¼¼°èÀÇ ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀå
Artificial Intelligence in Predictive Toxicology
»óǰÄÚµå : 1643511
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 206 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ¼¼°è ½ÃÀå, 2030³â±îÁö 22¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 5¾ï 8,800¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ¼¼°è ½ÃÀåÀº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 27.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿¹Ãø µ¶¼ºÇÐ ¼Ö·ç¼ÇÀÇ AI´Â CAGR 24.8%, ºÐ¼® ±â°£ µ¿¾È 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹Ãø µ¶¼ºÇÐ ¼­ºñ½ºÀÇ AI ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 33.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 1¾ï 3,370¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 26.2%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀåÀº 2024³â¿¡ 1¾ï 3,370¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 26.2%ÀÇ CAGR·Î 2030³â±îÁö 3¾ï 3,330¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 24.7% ¹× 24.0%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 19.3%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

AI´Â µ¶±Ø¹° °Ë»ç¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº È­ÇÐÁ¦Ç°°ú ¹°ÁúÀÇ µ¶¼ºÀ» º¸´Ù ºü¸£°í Á¤È®ÇÏ¸ç ºñ¿ë È¿À²ÀûÀ¸·Î ¿¹ÃøÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÔÀ¸·Î½á µ¶¼ºÇп¡ º¯È­¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. µ¿¹° ½ÇÇèÀ̳ª Àå½Ã°£ÀÇ ½ÇÇè ÀýÂ÷¿¡ ÀÇÁ¸ÇÏ´Â ÀüÅëÀûÀÎ µ¶¼º Æò°¡´Â ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ±â¹ÝÀ¸·Î Àΰ£ÀÇ ¹ÝÀÀÀ» ½Ã¹Ä·¹À̼ÇÇÏ´Â AI ±â¹Ý ¿¹Ãø ¸ðµ¨·Î ´ëüµÇ°í ÀÖÀ¸¸ç, AI´Â ±â°èÇнÀ(ML), µö·¯´×(DL), µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ºÐÀÚ ±¸Á¶¸¦ ºÐ¼®Çϰí, ÀáÀçÀûÀÎ µ¶¼º È¿°ú¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀáÀçÀû µ¶¼º ÀÛ¿ëÀ» ³ôÀº Á¤È®µµ·Î ¿¹ÃøÇÕ´Ï´Ù.

¿¹Ãø µ¶¼ºÇп¡¼­ AIÀÇ ÁÖ¿ä ¿ëµµ Áß Çϳª´Â ÀǾàǰ °³¹ß ¹× È­ÇÐÁ¦Ç° Á¦Á¶ÀÇ Ãʱ⠴ܰ迡¼­ µ¶¼º ¹°ÁúÀ» ½Äº°ÇÏ´Â ´É·ÂÀÔ´Ï´Ù. AI ½Ã½ºÅÛÀº È­ÇÐÀû Ư¼º, »ý¹°ÇÐÀû »óÈ£ÀÛ¿ë, ½ÇÇè °á°ú¿¡¼­ ¾òÀº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© À¯ÇØÇÒ °¡´É¼ºÀÌ ³ôÀº È­ÇÕ¹°À» ½Å¼ÓÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­ÇÏ°í ¾ÈÀü¼º Å×½ºÆ®¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛ¿¡¼­ µ¶¼ºÀ» ¿¹ÃøÇÏ´Â AIÀÇ ´É·ÂÀº µ¿¹° ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í À±¸® ¹× ±ÔÁ¦ ±âÁØ¿¡ ºÎÇÕÇÕ´Ï´Ù.

