¼¼°èÀÇ Ã¼¿Ü µ¶¼º ½ÃÇè¹ý ½ÃÀå
In-Vitro Toxicology Assays
»óǰÄÚµå : 1792772
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 481 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,242,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,727,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ü¿Ü µ¶¼º ½ÃÇè¹ý ¼¼°è ½ÃÀåÀº 2030³â±îÁö 52¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ü¿Ü µ¶¼º ½ÃÇè¹ý ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 15.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 52¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼¼Æ÷ ¾î¼¼À̹ýÀº CAGR 18.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 23¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ý¼¼Æ÷¹ý ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 13.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 8,660¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 21.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼¿Ü µ¶¼º ½ÃÇè¹ý ½ÃÀåÀº 2024³â¿¡ 5¾ï 8,660¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 21.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 11.5%¿Í 14.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ã¼¿Ü µ¶¼º ½ÃÇè¹ý½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ü¿Ü µ¶¼º ½ÃÇè¹ýÀÌ Çö´ë ¾ÈÀü¼º ½ÃÇèÀÇ Áß½ÉÀÌ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ü¿Ü µ¶¼º ½ÃÇè¹ýÀº µ¿¹° ½ÇÇè°ú °ü·ÃµÈ À±¸®Àû, ½Ç¿ëÀû ¹®Á¦ ¾øÀÌ È­ÇÐÁ¦Ç°, ÀǾàǰ ¹× ¼ÒºñÀÚ Á¦Ç°ÀÇ µ¶¼ºÇÐÀû ¿µÇâ¿¡ ´ëÇÑ »ó¼¼ÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ Çö´ëÀÇ ¾ÈÀü¼º Æò°¡ Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®Àº ¹è¾ç ¼¼Æ÷, Á¶Á÷ ¶Ç´Â ƯÁ¤ Àå±â ±â´ÉÀ» ¸ðµ¨¸µÇϱâ À§ÇØ À籸¼ºµÈ Àΰ£ »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© ¿¬±¸ÀÚ°¡ ÅëÁ¦µÈ ½ÇÇè½Ç ȯ°æ¿¡¼­ ¼¼Æ÷ µ¶¼º, À¯Àü µ¶¼º, »êÈ­ ½ºÆ®·¹½º ¹× ±âŸ ¼¼Æ÷ ¹ÝÀÀÀ» Æò°¡ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ´ëü ½ÃÇè ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â À¯·´¿¬ÇÕ(EU)ÀÇ È­Àåǰ µ¿¹° ½ÇÇè ±ÝÁö¿Í ¿¬±¸¿¡¼­ÀÇ µ¿¹° »ç¿ë °¨¼Ò¸¦ ¿ËÈ£ÇÏ´Â Àü ¼¼°è ¿îµ¿°ú °°Àº º¸´Ù ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. in-vitro assay´Â in-vivo ¸ðµ¨°ú ºñ±³ÇÏ¿© ºü¸¥ ó¸® ½Ã°£, Àú·ÅÇÑ ºñ¿ë, Çâ»óµÈ È®À强À¸·Î ÀÎÇØ Á¦¾àȸ»ç, È­Çо÷ü, ±ÔÁ¦±â°ü ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÏÀ̽º·çDz Ç÷§ÆûÀ» ÅëÇØ ¼öõ °³ÀÇ È­ÇÕ¹°À» ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ÀǾàǰ °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­ÇÏ°í »ê¾÷ ±Ô¸ðÀÇ È­ÇÐÀû ¾ÈÀü¼º Æò°¡¸¦ Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ƯÁ¤ ºÐÀÚ °æ·Î¸¦ ºÐ¸®ÇÏ¿© ¿ë·® ¹ÝÀÀ °ü°è¿Í ÀÛ¿ë ±âÀüÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶µÇ´Â ¹°ÁúÀÌ º¹ÀâÇØÁö°í ¾ÈÀü ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó ü¿Ü µ¶¼ºÇÐÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Ãʱ⠴ܰèÀÇ ½ºÅ©¸®´×, À§Çè Æò°¡ ¹× ±ÔÁ¦ Áؼö ³ë·Â¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

