¼¼°èÀÇ ¸ÖƼ¸ð´Þ ÀΰøÁö´É(AI) ½ÃÀå
Multimodal Artificial Intelligence
»óǰÄÚµå : 1787198
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 214 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¸ÖƼ¸ð´Þ ÀΰøÁö´É(AI) ½ÃÀåÀº 2030³â±îÁö 110¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¸ÖƼ¸ð´Þ ÀΰøÁö´É ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 33.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 110¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸ÖƼ¸ð´Þ ÀΰøÁö´É ¼ÒÇÁÆ®¿þ¾î´Â CAGR 29.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 67¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸ÖƼ¸ð´Þ ÀΰøÁö´É ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 40.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 1,650¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 31.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¸ÖƼ¸ð´Þ ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 5¾ï 1,650¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 17¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 31.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 29.8%¿Í 29.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 23.4%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¸ÖƼ¸ð´Þ ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¸ÖƼ¸ð´Þ ÀΰøÁö´ÉÀº AI¸¦ ¾î¶»°Ô º¯È­½Ãų±î?

¸ÖƼ¸ð´Þ ÀΰøÁö´É(AI)Àº ÅØ½ºÆ®, À½¼º, À̹ÌÁö, ºñµð¿À, ¼¾¼­ ÀÔ·Â µî ¿©·¯ µ¥ÀÌÅÍ ¼Ò½º¸¦ ó¸®Çϰí ÅëÇÕÇÏ´Â ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á AIÀÇ Àü¸Á¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ´ÜÀÏ À¯ÇüÀÇ µ¥ÀÌÅÍ¿¡ ÀÇÁ¸ÇÏ´Â À¯´Ï¸ð´Þ AI ¸ðµ¨°ú ´Þ¸®, ¸ÖƼ¸ð´Þ AI´Â ´Ù¾çÇÑ Á¤º¸ ½ºÆ®¸²À» ÇÕ¼ºÇÏ¿© ±â°è ÀÌÇØ¸¦ °­È­ÇÏ¿© AI ½Ã½ºÅÛÀ» º¸´Ù ÀûÀÀ·Â ÀÖ°í, Áö´ÉÀûÀ̸ç, Àΰ£°ú °°Àº ÀνÄÀÌ °¡´ÉÇϵµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÀÚÀ²ÁÖÇàÂ÷, ÇコÄɾî Áø´Ü, Àΰ£-ÄÄÇ»ÅÍ »óÈ£ÀÛ¿ë°ú °°Àº ¿ëµµ¿¡¼­ ƯÈ÷ Áß¿äÇϸç, ¿©·¯ °¨°¢ ÀÔ·ÂÀ» °áÇÕÇÏ¿© ´õ ³ôÀº Á¤È®µµ¿Í Çâ»óµÈ ÀÇ»ç°áÁ¤À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÄÁ¹öÅÍ ±â¹Ý ¸ðµ¨°ú ÄÁº¼·ç¼Ç ½Å°æ¸Á°ú °°Àº µö·¯´× ¾ÆÅ°ÅØÃ³ÀÇ ±Þ¼ÓÇÑ ÁøÈ­´Â ¸ÖƼ¸ð´Þ AI ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, ·Îº¿ °øÇп¡¼­ ¸ÖƼ¸ð´Þ ÇнÀÀÇ Ã¤ÅÃÀº º¸´Ù Á¤±³ÇÑ AI ¿ëµµ¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á »ê¾÷À» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ AI ±â¹Ý ÀÚµ¿È­¸¦ ¼ö¿ëÇÔ¿¡ µû¶ó, ¸ÖƼ¸ð´Þ AI´Â Â÷¼¼´ë Áö´ÉÇü ½Ã½ºÅÛÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ¾î ¸Æ¶ô ÀÌÇØ·Â °­È­, ÆíÇ⼺ °¨¼Ò, ¿©·¯ µµ¸ÞÀÎ °£ ÀûÀÀ·Â Çâ»óÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ÖƼ¸ð´Þ AIÀÇ ¼ºÀå¿¡ ÀÖ¾î ±â¼ú Çõ½ÅÀÇ ¿ªÇÒÀº?

