¼¼°èÀÇ ¸ÖƼ¸ð´Þ »ý¼º ½ÃÀå
Multi-Modal Generation
»óǰÄÚµå : 1792796
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 483 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,245,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,736,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¸ÖƼ¸ð´Þ »ý¼º ¼¼°è ½ÃÀåÀº 2030³â±îÁö 123¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 24¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¸ÖƼ¸ð´Þ »ý¼º ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 31.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 123¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ö·ç¼Ç Á¦°øÀº CAGR 28.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 68¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º Á¦°ø ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 36.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 4,230¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 40.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¸ÖƼ¸ð´Þ »ý¼º ½ÃÀåÀº 2024³â¿¡ 6¾ï 4,230¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 31¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 40.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 26.0%¿Í 28.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 26.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¸ÖƼ¸ð´Þ »ý¼º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¸ÖƼ¸ð´Þ »ý¼ºÀÌ AI °³¹ß¿¡¼­ Áß¿äÇÑ ¿ª·®À¸·Î ºÎ»óÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¸ÖƼ¸ð´Þ »ý¼ºÀº ÅØ½ºÆ®, À̹ÌÁö, À½¼º, µ¿¿µ»ó µî ¿©·¯ µ¥ÀÌÅÍ À¯Çü¿¡ °ÉÄ£ ÄÁÅÙÃ÷¸¦ ÇϳªÀÇ ÅëÇÕµÈ ÇÁ·¹ÀÓ¿öÅ©¿¡¼­ ó¸®ÇÏ°í »ý¼ºÇÒ ¼ö ÀÖ´Â ÀΰøÁö´É ½Ã½ºÅÛÀ» ¸»ÇÕ´Ï´Ù. ÇÑ ¹ø¿¡ ÇϳªÀÇ ÀÔ·Â À¯ÇüÀ» ó¸®ÇÏ´Â À¯´Ï¸ð´Þ ¸ðµ¨°ú ´Þ¸®, ¸ÖƼ¸ð´Þ ½Ã½ºÅÛÀº º¸´Ù ÀÚ¿¬½º·´°í ÅëÇÕÀûÀÌ¸ç ¹®¸ÆÀ» °í·ÁÇÑ Ãâ·ÂÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̸¦ ÅëÇØ À̹ÌÁö¿¡¼­ ¼³¸íÀûÀÎ ÅØ½ºÆ®¸¦ »ý¼ºÇϰí, ÅØ½ºÆ®¿¡¼­ ÇÕ¼º ºñµð¿À¸¦ »ý¼ºÇϰí, ½Ã°¢Àû Àå¸é¿¡ À½¼º ĸ¼ÇÀ» Ãß°¡ÇÏ´Â µî º¹ÀâÇÑ Ãâ·ÂÀ» »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÁÅÙÃ÷ Á¦ÀÛ, °¡»ó ºñ¼­, °ÔÀÓ, ±³À°, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼­ ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½Ã°¢, À½¼º, ¹®ÀÚ ÀÔ·ÂÀÇ µ¿½Ã Å뿪ÀÌ ÇÊ¿äÇÑ ½ÇÁ¦ ÀÎÅÍ·¢¼Ç ½Ã³ª¸®¿À°¡ Áõ°¡ÇÔ¿¡ µû¶ó »ç¿ë »ç·Ê°¡ ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À½¼º ¸í·ÉÀ» ¼ö½ÅÇϰí Ä«¸Þ¶ó¸¦ ÅëÇØ Àå¸éÀ» ÀνÄÇÏ°í ½Ç½Ã°£À¸·Î ÅØ½ºÆ® ¿ä¾àÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀº Çù·ÂÀû ¸ÖƼ¸ð´Þ ÇÁ·Î¼¼½ÌÀÇ °¡Ä¡¸¦ ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ¸ñÇ¥´Â Àΰ£ÀÌ ´Ù°¨°¢ Á¤º¸¸¦ ÀÎÁöÇÏ°í ¹ÝÀÀÇÏ´Â ¹æ½ÄÀ» ÀçÇöÇÏ¿© »ç¿ëÀÚ¿Í Áö´ÉÇü ½Ã½ºÅÛ °£ÀÇ ¿øÈ°ÇÑ »óÈ£ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀÔ´Ï´Ù.

°íµµÈ­µÈ ¸ÖƼ¸ð´Þ ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼ú °³¹ßÀ̶õ?

