Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report
상품코드:1721398
리서치사:ResearchInChina
발행일:2025년 05월
페이지 정보:영문 590 Pages
라이선스 & 가격 (부가세 별도)
한글목차
자율주행 소프트웨어 알고리즘 : 자동차 VLM/VLA 모델과 클라우드 월드 모델을 비교하고, 공급망 리소스를 총동원하여 개발을 지원합니다.
예를 들어, Li Auto는 멀티모달 기반 모델과 생성형 AI 기술을 사용하여 자율주행을 가능하게 합니다. 주요 기술 아키텍처에는 엔드 투 엔드 지능형 주행 모델, VLM, VLA, 클라우드 기반 재구성, 제너레이티브 월드 모델 등이 있습니다.
Li Auto는 학술 자원과 공급망 자원을 완전히 통합하여 자율주행 시스템 개발을 가속화합니다.
Li Auto는 칭화대학교 및 매사추세츠공과대학과 함께 첨단 하이브리드 BEV 알고리즘 프레임워크를 제안하고, 칭화 MARS 연구소와 협력하여 DriveVLM 모델을 개발하고 있습니다.
2025년에 발표된 차세대 아키텍처 MindVLA와 캘리포니아대학교 버클리 캠퍼스의 GaussianAD는 시나리오 모델링과 궤도 예측을 최적화합니다.
Li Auto는 GigaStudio와 협력하여 4D 세계 모델의 구성을 탐구하고 DriveDreamer4D 프레임워크를 탑재하여 세계 모델을 사용하여 4D 운전 시나리오의 재현 효과를 높입니다.
Keleyuan은 Li Auto의 4D BEV 데이터 수집 프로젝트를 운영하며 자동차 센서(LiDAR 등)의 데이터 주석, 분석 및 처리를 담당하여 고정밀 도로 정보 데이터를 생성합니다. 이 회사의 서비스는 전국 여러 도시의 도로 데이터 수집을 다루고 있으며, Li Auto의 지능형 주행 플랫폼의 동적 인식 및 예측 기능을 최적화하는 데 도움을 주고 있습니다.
Singstor는 맞춤형 자동차용 고성능 광섬유 고속 저장 장치를 핵심으로 하는 자율주행용 대규모 데이터 수집 및 저장 솔루션을 제공하여 실시간 데이터 기록 및 지역 간 동기화를 지원합니다.
4D 자동 주석 시스템 : Li Auto는 동적 장애물 감지 및 추적, 레이저/시각적 SLAM 재구성, 정적 요소 주석, OCC 주석을 포괄하는 풀 프로세스 시스템을 구축했습니다.
Xiaomi Automobile이 구축한 물리 세계 모델 프레임워크는 데이터 관측층(Ot), 암묵적 특징층(Zt), 표시 기호층(St)으로 구성되어 있습니다.
데이터 관측층(Ot)은 신경망의 입력층입니다. 센서 입력에는 영상, LiDAR 점군, NOA가 필요로 하는 항법 정보가 포함됩니다.
암묵적 특징층(Zt)에서는 이전 단계의 입력층 정보가 BEV 부호화 네트워크를 통해 사적 특징으로 표현됩니다. 서로 다른 디코더를 통해 동적 요소, 정적 요소, 차량의 미래 궤적을 각각 얻을 수 있습니다.
표시 기호층(St)에서는 인간의 이해를 용이하게 하고 수동 규칙 코드와 연결하기 위해 모델은 표시된 기호 표현, 예를 들어 정적 차선, 얼룩말 구역 횡단 등, 동적 보행자, 차량 등을 디코딩하여 수동 또는 자동 부가가치를 부여할 수 있습니다. 주석의 표현 형식이기도 합니다.
이 아키텍처는 기존의 모듈식 시스템의 단편화를 극복하고 인식, 계획 및 제어를 단일 엔드 투 엔드 모델로 통합하여 시스템의 일관성을 크게 향상시킵니다.
모델 아키텍처가 설정된 후, 모델이 데이터 기반 플라이휠을 형성하기 위해서는 데이터 기반 채널을 열어 데이터 기반 채널이 데이터 기반이 실제로 필요한 결론을 자동으로 출력할 수 있도록 해야 합니다. 시뮬레이션 훈련 및 OTA 업데이트"의 폐쇄 루프를 활용하여 도로 주행 차량을 제공하고 중국 도로 시나리오의 완전한 데이터베이스를 신속하게 축적합니다.
본 보고서는 중국의 SDV 산업을 조사하고 국내외 소프트웨어 OEM의 연구개발 초점, 개발 전략, 공급 모델을 분석합니다.