AI ¸ðµ¨Àº ¶ÇÇÑ ¹ß¾Ï¼º, »ý½Äµ¶¼º, ½Å°æµ¶¼º µî È­ÇÐÁ¦Ç° ³ëÃâ·Î ÀÎÇÑ Àå±âÀûÀÎ ¿µÇâÀ» ¿¹ÃøÇÏ´Â ´É·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº ÀǾàǰ, È­ÇÐÁ¦Ç°, ȯ°æ¾ÈÀü µîÀÇ »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇϸç, À¯Çع°ÁúÀ» Á¶±â¿¡ ½Äº°ÇÏ¿© ÀθíÀ» ±¸ÇÏ°í ±ÔÁ¦ À§¹ÝÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø µ¶¼ºÇп¡¼­ AIÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¾ÈÀü°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß¿¡¼­ AI µµÀÔÀÇ Áß¿äÇÑ µ¿ÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ȯ°æ ¿À¿°, È­ÇÐÁ¦Ç° ³ëÃâ, µ¿¹° ½ÇÇèÀÇ À±¸®Àû Àǹ̿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¿ì·Á°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, AI´Â ±âÁ¸ÀÇ µ¶¼ºÇÐ ±â¹ý¿¡ ´ëÇÑ À¯¸ÁÇÑ ´ë¾ÈÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, AI ½Ã½ºÅÛÀº ±ÔÁ¦ ±â°ü°ú ¾÷°è¿¡ È­ÇÐÁ¦Ç°ÀÇ ¾ÈÀü¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖ´Â º¸´Ù ½Å·ÚÇÒ ¼ö ÀÖ°í, È®Àå °¡´ÉÇϸç, Á¤È®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ, Á¤¹ÐÀÇ·á¿Í ¸ÂÃãÀÇ·áÀÇ ºÎ»óÀ¸·Î µ¶¼ºÇп¡¼­ °í±Þ ¿¹Ãø µµ±¸ÀÇ Çʿ伺ÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. º¸´Ù °³ÀÎÈ­µÈ ÀǾàǰÀÌ °³¹ßµÊ¿¡ µû¶ó ƯÁ¤ È­ÇÕ¹°ÀÌ ´Ù¾çÇÑ À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ÀÌÇØÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. º¹ÀâÇÑ »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í °³ÀÎÀÇ À¯ÀüÀû ±¸¼º¿¡ µû¶ó µ¶¼ºÇÐÀû ¿µÇâÀ» ¿¹ÃøÇÏ´Â AIÀÇ ´É·ÂÀº ÀǾàǰÀÇ ¾ÈÀü¼º°ú È¿´ÉÀ» Çâ»ó½Ã۰í ƯÁ¤ ȯÀÚ ±×·ì¿¡ ¸ÂÃãÈ­µÈ Ä¡·á¸¦ º¸ÀåÇÕ´Ï´Ù.

º¸´Ù È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¿¬±¸ ¹æ¹ý·ÐÀ¸·ÎÀÇ ÀüȯÀº ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß¿¡¼­ AIÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ µ¶¼º ¿¬±¸´Â ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ¹Ý¸é, AI ½Ã½ºÅÛÀº ³ôÀº 󸮷® ½ºÅ©¸®´×°ú ºü¸¥ µ¶¼º ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À̴ ƯÈ÷ ¾ÈÀü¼º Å×½ºÆ®°¡ ½ÃÀå ÁøÀÔ¿¡ ÇʼöÀûÀÎ Á¦¾à, È­ÇÐ, ¼ÒºñÀç »ê¾÷¿¡¼­ Á¦Ç° °³¹ßÀÇ Àü¹ÝÀûÀÎ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI°¡ µ¶¼º ¿¹ÃøÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

AI´Â µ¶¼º ¿¹ÃøÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ±âÁ¸ ¹æ¹ýÀÇ ÇѰ踦 ±Øº¹Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ µ¶¼º Å×½ºÆ®´Â Á¾Á¾ ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ´ë±Ô¸ð »ýü ³» ½ÃÇèÀ» ¼öÀÛ¾÷À¸·Î ¼öÇàÇØ¾ß ÇÏÁö¸¸, AI ¾Ë°í¸®ÁòÀº È­ÇÐÀû Ư¼º°ú »ý¹°ÇÐÀû °á°úÀÇ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© ¼öÀÛ¾÷º¸´Ù ÈξÀ ´õ Á¤È®ÇÏ°í ºü¸¥ ¼Óµµ·Î µ¶¼ºÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ AI ±â¹Ý ¸ðµ¨Àº ¼ö¹é¸¸ °³ÀÇ È­ÇÕ¹°À» ½Å¼ÓÇÏ°Ô ºÐ¼®Çϰí Ãß°¡ Á¶»ç°¡ ÇÊ¿äÇÑ È­ÇÕ¹°ÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, AI ½Ã½ºÅÛÀº ´ë»ç °úÁ¤°ú À¯ÀüÀû º¯ÀÌ µî µ¶¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â º¹ÀâÇÑ º¯¼ö¸¦ °í·ÁÇÏ¿© ¿¹Ãø Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. À¯ÀüüÇÐ, ´Ü¹éÁúÇÐ ¹× ±âŸ ºÐ¾ßÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÔÀ¸·Î½á AI´Â µ¶¼º ¸ðµ¨ÀÇ ¿¹Ãø ´É·ÂÀ» Çâ»ó½ÃÄÑ º¸´Ù °ß°íÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¶¼º ¸ðµ¨À» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ÀáÀçÀûÀÎ ¾ÈÀü ¹®Á¦¸¦ Á¶±â¿¡ ¹ß°ßÇÏ¿© º¸´Ù ¾ÈÀüÇÑ È­ÇÐÁ¦Ç°°ú ÀǾàǰÀÌ ½ÃÀå¿¡ Ãâ½ÃµÉ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