±â¼úÀº ½ÃÇè°ü ³» µ¶¼ºÇÐ ±â¹ýÀÇ Á¤È®¼º°ú À¯¿ë¼ºÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

±â¼ú Çõ½ÅÀº »ý¹°ÇÐÀû °ü·Ã¼º, ¹Î°¨µµ, ¿¹Ãø·ÂÀ» Çâ»ó½ÃÅ´À¸·Î½á ü¿Ü µ¶¼º ½ÃÇè¹ýÀÇ ¼º´É°ú Àû¿ë¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â ±âÁ¸ 2Â÷¿ø ¸ðµ¨º¸´Ù Àΰ£ Á¶Á÷ÀÇ ±¸Á¶Àû, ±â´ÉÀû º¹À⼺À» ´õ Á¤È®ÇÏ°Ô ¸ð¹æÇÑ 3Â÷¿ø ¼¼Æ÷¹è¾ç ¹× Àå±â ¿ÂĨ ½Ã½ºÅÛÀÇ »ç¿ëÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü Ç÷§ÆûÀº Á¶Á÷ ƯÀÌÀû ¹ÝÀÀ°ú Àå±âÀûÀÎ µ¶¼º È¿°ú¸¦ ¿¬±¸ÇÒ ¼ö ÀÖÀ¸¸ç, ¹°ÁúÀÌ Àΰ£ÀÇ »ý¹°Çаú ¾î¶»°Ô »óÈ£ÀÛ¿ëÇÏ´ÂÁö¸¦ º¸´Ù Çö½ÇÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ì¼¼À¯Ã¼°øÇаúÀÇ ÅëÇÕÀ» ÅëÇØ »ý¸®Àû ȯ°æÀ» ÀçÇöÇÏ´Â µ¿Àû È帧 Á¶°ÇÀÌ °¡´ÉÇØÁ® ºÐ¼®ÀÇ Á¤È®µµ¸¦ ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °íÇÔ·® ½ºÅ©¸®´× ±â¼úÀº ÀÚµ¿È­µÈ À̹Ì¡°ú µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ÇüÅÂ, »ýÁ¸À², ´Ü¹éÁú ¹ßÇö µî ¿©·¯ ¼¼Æ÷ ¸Å°³º¯¼ö¸¦ µ¿½Ã¿¡ ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ ¾çÀÇ ºÐ¼® µ¥ÀÌÅ͸¦ ó¸®Çϰí, µ¶¼º ÆÐÅÏÀ» ½Äº°Çϰí, Á¤È®µµ¸¦ ³ô¿© °á°ú¸¦ ¿¹ÃøÇϱâ À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯ÀüüÇÐ, Àü»çüÇÐ, ´ë»çüÇÐ µîÀÇ ¿À¹Í½º ±â¼úÀ» µµÀÔÇÏ¿© °æ·Î ¼öÁØÀÇ ÀλçÀÌÆ®¸¦ ¹àÈ÷°í, ¹ÙÀÌ¿À¸¶Ä¿ Ž»öÀ» Áö¿øÇÏ´Â ±âÀü·ÐÀû µ¶¼ºÇÐ ¿¬±¸¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ºÐ¼®¹ýÀÇ Ç¥ÁØÈ­¿Í ¹ë¸®µ¥ÀÌ¼Ç °³¼±À¸·Î ½ÇÇè½Ç°ú Áö¿ªÀ» ³Ñ¾î ÀçÇö¼º°ú Ÿ´ç¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖ´Â ÇÁ·¹ÀÓ¿öÅ©°¡ ¸¶·ÃµÇ¾ú°í, ±ÔÁ¦ ´ç±¹ÀÇ ¼ö¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû µµ¾àÀº ½ÃÇè°ü ³» µ¶¼ºÇÐÀÇ °úÇÐÀû ¿ª·®À» È®´ëÇÒ »Ó¸¸ ¾Æ´Ï¶ó Ãֽе¶¼º Æò°¡ ¹× Á¦Ç° °³¹ßÀÇ ÇÙ½É ¿ªÇÒÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

±ÔÁ¦¿Í ¾÷°èÀÇ ¿ä±¸´Â ¾î¶»°Ô ½ÃÇè°ü ³» µ¶¼º ½ÃÇè »óȲÀ» Çü¼ºÇϰí Àִ°¡?