목차
제1장 중국 신흥 OEM의 소프트웨어 개발과 공급망 전개 전략
Xpeng Motors
NIO
Li Auto
Xiaomi Automobile
Harmony Intelligent Mobility Alliance(HIMA)
ZEEKR
Leapmotor
IM
Voyah
ARCFOX
Avatr
제2장 중국 독립계 브랜드 OEM의 소프트웨어 개발과 공급망 전개 전략
BYD
Changan Automobile
Geely
GAC Motor
FAW Hongqi
Chery
Great Wall Motor
제3장 국외 OEM의 소프트웨어 개발과 공급망 전개 전략
Volkswagen
Audi
Mercedes-Benz
BMW
Ford
SAIC-GM
Volvo
Tesla
Dongfeng Nissan
Toyota Motor
Honda Motor
제4장 OEM 소프트웨어 개발 전략과 응용 동향
OEM 차량 제어 소프트웨어 : 개발 전략과 응용 동향
OEM 콕핏 소프트웨어 : 개발 전략과 응용 동향
OEM 자율주행 소프트웨어 : 개발 전략과 응용 동향
OEM AI 소프트웨어 임파워먼트 : 개발 전략과 응용 동향
OEM 기능 소프트웨어 : 개발 전략과 응용 동향
OEM 소프트웨어 툴 체인 : 개발 전략과 응용 동향
ksm
영문 목차
영문목차
SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions
The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, intelligent driving software, vehicle control software, and AI empowerment, etc.; (2) Functional software layer: cloud services, security services, etc.; (3) System software layer: vehicle OS, middleware and SOA, etc.; (4) R&D tools: process and systematization tools, data closed loop, development toolchains, etc.
In this report, we specifically expound the OEM vehicle software development and toolchain framework from 13 subsystems and 48 dimensions in order to analyze the R&D focus, development strategies and supply models of OEMs, as shown in the following table:
Autonomous driving software algorithm: Compare automotive VLMs and VLA models with cloud world models, and fully mobilize supply chain resources to assist development
For example, Li Auto uses multimodal foundation models and generative AI technology to enable autonomous driving. The key technical architecture includes: an end-to-end intelligent driving model, VLM, VLA, cloud-based reconstruction and an generative world model.
Li Auto fully integrates academic and supply chain resources to accelerate the development of its autonomous driving system:
Li Auto has proposed an advanced hybrid BEV algorithm framework with Tsinghua University and MIT, and cooperated with Tsinghua MARS Lab to develop the DriveVLM model;
The next-generation architecture MindVLA released in 2025 and the GaussianAD from the University of California, Berkeley optimize scenario modeling and trajectory prediction;
Li Auto cooperates with GigaStudio to explore the construction of 4D world models, introduce the DriveDreamer4D framework, and use world models to enhance the reconstruction effect of 4D driving scenarios;
Keleyuan operates Li Auto's 4D BEV data collection project and is responsible for the annotation, analysis and processing of automotive sensor (such as LiDAR) data to generate high-precision road information data. Its services cover road data collection in multiple cities across the country, supporting the optimization of dynamic perception and prediction capabilities of Li Auto's intelligent driving platform;
Singstor provides a massive data collection and storage solution for autonomous driving with the core being customized automotive high-performance optical fiber high-speed storage devices, supporting real-time data recording and synchronization across regions;
4D automatic annotation system: Li Auto has built a full-process system covering dynamic obstacle detection and tracking, laser/visual SLAM reconstruction, static element annotation and OCC (common obstacle) annotation.
The physical world model framework built by Xiaomi Automobile consists of a data observation layer (Ot), an implicit feature layer (Zt), and a display symbol layer (St):
The data observation layer (Ot) is the input layer of the neural network. The sensor input includes images, LiDAR point cloud, and navigation information required by NOA.
In the implicit feature layer (Zt), the information of the input layer in the previous step is expressed as a private feature through the BEV coding network. Through different decoders, dynamic elements, static elements, and the future trajectory of the vehicle can be obtained respectively.
In the display symbol layer (St), in order to facilitate human understanding and connect with manual rule codes, the model will decode the displayed symbolic expressions, such as static lane lines, zebra crossings, etc., dynamic pedestrians, vehicles, etc., which are also the expression forms of manual or automatic value-added annotation in supervised learning.
This architecture breaks through the fragmentation of traditional modular systems and integrates perception, planning, and control into a single end-to-end model, significantly improving system coherence.
After the model architecture is set up, it is necessary to open up data-driven channels so that the model can automatically output the real required conclusions driven by data to form a data-driven flywheel. The technical iteration of Xiaomi SU7 leverages the closed loop of "production vehicle data - simulation training - OTA updates" to deliver vehicles running on roads and quickly accumulate a complete database of Chinese road scenarios.
In terms of toolchains, Xiaomi has conducted in-depth cooperation with NVIDIA to optimize cloud training and automotive inference:
Cloud: By reconstructing the inference pipeline based on Triton, the efficiency of automatic annotation is improved by 100%; by optimizing the training process through DALI and CV-CUDA, the GPU utilization rate is increased by 30%.