±âº»ÀûÀÎ AI ¸ðµ¨, ƯÈ÷ ÄÁ¹öÅÍ ±â¹Ý ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀº ¸ÖƼ¸ð´Þ »ý¼ºÀÇ Åä´ë¸¦ ¸¶·ÃÇß½À´Ï´Ù. »çÀü ÈÆ·ÃµÈ ½Ã°¢ ¾ð¾î ¸ðµ¨, À½¼º ÅØ½ºÆ® ¸ðµ¨, ¿µ»ó ¾ð¾î ¸ðµ¨Àº ÇöÀç ÅëÇÕµÈ Å©·Î½º¸ð´Þ ÀÌÇØ¿Í Ãâ·ÂÀÌ °¡´ÉÇÑ ¸ÖƼ¸ð´Þ ±â¹Ý ¸ðµ¨À» Çü¼ºÇϱâ À§ÇØ °áÇյǾî ÀÖ½À´Ï´Ù. ¹Ì¼¼ Á¶Á¤ ±â¼ú, ´ë±Ô¸ð ¸ÖƼ¸ð´Þ µ¥ÀÌÅͼ¼Æ®, °øµ¿ ÀÓº£µðµå °ø°£À» ÅëÇØ ¸ðµ¨ÀÇ Àϰü¼º°ú ¹®¸Æ ÀνÄÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.

¸ð´Þ¸®Æ¼¸¦ ÀÏÄ¡½Ã۱â À§ÇÑ ³ë·ÂÀº ´ëºñ ÇнÀ, ±³Â÷ ÁÖÀÇ ·¹ÀÌ¾î µîÀÇ ±â¼úÀ» »ç¿ëÇÏ¿© ¸ðµ¨ÀÌ ½Ã°¢Àû ¿ä¼Ò¿Í ÇØ´ç ÅØ½ºÆ® ¼³¸í ¹× À½¼º Å¥¸¦ ¿¬°ü½Ãų ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÇнÀ ÀÎÇÁ¶ó¿Í È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ ÅëÇØ ¹æ´ëÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅͼ¼Æ®·Î ¸ÖƼ¸ð´Þ ¸ðµ¨À» ÇнÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¡Á¡ ´õ ÀÎÅÍ·¢Æ¼ºêÇØÁö°í ÀÖÀ¸¸ç, ¼­·Î ´Ù¸¥ ä³Î °£ÀÇ ½Ç½Ã°£ ÀԷ°ú Ãâ·ÂÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. »õ·Î¿î ¸ðµ¨Àº ÅØ½ºÆ® ÇÁ·ÒÇÁÆ®¿¡¼­ ½Ã°¢Àû Àå¸éÀ» »ý¼ºÇϰí, °¨Á¤Àû ´Ü¼­¸¦ ±â¹ÝÀ¸·Î ¿¬¼³À» ½Ã¹Ä·¹À̼ÇÇϰí, ÀÚ¿¬¾î·Î ºñµð¿À Ŭ¸³À» ¿ä¾àÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ÖƼ¸ð´Þ »ý¼º µµ±¸¸¦ Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ´Â »ê¾÷Àº?

¹Ìµð¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¸¶ÄÉÆÃ ¾÷°è´Â ¸ÖƼ¸ð´Þ »ý¼º µµ±¸¸¦ °¡Àå ¸ÕÀú µµÀÔÇÑ ºÐ¾ßÀÔ´Ï´Ù. ÀÌµé »ê¾÷¿¡¼­´Â ÀÚµ¿ ºñµð¿À Á¦ÀÛ, ºñÁÖ¾óÀ» ÀÌ¿ëÇÑ ±¤°í Ä«ÇÇ Á¦ÀÛ, ÇÕ¼º ³»·¹ÀÌ¼Ç Á¦ÀÛ µî¿¡ ¸ÖƼ¸ð´Þ »ý¼º µµ±¸°¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±³À° Ç÷§Æû¿¡¼­´Â °­ÀǸ¦ µµÇ¥ ¿ä¾àÀ¸·Î º¯È¯Çϰí, ´Ù±¹¾î ÀÚ¸·À» »ý¼ºÇϰí, ÀÎÅÍ·¢Æ¼ºê ÇнÀ ÄÁÅÙÃ÷¸¦ Á¦ÀÛÇÏ´Â ½Ã½ºÅÛÀÌ À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ÀÇ·á ½ºÄµÀ» ÅëÇØ ÀÓ»ó º¸°í¼­¸¦ ÀÛ¼ºÇϰí, ȯÀÚ µ¥ÀÌÅÍ·Î ½Ã°¢ ÀڷḦ ¸¸µé°í, Àå¾ÖÀÎÀ» À§ÇÑ ½Ãû°¢ Ä¿¹Â´ÏÄÉÀÌ¼Ç Áö¿øÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¾ÖÇø®ÄÉÀ̼ÇÀÌ ÀÖ½À´Ï´Ù.