¸ÖƼ¸ð´Þ AIÀÇ º¸±Þ¿¡´Â µö·¯´×, ¿§Áö ÄÄÇ»ÆÃ, ½Å°æ¸Á ¾ÆÅ°ÅØÃ³ÀÇ Çõ½ÅÀ» ÅëÇÑ ±â¼ú ¹ßÀüÀÌ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÚ°¡ ÇнÀ ¸ðµ¨ÀÇ °³¹ß·Î ´ë±Ô¸ð ¶óº§¸µµÈ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Çʿ伺ÀÌ ÁÙ¾îµé°í, AI ½Ã½ºÅÛÀº ¹æ´ëÇÑ ¾çÀÇ ºñÁ¤Çü µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸ÖƼ¸ð´Þ AI´Â OpenAIÀÇ GPT³ª ±¸±ÛÀÇ BERT¿Í °°ÀÌ ÅØ½ºÆ®, À½¼º, À̹ÌÁö µ¥ÀÌÅ͸¦ µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ´Â º¯È¯ ¸ðµ¨ÀÇ µîÀåÀ¸·Î ÀÎÇØ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿§Áö AI´Â ¿Âµð¹ÙÀ̽º Ãß·Ð, ´ë±â ½Ã°£ ´ÜÃà, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã °³¼±À» ÅëÇØ ½Ç½Ã°£ ¸ÖƼ¸ð´Þ ÇÁ·Î¼¼½ÌÀ» °­È­ÇÕ´Ï´Ù. ¸ÖƼ¸ð´Þ AI¿Í Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR)ÀÇ ÅëÇÕÀº ƯÈ÷ °ÔÀÓ, ¸®Å×ÀÏ, Æ®·¹ÀÌ´× ½Ã¹Ä·¹ÀÌ¼Ç ºÐ¾ß¿¡¼­ »ç¿ëÀÚ °æÇè¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ¸ÖƼ¸ð´Þ »ýüÀÎÁõÀº º¸¾È ¹× ½Å¿øÈ®ÀÎ ¿ëµµ·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÄÄÇ»ÆÃ ÆÄ¿ö¿Í AI ÇÁ·¹ÀÓ¿öÅ©°¡ ¹ßÀüÇÔ¿¡ µû¶ó, ¸ÖƼ¸ð´Þ AI´Â ÇコÄɾî, ±ÝÀ¶, ½º¸¶Æ®½ÃƼ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ȹ±âÀûÀÎ Çõ½ÅÀ» ½ÇÇöÇÒ ¼ö Àִ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