Vehicle: The Thor platform accelerates model reasoning, doubling performance compared to the initial version; it offloads tasks such as image processing and point cloud compression to heterogeneous computing units (VIC, ISP) to alleviate pressure on the main computing power.
Vehicle control software algorithm: Make full use of AI empowerment
The empowerment of AI technology in the development of automotive motion control software is mainly reflected in algorithm optimization, development process innovation, and improvement of system integration capabilities, spurring the industry towards a more intelligent, efficient and safe direction.
Geely Xingrui AI Cloud Power
Geely has developed the Xingrui AI Cloud Power. The Xingrui AI Cloud Power 1.0 mainly realizes AI empowerment in smart energy management, smart motion control, and smart cloud diagnosis.
AI smart motion control: Based on the real-time perception of the drive motor, vehicle posture, camera vision, weather and other information, AI intelligent recognition of driving style, road terrain, and environmental conditions is achieved, and the drive system is dynamically adjusted to perform precise real-time control "according to local conditions", reducing slippage by 50% and improving tracking stability by 15%;
AI smart energy management: Integrating the Xingrui AI cloud power model, AI realizes intelligent decision-making for global optimization, evolving the previous rule control into one that can perceive external temperature, humidity, altitude, slope and other road conditions in real time through AI, and can intelligently adjust the energy management strategy at any time, thereby reducing the fuel consumption of electric hybrid sedans to 2L and electric hybrid SUVs to 3L.
AI smart cloud diagnosis: Based on digital twin technology, power systems, "electric drive, battery and electric control" components and thermal management systems are fully monitored, and automatic repair and proactive maintenance are achieved.
Geely plans to further launch Xingrui AI Cloud Power 2.0 in 2025, which extends battery life by 15% and reduce energy consumption by 5% through model compression technology.
Xpeng AI Chassis Active Perception
Xpeng has added AI chassis active perception and automatic chassis adjustment to its two flagship models - X9 and G9:
The vehicle's sensors preview the road surface and the chassis suspension is adjusted accordingly. The standard intelligent dual-chamber air suspension of Xpeng X9 includes intelligent dual-chamber air springs and intelligent variable damping shock absorbers. It can efficiently filter road vibrations, effectively isolate minor bumps, and offer a gentle and smooth driving experience, taking into account both comfort and controllability.
It utilizes automotive sensors and cloud AI technology. When it determines that the vehicle passed a bumpy point, it immediately uploads relevant information to the cloud. A new bumpy layer is formed on the cloud, allowing the vehicle to detect bumps and potholes ahead earlier, giving the driver more time to operate. At the same time, the stiffness of the suspension will be adjusted before the bump to improve comfort.
Table of Contents
1 Software Development and Supply Chain Deployment Strategies of Emerging OEMs in China
1.1 Xpeng Motors
Software Supply Chain Deployment Strategy (1)
Software Supply Chain Deployment Strategy (2)
Software Supply Chain Deployment Strategy (3)
Software Supply Chain Deployment Strategy (4)
Software Supply Chain Deployment Strategy (5)
Autonomous Driving Software Solution and Supply Chain Construction
Autonomous Driving Software (1)
Autonomous Driving Software (2)
Autonomous Driving Software (3)
Cloud Training Base: "World Base Model" R&D
(1)
Cloud Training Base: "World Base Model" R&D
(2)
Cloud Training Base: "World Base Model" R&D
(3)
Digital Cockpit Software Evolution
Digital Cockpit Software (1)
Digital Cockpit Software (2)
Digital Cockpit Software (3)
Vehicle Control Software (1)
Vehicle Control Software (2)
SOA, Basic Software Solution and Supply Chain Construction
SOA and Basic Software (1)
SOA and Basic Software (2)
SOA and Basic Software (3)
Data Security Governance Framework (1)
Data Security Governance Framework (2)
1.2 NIO
Software Supply Chain Deployment Strategy (1)
Software Supply Chain Deployment Strategy (2)
Software Supply Chain Deployment Strategy (3)
Software Supply Chain Deployment Strategy (4)
Software Supply Chain Deployment Strategy (5)
Autonomous Driving Software Solution and Supply Chain Construction
Autonomous Driving Software (1)
Autonomous Driving Software (2)
Digital Cockpit Software Evolution
Digital Cockpit Software (1)
Digital Cockpit Software (2)
Digital Cockpit Software (3)
Vehicle Control Software
Cloud Service Software (1)
Cloud Service Software (2)
Cloud Service Software (3)
SOA and Basic Software (1)
SOA and Basic Software (2)
SOA and Basic Software (3)
Information and Data Security Software (1)
Information and Data Security Software (2)
Information and Data Security Software (3)
1.3 Li Auto
Software Supply Chain Deployment Strategy (1)
Software Supply Chain Deployment Strategy (2)
Software Supply Chain Deployment Strategy (3)
Software Supply Chain Deployment Strategy (4)
Software Supply Chain Deployment Strategy (5)
Autonomous Driving Software Solution and Supply Chain Construction