¼Ò¸Å¾÷°ú E-Commerce¿¡¼­ ¸ÖƼ¸ð´Þ »ý¼ºÀº À̹ÌÁö·Î »óǰ ¼³¸íÀ» ÀÛ¼ºÇϰí, °¡»ó ÇÇÆÃ ½Ã¹Ä·¹À̼ÇÀ» Çϰí, AI ±â¹Ý ¼îÇÎ ¾î½Ã½ºÅÏÆ®¸¦ ÀÛµ¿½ÃŰ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷³ª ·Îº¿°øÇеµ ÁÖº¯ ȯ°æÀ» ÇØ¼®ÇÏ°í »ç¿ëÀÚ¿Í ¼ÒÅëÇϱâ À§ÇØ ¸ÖƼ¸ð´Þ Àνİú »ý¼º¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ±¹¹æ ¹× º¸¾È ºÐ¾ß¿¡¼­´Â ½Ç½Ã°£ »óȲ ÀνÄ, ¿µ»ó¿¡¼­ ÅØ½ºÆ®·ÎÀÇ °¨½Ã Å뿪, ÇöÀå¿¡¼­ÀÇ ´Ù±¹¾î À½¼º¿¡¼­ ÅØ½ºÆ®·ÎÀÇ ÇÊ»ç µî¿¡ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

¸ÖƼ¸ð´Þ »ý¼º ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù....

¸ÖƼ¸ð´Þ »ý¼º ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. AI ½Ã½ºÅÛ¿¡¼­ Àΰ£°ú °°Àº »óÈ£ ÀÛ¿ëÀ» ¿øÇÏ´Â ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿©·¯ µ¥ÀÌÅÍ À¯ÇüÀ» ÇØ¼®ÇÏ°í »ý¼ºÇÒ ¼ö ÀÖ´Â µµ±¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºñµð¿À, À½¼º, À̹ÌÁö¸¦ Æ÷ÇÔÇÑ µ¥ÀÌÅÍ ¼Ò½ºÀÇ ±Þ¼ÓÇÑ È®ÀåÀ¸·Î ÀÎÇØ º¸´Ù ÅëÇÕÀûÀÎ AI ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. º¯È¯ ¸ðµ¨°ú ¸ÖƼ¸ð´Þ µ¥ÀÌÅͼ¼Æ®ÀÇ ¹ßÀüÀº ´õ ³ªÀº ¸ðµ¨ ÈÆ·Ã°ú ¹èÆ÷¸¦ Áö¿øÇÕ´Ï´Ù. ¹Ìµð¾î, ±³À°, ÀÇ·á, ¼Ò¸Å µî ´Ù¾çÇÑ »ç¿ë »ç·Ê·Î ÀÎÇØ »ó¾÷Àû ¿ëµµ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿Í API¸¦ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼­ ±âÁ¸ Ç÷§Æû°úÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¢±Ù¼º, °³ÀÎÈ­, ÀÚµ¿È­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ±â¾÷°ú ¼ÒºñÀÚ ¸ðµÎ¿¡¼­ ¸ÖƼ¸ð´Þ AI ½Ã½ºÅÛ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦°ø(¼Ö·ç¼Ç Á¦°ø, ¼­ºñ½º Á¦°ø), À¯Çü(»ý¼ºÇü ¸ÖƼ¸ð´Þ AI, ¹ø¿ªÇü ¸ÖƼ¸ð´Þ AI, ¼³¸íÇü ¸ÖƼ¸ð´Þ AI, ´ëÈ­Çü ¸ÖƼ¸ð´Þ AI), µ¥ÀÌÅÍ ¸ð´Þ¸®Æ¼(ÅØ½ºÆ® µ¥ÀÌÅÍ, À½¼º µ¥ÀÌÅÍ, À̹ÌÁö µ¥ÀÌÅÍ, ºñµð¿À µ¥ÀÌÅÍ, ¿Àµð¿À µ¥ÀÌÅÍ), ±â¼ú(¸Ó½Å·¯´× ±â¼ú, ÀÚ¿¬¾î ó¸® ±â¼ú, ÄÄÇ»ÅÍ ºñÀü ±â¼ú, »óȲ ÀÎ½Ä ±â¼ú, »ç¹°ÀÎÅÍ³Ý ±â¼ú)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Multi-Modal Generation Market to Reach US$12.3 Billion by 2030

The global market for Multi-Modal Generation estimated at US$2.4 Billion in the year 2024, is expected to reach US$12.3 Billion by 2030, growing at a CAGR of 31.8% over the analysis period 2024-2030. Solutions Offering, one of the segments analyzed in the report, is expected to record a 28.4% CAGR and reach US$6.8 Billion by the end of the analysis period. Growth in the Services Offering segment is estimated at 36.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$642.3 Million While China is Forecast to Grow at 40.8% CAGR

The Multi-Modal Generation market in the U.S. is estimated at US$642.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.1 Billion by the year 2030 trailing a CAGR of 40.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 26.0% and 28.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 26.8% CAGR.