±ÔÁ¦ Á¤Ã¥°ú »ê¾÷°èÀÇ ¿ä±¸ÀÇ ¿µÇâ·ÂÀÌ Ä¿Áö¸é¼­ ü¿Ü µ¶¼º ½ÃÇè¹ýÀÇ ¹æÇâ°ú äÅÃÀÌ Å©°Ô Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ ¹× ±ÔÁ¦±â°üÀº È­ÇÐÁ¦Ç° µî·Ï, ÀǾàǰ ½ÂÀÎ, Á¦Ç° ¾ÈÀü¼º Æò°¡¸¦ À§ÇØ ºñµ¿¹° ½ÇÇè µ¥ÀÌÅ͸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. À¯·´ÀǾàǰû(EMA), ¹Ì±¹ ȯ°æº¸È£Ã»(EPA), °æÁ¦Çù·Â°³¹ß±â±¸(OECD) µîÀÇ ±â°üÀº È¿°úÀûÀÎ in-vitro ½ÃÇè °¡À̵å¶óÀÎÀ» Àû±ØÀûÀ¸·Î ÁöÁöÇϰí ÀÖÀ¸¸ç, °úÇаèÀÇ ½Å·Ú ±¸Ãà°ú ½ÂÀÎ ÇÁ·Î¼¼½º °£¼ÒÈ­¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Á¦¾à, È­Àåǰ, ³ó¾à µîÀÇ ¾÷°è °ü°èÀÚµéÀº ±ÔÁ¦ ´ç±¹ÀÇ ±â´ë¿¡ ºÎÇÕÇÏ´Â ºÐ¼®¹ý °³¹ß, ÀÚµ¿È­ Ç÷§Æû, ÅëÇÕ µ¥ÀÌÅÍ ½Ã½ºÅÛ¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÌ·¯ÇÑ º¯È­¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. µ¿¹° º¹Áö¿¡ ´ëÇÑ »çȸÀû °¨½Ã°¡ °­È­µÇ¸é¼­ ±â¾÷µéÀº º¸´Ù Åõ¸íÇϰí À±¸®ÀûÀÎ ½ÃÇè ¹æ¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ÂÃãÇü ÀÇ·áÀÇ ÃßÁøÀ¸·Î °³ÀÎÂ÷¸¦ °í·ÁÇÑ º¸´Ù Á¤¹ÐÇÑ µ¶¼º ½ºÅ©¸®´× µµ±¸°¡ ÇÊ¿äÇϸç, Àΰ£°ú °ü·ÃµÈ ü¿Ü ¸ðµ¨ÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ½ºÅ¸Æ®¾÷°ú R&D´Â ±ÔÁ¦ ´ç±¹°ú Çù·ÂÇϰí, ¿©·¯ ±¹°¡ °£ ºÐ¼®ÀÇ Àϰü¼º°ú »óÈ£¿î¿ë¼ºÀ» º¸ÀåÇϴ ǥÁØÀ» °øµ¿ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº ºÐ¾ß¿¡¼­ ½ÃÇè°ü ³» µ¶¼ºÇÐÀº ÇöÀç Á¦Ç° °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ Ãʱ⠴ܰ迡 ÅëÇյǾî Èı⠴ܰèÀÇ ½ÇÆÐ¸¦ ÁÙÀ̰í, ¾ÈÀü ÇÁ·ÎÇÊÀ» °­È­Çϸç, ȯ°æ º¸°Ç ¹× ¾ÈÀü º¥Ä¡¸¶Å©¸¦ ÃæÁ·½Ã۰í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹, ¼ÒºñÀÚ, °úÇÐ ¹ßÀüÀ¸·Î ÀÎÇÑ ÀÌ·¯ÇÑ ±³Â÷ ¾Ð·ÂÀº ±â¾÷ÀÌ ¾ÈÀü ½ÃÇè¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ü¿Ü µ¶¼º ½ÃÇè¹ýÀ» Ã¥ÀÓ°¨ ÀÖ´Â Çõ½Å°ú ¼¼°è ±ÔÁ¤ Áؼö¿¡ ÇʼöÀûÀÎ µµ±¸·Î È®°íÈ÷ ÀÚ¸® Àâ°Ô Çϰí ÀÖ½À´Ï´Ù.