½ÃÀå µ¿Çâ°ú ¾÷°è äÅÃÀº ¸ÖƼ¸ð´Þ AI¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¸ÖƼ¸ð´Þ AIÀÇ µµÀÔÀº °³ÀÎÈ­, ÀÚµ¿È­, ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» Áß½ÃÇÏ´Â ¾÷°è Æ®·»µå¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. 꺿°ú °¡»ó ºñ¼­°¡ ÅØ½ºÆ®, À½¼º, À̹ÌÁö ÀνÄÀ» ÅëÇÕÇÏ¿© º¸´Ù ÀÚ¿¬½º·¯¿î »óÈ£ÀÛ¿ëÀ» ±¸ÇöÇÔÀ¸·Î½á °í°´ °æÇèÀ» Çâ»ó½Ã۱â À§ÇØ AI¸¦ Ȱ¿ëÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¸ÖƼ¸ð´Þ AI´Â ÀÇ·á ¿µ»ó, ȯÀÚ º´·Â, ÀÓ»ó ±â·ÏÀ» °áÇÕÇÏ¿© Áúº´ ¹ß°ß°ú Ä¡·á °èȹÀ» °³¼±ÇÏ´Â µî Áø´Ü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷¿Í ·Îº¿°øÇÐÀ» Æ÷ÇÔÇÑ ÀÚÀ² ½Ã½ºÅÛÀº ½Ã°¢, ·¹ÀÌ´õ, LiDAR µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© º¹ÀâÇÑ È¯°æÀ» ÇØ¼®Çϱâ À§ÇØ ¸ÖƼ¸ð´Þ AI¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ºÐ¾ß¿¡¼­µµ °Å·¡ ÆÐÅÏ, À½¼º ÀÎÁõ, Çൿ ºÐ¼®À» Ȱ¿ëÇÑ ºÎÁ¤ÇàÀ§ °¨Áö ¹× ¸®½ºÅ© Æò°¡¸¦ À§ÇØ ¸ÖƼ¸ð´Þ AI°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ƯÈ÷ ½ºÆ®¸®¹Ö ¼­ºñ½º³ª ÀÌÄ¿¸Ó½º ºÐ¾ßÀÇ ÄÁÅÙÃ÷ Ãßõ ¿£ÁøÀº ¸ÖƼ¸ð´Þ AI¸¦ »ç¿ëÇÏ¿© ¿©·¯ µ¥ÀÌÅÍ ¼Ò½º¿¡ °ÉÄ£ »ç¿ëÀÚÀÇ Çൿ°ú ÃëÇâÀ» ºÐ¼®ÇÕ´Ï´Ù. Àΰ£°ú °°Àº AI »óÈ£ ÀÛ¿ë°ú Áö´ÉÇü ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¸ÖƼ¸ð´Þ AIÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â »ê¾÷ Àü¹ÝÀÇ µðÁöÅÐ ÀüȯÀ» À§ÇÑ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸ÖƼ¸ð´Þ AI ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è ¸ÖƼ¸ð´Þ AI ½ÃÀåÀÇ ¼ºÀåÀº AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, IoT ±â±âÀÇ º¸±Þ, ÄÄÇ»ÆÃ ´É·ÂÀÇ ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó AI ½Ã½ºÅÛÀº ¸ÖƼ¸ð´Þ Á¤º¸·Î ÇнÀÇÒ ¼ö ÀÖ°Ô µÇ¾î Á¤È®µµ¿Í °ß°í¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ±â¼ú ´ë±â¾÷°ú ½ºÅ¸Æ®¾÷ÀÇ AI ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ È®´ë´Â ¸ÖƼ¸ð´Þ AI ¿ëµµÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©ÀÇ È®ÀåÀº ƯÈ÷ ¿§Áö ÄÄÇ»ÆÃ°ú ½º¸¶Æ® ÀÎÇÁ¶ó¿¡¼­ ½Ç½Ã°£ ¸ÖƼ¸ð´Þ AI ¼Ö·ç¼ÇÀÇ ¹èÆ÷¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ Áؼö¿Í À±¸®Àû AI¿¡ ´ëÇÑ °í·Á°¡ ½ÃÀå ¿ªÇÐÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº AI ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ÀÖ¾î Åõ¸í¼º, °øÁ¤¼º, Ã¥ÀÓ¼ºÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎ ¸ÂÃãÇü ÇコÄɾî, ÀÚÀ²ÁÖÇàÂ÷, ´ëÈ­Çü AI ½Ã½ºÅÛ¿¡¼­ ¸ÖƼ¸ð´Þ AI¿¡ ´ëÇÑ ¼ö¿ä´Â ½ÃÀå È®´ëÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. AI°¡ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ¸ÖƼ¸ð´Þ ÀÎÅÚ¸®Àü½º´Â Àΰ£°ú AIÀÇ »óÈ£ ÀÛ¿ëÀ» ÀçÁ¤ÀÇÇϰí, ½Ã½ºÅÛÀ» º¸´Ù Á÷°üÀûÀÌ°í ¸Æ¶ô ÀνÄÀûÀ̸ç, ¼¼»óÀ» º¸´Ù Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ¸·Î ¸¸µé °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ºÎ¹®

±¸¼º ¿ä¼Ò À¯Çü(¸ÖƼ¸ð´Þ ÀΰøÁö´É ¼ÒÇÁÆ®¿þ¾î, ¸ÖƼ¸ð´Þ ÀΰøÁö´É ¼­ºñ½º), µ¥ÀÌÅÍ ¾ç½Ä À¯Çü(ÅØ½ºÆ® µ¥ÀÌÅÍ, À̹ÌÁö µ¥ÀÌÅÍ, À½¼º ¹× À½¼º µ¥ÀÌÅÍ, ºñµð¿À ¹× ¿Àµð¿À µ¥ÀÌÅÍ), Á¶Á÷ ±Ô¸ð(´ë±â¾÷, Áß¼Ò±â¾÷), ÃÖÁ¾ ¿ëµµ(¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ÃÖÁ¾ ¿ëµµ, BFSI ÃÖÁ¾ ¿ëµµ, IT ¹× Åë½Å ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ¹× ¿î¼Û ÃÖÁ¾ ¿ëµµ, °ÔÀÓ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ).

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Äõ¸® ÇÏ´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Multimodal Artificial Intelligence Market to Reach US$11.0 Billion by 2030

The global market for Multimodal Artificial Intelligence estimated at US$2.0 Billion in the year 2024, is expected to reach US$11.0 Billion by 2030, growing at a CAGR of 33.2% over the analysis period 2024-2030. Multimodal Artificial Intelligence Software, one of the segments analyzed in the report, is expected to record a 29.7% CAGR and reach US$6.7 Billion by the end of the analysis period. Growth in the Multimodal Artificial Intelligence Service segment is estimated at 40.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$516.5 Million While China is Forecast to Grow at 31.7% CAGR

The Multimodal Artificial Intelligence market in the U.S. is estimated at US$516.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.7 Billion by the year 2030 trailing a CAGR of 31.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 29.8% and 29.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 23.4% CAGR.