Global Multi-Modal Generation Market - Key Trends & Drivers Summarized

Why Is Multi-Modal Generation Emerging as a Pivotal Capability in AI Development?

Multi-modal generation refers to artificial intelligence systems that can process and produce content across multiple data types-such as text, images, audio, and video-within a single unified framework. Unlike unimodal models that handle one input type at a time, multi-modal systems enable more natural, integrated, and context-aware outputs. This allows for the generation of complex outputs such as descriptive text from images, synthetic video from text, or audio captions for visual scenes. Demand for such systems is growing in fields like content creation, virtual assistants, gaming, education, and healthcare.

Use cases are expanding rapidly due to increasing real-world interaction scenarios that require simultaneous interpretation of visuals, speech, and written input. For instance, a system that can take a voice command, recognize a scene through a camera, and provide a text summary in real time demonstrates the value of coordinated multi-modal processing. The goal is to replicate how humans perceive and respond to multi-sensory information, enabling smoother interaction between users and intelligent systems.

How Are Technological Developments Enabling Advanced Multi-Modal Systems?

Advancements in foundational AI models, particularly transformer-based architectures, have laid the groundwork for multi-modal generation. Pre-trained vision-language models, audio-text models, and video-language models are now being combined to form multi-modal foundation models capable of unified cross-modal understanding and output. Fine-tuning techniques, large-scale multi-modal datasets, and joint embedding spaces have improved model coherence and contextual awareness.

Efforts to align modalities use techniques such as contrastive learning and cross-attention layers, which allow the model to associate visual elements with corresponding textual descriptions or audio cues. Cloud-based training infrastructure and scalable compute resources now allow multi-modal models to be trained on vast and diverse datasets. These systems are becoming more interactive, enabling real-time inputs and outputs across different channels. Emerging models can now generate visual scenes from text prompts, simulate speech based on emotional cues, or summarize video clips in natural language.

Which Industries Are Actively Integrating Multi-Modal Generation Tools?

Media, entertainment, and marketing sectors are among the earliest adopters of multi-modal generation tools. These industries use them for automated video production, ad copy generation with visuals, and synthetic voiceover creation. Education platforms benefit from systems that can convert lectures into illustrated summaries, generate multilingual subtitles, or produce interactive learning content. Healthcare applications include generating clinical reports from medical scans, creating visual aids from patient data, and enabling audio-visual communication support for individuals with disabilities.

In retail and e-commerce, multi-modal generation is used to create product descriptions from images, simulate virtual try-ons, or power AI-driven shopping assistants. Autonomous vehicles and robotics also rely on multi-modal perception and generation to interpret surroundings and communicate with users. The defense and security sectors are using these systems for real-time situational awareness, image-to-text surveillance interpretation, and multilingual voice-to-text transcription in field operations.

Growth in the Multi-Modal Generation Market Is Driven by Several Factors…

Growth in the multi-modal generation market is driven by several factors. Rising demand for human-like interaction in AI systems is encouraging investment in tools that can interpret and generate across multiple data types. Rapid expansion of data sources-including video, voice, and imagery-necessitates more integrated AI solutions. Advances in transformer models and multimodal datasets support better model training and deployment. Use cases across media, education, healthcare, and retail are broadening commercial applications. Availability of scalable computing infrastructure and APIs accelerates integration into existing platforms. Additionally, increasing focus on accessibility, personalization, and automation fuels adoption of multi-modal AI systems across both enterprise and consumer domains.

SCOPE OF STUDY:

The report analyzes the Multi-Modal Generation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Solutions Offering, Services Offering); Type (Generative Multi-Modal AI, Translative Multi-Modal AI, Explanatory Multi-Modal AI, Interactive Multi-Modal AI); Data Modality (Text Data, Speech & Voice Data, Image Data, Video Data, Audio Data); Technology (Machine Learning Technology, Natural Language Processing Technology, Computer Vision Technology, Context Awareness Technology, Internet of Things Technology)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â