ü¿Ü µ¶¼º ½ÃÇè¹ý ½ÃÀåÀÇ ¼¼°è ¼ºÀå ¿øµ¿·ÂÀº?

ü¿Ü µ¶¼º ½ÃÇè¹ý ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ °³Çõ, °úÇÐÀû ¹ßÀü, »ê¾÷°èÀÇ ¼ö¿ä, º¸´Ù À±¸®ÀûÀ̰í È¿°úÀûÀÎ ½ÃÇè ¹æ¹ý¿¡ ´ëÇÑ »çȸÀû ±â´ëÀÇ Á¶ÇÕ¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â µ¿¹°½ÇÇèÀ» ÁÙÀ̰гª ÆóÁöÇÏ·Á´Â Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀ̸ç, ƯÈ÷ È­Àåǰ ¹× ¼ÒºñÀÚ °Ç°­ Á¦Ç°¿¡¼­ »óÀå ±â¾÷ÀÇ ¾Ð·Â°ú ±ÔÁ¦´Â È¿°úÀûÀΠü¿Ü ´ëü¹ýÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Á¦¾à ¹× »ý¸í°øÇÐ ºÐ¾ß¿¡¼­´Â Ãʱ⠴ܰèÀÇ °³¹ß À§ÇèÀ» ÁÙÀÌ°í ¹æ´ëÇÑ È­ÇÐÁ¦Ç° ¶óÀ̺귯¸®¸¦ º¸´Ù ºñ¿ë È¿À²ÀûÀÌ°í ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×Çϱâ À§ÇØ in-vitro assay¸¦ Ȱ¿ëÇÏ·Á´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ µ¶¼º¿¡ ´ëÇÑ ¿ì·Á¿Í È­ÇÐÁ¦Ç° ³ëÃâ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ »ê¾÷°è¿Í Á¤ºÎ±â°ü¿¡¼­ in-vitro ½ÃÇè¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼Æ÷ ¸ðµ¨¸µ, ÀΰøÁö´É, µ¥ÀÌÅÍ ÅëÇÕ ±â¼úÀÇ ºñ¾àÀûÀÎ ¹ßÀüÀº °úÇÐÀû ±âÁذú ±ÔÁ¦ ±âÁØÀ» ¸ðµÎ ÃæÁ·ÇÏ´Â º¸´Ù Á¤È®Çϰí È®Àå °¡´ÉÇϸç ÀçÇö¼ºÀÌ ³ôÀº Å×½ºÆ® Ç÷§ÆûÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ½ÅÈï °æÁ¦±¹¿¡¼­´Â ¿¬±¸ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ÀǾàǰ R&D ºñ¿ë Áõ°¡, ¿¬±¸¼Ò ¿ª·® °­È­°¡ ü¿Ü °Ë»ç ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤Åÿ¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çаè, »ê¾÷°è, °øÁߺ¸°Ç±â°üÀÇ Çù·ÂÀ» ÅëÇØ ³»ºÐºñ ±³¶õ ÀÛ¿ë, ¸¸¼º µ¶¼º µî º¹ÀâÇÑ ¿£µåÆ÷ÀÎÆ®¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë µ¶¼ºÇÐ ¸ðµ¨ ¹× Ç÷§Æû °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ±â¼ú, Á¤Ã¥, À±¸®ÀÇ ±³Â÷Á¡ÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ¼¼°è ü¿Ü µ¶¼º ½ÃÇè¹ý ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷°ú ¿ëµµ¿¡ ´ëÇØ º¸´Ù ¾ÈÀüÇϰí, º¸´Ù ½Å¼ÓÇϸç, º¸´Ù Àΰ£¿¡ ÀûÇÕÇÑ ½ÃÇè¹ýÀ» Á¦°øÇϸ鼭 Áö¼ÓÀûÀ¸·Î È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¹æ¹ý(¼¼Æ÷ ¾î¼¼À̹ý, »ý¼¼Æ÷¹ý, °íÁ¤ ¼¼Æ÷¹ý, ±âŸ ¹æ¹ý), °Ë»ç À¯Çü(´ë¸¶ °Ë»ç À¯Çü, ´ÏÄÚÆ¾ °Ë»ç À¯Çü), ±â¼ú(3D ¼¼Æ÷¹è¾ç ±â¼ú, Áú·® ºÐ¼® ±â¼ú, À¯¼¼Æ÷ ºÐ¼® ±â¼ú, ±âŸ ±â¼ú), ¿ëµµ(À¯Àü µ¶¼º °Ë»ç ¿ëµµ, ¹ß¾Ï¼º °Ë»ç ¿ëµµ, ¼¼Æ÷µ¶¼º °Ë»ç ¿ëµµ, º¯ÀÌ¿ø¼º °Ë»ç ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Vitro Toxicology Assays Market to Reach US$5.2 Billion by 2030