Global Multimodal Artificial Intelligence Market - Key Trends & Drivers Summarized

How Is Multimodal Artificial Intelligence Transforming the AI Landscape?

Multimodal artificial intelligence (AI) is revolutionizing the AI landscape by enabling systems to process and integrate multiple data sources, including text, speech, images, video, and sensor inputs. Unlike unimodal AI models that rely on a single type of data, multimodal AI enhances machine understanding by synthesizing diverse information streams, making AI systems more adaptable, intelligent, and capable of human-like perception. This advancement is particularly critical in applications such as autonomous vehicles, healthcare diagnostics, and human-computer interaction, where combining multiple sensory inputs leads to higher accuracy and improved decision-making. The rapid evolution of deep learning architectures, such as transformer-based models and convolutional neural networks, has significantly improved the efficiency of multimodal AI systems. The adoption of multimodal learning in natural language processing (NLP), computer vision, and robotics is reshaping industries by enabling more sophisticated AI applications. As organizations embrace AI-driven automation, multimodal AI is set to become a key enabler of next-generation intelligent systems, providing enhanced contextual understanding, reduced bias, and improved adaptability across multiple domains.

What Role Do Technological Innovations Play in the Growth of Multimodal AI?

Technological advancements have been instrumental in the widespread adoption of multimodal AI, with innovations in deep learning, edge computing, and neural network architectures driving progress. The development of self-supervised learning models has reduced the need for extensive labeled datasets, allowing AI systems to learn from vast amounts of unstructured data. Multimodal AI is also benefiting from the rise of transformer models, such as OpenAI's GPT and Google's BERT, which can process text, audio, and image data simultaneously. Additionally, edge AI is enhancing real-time multimodal processing by enabling on-device inference, reducing latency, and improving data privacy. The integration of multimodal AI with augmented reality (AR) and virtual reality (VR) is revolutionizing user experiences, particularly in gaming, retail, and training simulations. Furthermore, AI-driven multimodal biometric authentication is gaining traction in security and identity verification applications. As computing power and AI frameworks continue to advance, multimodal AI is poised to deliver groundbreaking innovations across a broad range of industries, including healthcare, finance, and smart cities.

How Are Market Trends and Industry Adoption Shaping Multimodal AI?

The adoption of multimodal AI is being driven by industry trends that emphasize personalization, automation, and real-time decision-making. Businesses are increasingly leveraging AI to enhance customer experiences, with chatbots and virtual assistants integrating text, voice, and image recognition for more natural interactions. In healthcare, multimodal AI is playing a crucial role in diagnostics, where it combines medical imaging, patient history, and clinical notes to improve disease detection and treatment planning. Autonomous systems, including self-driving cars and robotics, rely on multimodal AI to interpret complex environments using vision, radar, and LiDAR data. The financial sector is also embracing multimodal AI for fraud detection and risk assessment, leveraging transactional patterns, voice authentication, and behavioral analytics. Meanwhile, content recommendation engines, particularly in streaming services and e-commerce, use multimodal AI to analyze user behavior and preferences across multiple data sources. The increasing demand for human-like AI interactions and intelligent automation is accelerating the adoption of multimodal AI, positioning it as a key driver of digital transformation across industries.

What Are the Key Growth Drivers Fueling the Multimodal AI Market?

The growth in the global multimodal AI market is driven by several factors, including the rising demand for AI-powered automation, the proliferation of IoT devices, and advancements in computational power. The increasing availability of diverse datasets has enabled AI systems to train on multimodal information, enhancing their accuracy and robustness. The growing investment in AI research and development by technology giants and startups is also fueling innovation in multimodal AI applications. The expansion of 5G networks has further accelerated the deployment of real-time multimodal AI solutions, particularly in edge computing and smart infrastructure. Regulatory compliance and ethical AI considerations are shaping market dynamics, with businesses prioritizing transparency, fairness, and accountability in AI-driven decision-making. Additionally, the demand for multimodal AI in personalized healthcare, autonomous vehicles, and interactive AI systems is creating new opportunities for market expansion. As AI continues to evolve, multimodal intelligence is expected to redefine human-AI interactions, making systems more intuitive, context-aware, and capable of understanding the world in a more holistic manner.

SCOPE OF STUDY:

The report analyzes the Multimodal Artificial Intelligence market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component Type (Multimodal Artificial Intelligence Software, Multimodal Artificial Intelligence Service); Data Modality Type (Text Data, Image Data, Speech & Voice Data, Video & Audio Data); Organization Size (Large Enterprises, SMEs); End-Use (Media & Entertainment End-Use, BFSI End-Use, IT & Telecommunication End-Use, Healthcare End-Use, Automotive & Transportation End-Use, Gaming End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â