Innovators and Emerging Market Players Driving Next Generation Computer Vision Advancements in Healthcare Delivery and Research

An analysis of competitive dynamics reveals a blend of established medical technology giants and agile startups driving the evolution of computer vision in healthcare. Major equipment manufacturers have expanded their portfolios to include next-generation imaging software that leverages deep learning to automate anomaly detection and measurement. Partnerships between global technology corporations and leading healthcare providers have led to co-developed surgical guidance systems that integrate real-time camera feeds with predictive analytics. In parallel, specialized software vendors are securing footholds by offering modular platforms capable of seamless integration with existing electronic health record and picture archiving systems.

Emerging players in the ecosystem are distinguishing themselves through niche applications and innovative deployment strategies. A cohort of machine learning platform providers is collaborating with research laboratories to accelerate drug discovery efforts by analyzing histopathological images with unprecedented speed. Other companies are focusing on mobile and handheld imaging devices, extending diagnostic capabilities into point-of-care settings. Across this competitive landscape, strategic collaborations, intellectual property acquisitions, and participation in clinical trials have become key differentiators. The resulting synergy between established leaders and pioneering innovators is fueling a vibrant market characterized by rapid product development cycles and a constant push toward higher levels of diagnostic accuracy and operational efficiency.

Delivering Actionable Recommendations to Guide Industry Leaders in Implementing and Scaling Computer Vision Solutions Across Healthcare Ecosystems

To capitalize on the transformative potential of computer vision technologies, industry leaders must adopt a series of focused strategies that address both technical and organizational dimensions. First, organizations should invest in modular hardware architectures that accommodate future upgrades in camera systems and compute accelerators without disrupting clinical workflows. This flexibility reduces long-term total cost of ownership while enabling continuous enhancements in image processing capabilities. Second, healthcare providers are advised to partner closely with service specialists to ensure comprehensive integration and maintenance support, thereby minimizing downtime and maximizing system performance throughout the solution lifecycle.

In addition, developing a robust data governance framework is essential to maintain compliance with evolving privacy regulations and to ensure the integrity of training datasets. Leaders should prioritize workforce development initiatives that equip clinicians and IT staff with the skills needed to interpret algorithmic outputs and manage exceptions. Collaboration-driven pilots, conducted in partnership with academic institutions and technology vendors, can provide valuable evidence of clinical efficacy, building stakeholder confidence and securing executive buy-in. Finally, by establishing clear metrics for return on investment and patient outcomes, organizations can demonstrate the value of computer vision initiatives to payers and regulatory bodies, accelerating broader adoption across care settings.

Detailing Rigorous Research Methodology Employed for Comprehensive Analysis of Healthcare Computer Vision Markets and Trends Through Multi Source Validation

The findings presented in this report are underpinned by a rigorous research methodology designed to deliver comprehensive insights into healthcare computer vision trends. Primary research activities included in-depth interviews with a diverse panel of stakeholders, encompassing medical imaging specialists, health informatics officers, device manufacturers, and technology solution providers. These conversations yielded qualitative perspectives on deployment challenges, clinical requirements, and emerging use cases. Secondary research was conducted through systematic reviews of peer-reviewed journals, industry publications, and regulatory documentation to validate technology capabilities and compliance considerations.

Quantitative data was sourced from proprietary databases tracking global deployments of computer vision systems, ensuring transparency in vendor performance metrics and adoption rates. Analytical frameworks such as SWOT and PESTLE analyses were employed to assess market drivers and potential inhibitors, while a dedicated validation workshop brought together field experts to corroborate key findings. Ethical considerations and data privacy protocols were strictly adhered to, with all research activities conducted in accordance with established standards for medical technology research. This multi-source research approach provided a balanced foundation for actionable insights, ensuring the report's relevance to both clinical decision-makers and technology strategists.

Concluding Insights on the Transformative Role of Computer Vision in Shaping Future Healthcare Delivery Models and Research Innovations

The convergence of high-performance imaging hardware, advanced machine learning platforms, and scalable deployment models heralds a new era in healthcare delivery. As computer vision solutions mature, they are reshaping diagnostic pathways, optimizing operational workflows, and accelerating research and drug discovery efforts. The cumulative impact of evolving trade policies, segmentation insights, and regional adoption patterns underscores the need for strategic agility and collaborative innovation. Healthcare organizations that proactively adapt to these shifting dynamics will be positioned to enhance patient outcomes, streamline resource allocation, and maintain competitive advantage.

Looking ahead, ongoing advancements in sensor technology, algorithmic sophistication, and interoperability standards are expected to deepen the integration of computer vision across clinical settings. Anticipated breakthroughs in federated learning and edge computing promise to address data privacy concerns while expanding real-time analytical capabilities. Stakeholders should remain vigilant to emerging regulatory frameworks and prioritize cross-industry collaborations to accelerate the translation of research innovations into clinical practice. The trends outlined here form a strategic blueprint for harnessing computer vision as a catalyst for sustainable growth and improved patient care.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Computer Vision in Healthcare Market, by Component Type

9. Computer Vision in Healthcare Market, by Technology Types

10. Computer Vision in Healthcare Market, by Deployment Modes

11. Computer Vision in Healthcare Market, by Application

12. Computer Vision in Healthcare Market, by End Users

13. Americas Computer Vision in Healthcare Market

14. Europe, Middle East & Africa Computer Vision in Healthcare Market

15. Asia-Pacific Computer Vision in Healthcare Market

16. Competitive Landscape

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â