The global market for In-Vitro Toxicology Assays estimated at US$2.2 Billion in the year 2024, is expected to reach US$5.2 Billion by 2030, growing at a CAGR of 15.9% over the analysis period 2024-2030. Cellular Assay Method, one of the segments analyzed in the report, is expected to record a 18.3% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Live Cells Method segment is estimated at 13.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$586.6 Million While China is Forecast to Grow at 21.4% CAGR

The In-Vitro Toxicology Assays market in the U.S. is estimated at US$586.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 21.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.5% and 14.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.7% CAGR.

Global In-Vitro Toxicology Assays Market - Key Trends & Drivers Summarized

Why Are In-Vitro Toxicology Assays Becoming Central to Modern Safety Testing?

In-vitro toxicology assays have emerged as a vital component of contemporary safety assessment strategies, largely due to their ability to provide detailed insights into the toxicological effects of chemical substances, pharmaceuticals, and consumer products without the ethical and practical challenges associated with animal testing. These assays use cultured cells, tissues, or reconstructed human biological systems to model specific organ functions, allowing researchers to assess cytotoxicity, genotoxicity, oxidative stress, and other cellular responses in a controlled laboratory setting. The growing demand for alternative testing models is being driven by stricter regulatory frameworks, such as the European Union’s ban on animal testing for cosmetics and global movements advocating for the reduction of animal use in research. In-vitro assays offer faster turnaround, lower costs, and increased scalability compared to in-vivo models, making them attractive to pharmaceutical companies, chemical manufacturers, and regulatory bodies alike. Their ability to screen thousands of compounds rapidly using high-throughput platforms also accelerates the drug development process and supports chemical safety evaluation at an industrial scale. Additionally, these assays enable a deeper understanding of dose-response relationships and mechanisms of action by isolating specific molecular pathways. As the complexity of manufactured substances grows and safety regulations tighten, in-vitro toxicology is becoming indispensable in early-stage screening, risk assessment, and regulatory compliance efforts across a variety of industries.

How Is Technology Advancing the Accuracy and Utility of In-Vitro Toxicology Methods?

Technological innovation is revolutionizing the performance and applicability of in-vitro toxicology assays by enhancing their biological relevance, sensitivity, and predictive power. One major advancement is the use of 3D cell cultures and organ-on-chip systems that mimic the structural and functional complexity of human tissues more accurately than traditional two-dimensional models. These advanced platforms enable the study of tissue-specific responses and long-term toxicity effects, providing a more realistic assessment of how substances interact with human biology. Integration with microfluidics allows for dynamic flow conditions that replicate physiological environments, further improving assay precision. High-content screening technologies are making it possible to analyze multiple cellular parameters simultaneously, such as morphology, viability, and protein expression, through automated imaging and data analytics. Artificial intelligence and machine learning algorithms are being deployed to process vast amounts of assay data, identify toxicity patterns, and predict outcomes with increasing accuracy. Additionally, the incorporation of omics technologies, including genomics, transcriptomics, and metabolomics, enables mechanistic toxicology studies that uncover pathway-level insights and support biomarker discovery. Improvements in assay standardization and validation are also facilitating regulatory acceptance, with frameworks now in place to assess reproducibility and relevance across laboratories and geographies. These technological leaps are not only expanding the scientific capabilities of in-vitro toxicology but also reinforcing its role as a cornerstone of modern toxicological assessment and product development.

How Are Regulatory and Industry Demands Shaping the In-Vitro Toxicology Assay Landscape?

The growing influence of regulatory policies and industry needs is significantly shaping the direction and adoption of in-vitro toxicology assays. Governments and regulatory agencies across the globe are increasingly requiring non-animal testing data for chemical registration, drug approval, and product safety evaluation. Agencies such as the European Medicines Agency (EMA), the U.S. Environmental Protection Agency (EPA), and the Organization for Economic Cooperation and Development (OECD) are actively endorsing validated in-vitro test guidelines, which are helping to build trust in the scientific community and streamline approval processes. Industry players, especially in pharmaceuticals, cosmetics, and agrochemicals, are responding to these shifts by investing in assay development, automation platforms, and integrated data systems that align with regulatory expectations. The increased public scrutiny surrounding animal welfare is also pushing corporations to adopt more transparent and ethical testing practices. Moreover, the drive toward personalized medicine is requiring more precise toxicity screening tools that account for individual variability, further strengthening the case for human-relevant in-vitro models. Startups and research organizations are collaborating with regulatory bodies to co-develop standards that ensure assay consistency and interoperability across jurisdictions. In many sectors, in-vitro toxicology is now being incorporated early in the product development pipeline to reduce late-stage failures, enhance safety profiles, and meet environmental health and safety benchmarks. These intersecting pressures from regulators, consumers, and scientific advancements are reshaping how companies approach safety testing, cementing in-vitro toxicology assays as essential tools for responsible innovation and global compliance.

What Is Fueling the Global Growth of the In-Vitro Toxicology Assays Market?

The growth in the in-vitro toxicology assays market is driven by a combination of regulatory reform, scientific advancement, industrial demand, and societal expectations for more ethical and effective testing methods. One of the key growth drivers is the global momentum toward reducing or eliminating animal testing, particularly in cosmetics and consumer health products, where public pressure and legislation are prompting companies to shift toward validated in-vitro alternatives. Simultaneously, the pharmaceutical and biotechnology sectors are increasingly using in-vitro assays to de-risk early-stage development and screen vast chemical libraries more cost-effectively and rapidly. The rise in environmental toxicity concerns and chemical exposure monitoring is also expanding demand for in-vitro testing in industrial and governmental contexts. Technological breakthroughs in cell modeling, artificial intelligence, and data integration are further enabling more accurate, scalable, and reproducible testing platforms that meet both scientific and regulatory standards. In emerging economies, increased investment in research infrastructure, rising pharmaceutical R&D spending, and improvements in laboratory capacity are contributing to the broader adoption of in-vitro testing technologies. Furthermore, collaborations between academia, industry, and public health agencies are fostering the development of next-generation toxicology models and platforms that can address complex endpoints such as endocrine disruption and chronic toxicity. As the intersection of technology, policy, and ethics continues to evolve, the global in-vitro toxicology assays market is poised for continued expansion, offering safer, faster, and more human-relevant testing methods for a diverse range of industries and applications.

SCOPE OF STUDY:

The report analyzes the In-Vitro Toxicology Assays market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Method (Cellular Assay Method, Live Cells Method, Fixed Cells Method, Other Methods); Test Type (Cannabis Testing Type, Nicotine Testing Type); Technology (3D Cell Culture Technology, Mass Spectrometry Technology, Flow Cytometry Technology, Other Technologies); Application (Genetic Toxicity Testing Application, Carcinogenicity Testing Application, Cytotoxicity Testing Application, Mutagenicity Testing Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â