¿¹Ãø µ¶¼ºÇп¡¼­ AIÀÇ ¶Ç ´Ù¸¥ Å« ÀåÁ¡Àº »õ·Î¿î µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ´Â ´É·ÂÀÔ´Ï´Ù. ´õ ¸¹Àº µ¶¼º µ¥ÀÌÅ͸¦ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é ±â°è ÇнÀ ¾Ë°í¸®ÁòÀº ¿¹ÃøÀ» °³¼±ÇÏ°í ½Ã°£ÀÌ Áö³²¿¡ µû¶ó °³¼±µË´Ï´Ù. ÀÌ·¯ÇÑ ¹Ýº¹ ÇнÀ °úÁ¤À» ÅëÇØ AI ½Ã½ºÅÛÀº Á¤È®¼ºÀ» ÃÖ÷´ÜÀ» À¯ÁöÇϰí, ´õ ³ªÀº À§Çè Æò°¡¸¦ °¡´ÉÇÏ°Ô Çϸç, È­ÇÐÁ¦Ç°°ú ÀǾàǰÀÇ ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø µ¶¼ºÇÐ ºÐ¾ßÀÇ AI ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¿¹Ãø µ¶¼ºÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ °Ë»ç ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. Á¦¾à ¹× È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡¿Í ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦´Â ÷´Ü ¿¹Ãø µ¶¼ºÇÐ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, AI´Â ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© µ¶¼º Å×½ºÆ®¿¡ ¼Ò¿äµÇ´Â ºñ¿ë°ú ½Ã°£À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇϰí À±¸®ÀûÀÎ ½ÃÇè ¹æ¹ýÀ¸·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â °Íµµ AIÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿¹°½ÇÇèÀ» ÁÙ¿©¾ß ÇÑ´Ù´Â »çȸÀû, ±ÔÁ¦Àû ¾Ð·ÂÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, AI¸¦ Ȱ¿ëÇÑ ¸ðµ¨Àº µ¿¹°½ÇÇè¿¡ µû¸¥ À±¸®Àû ¿ì·Á ¾øÀÌ È­ÇÐÁ¦Ç°ÀÇ ¾ÈÀü¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ´ë¾ÈÀ» Á¦½ÃÇÕ´Ï´Ù.

µö·¯´×, ºòµ¥ÀÌÅÍ ºÐ¼®, °í¼º´É ÄÄÇ»ÆÃ°ú °°Àº AIÀÇ ±â¼ú ¹ßÀüÀº µ¶¼ºÇÐ ¸ðµ¨ÀÇ ¿¹Ãø ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î AI ½Ã½ºÅÛÀº ´Ù¾çÇÑ ÃâóÀÇ ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾î µ¶¼º ¿¹ÃøÀÇ Á¤È®µµ°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ȯ°æ ¾ÈÀü°ú ±ÔÁ¦ Áؼö¿¡ ÀÖ¾î AIÀÇ ÅëÇÕ°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼­ AI ±â¹Ý ¿¹Ãø µ¶¼ºÇÐ µµ±¸ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº AI ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇϰí AI¸¦ µ¶¼º ½ÃÇèÀÇ ¹Ì·¡¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç ÄÄÆ÷³ÍÆ®, ¼­ºñ½º ÄÄÆ÷³ÍÆ®), ±â¼ú(¸Ó½Å·¯´× ±â¼ú, ÀÚ¿¬¾î ó¸® ±â¼ú, ÄÄÇ»ÅÍ ºñÀü ±â¼ú, ±âŸ ±â¼ú), µ¶¼º ¿£µåÆ÷ÀÎÆ®(À¯ÀüÀÚ µ¶¼º ¿£µåÆ÷ÀÎÆ®, °£µ¶¼º ¿£µåÆ÷ÀÎÆ®, ½Å°æµ¶¼º ¿£µåÆ÷ÀÎÆ®, ½ÉÀåµ¶¼º ¿£µåÆ÷ÀÎÆ®, ±âŸ µ¶¼º ¿£µåÆ÷ÀÎÆ®), ÃÖÁ¾ ¿ëµµ(Á¦¾à/¹ÙÀÌ¿À ±â¾÷ ÃÖÁ¾ ¿ëµµ, È­ÇÐ/È­Àåǰ ÃÖÁ¾ ¿ëµµ, À§Å¹¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 36°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Predictive Toxicology Market to Reach US$2.2 Billion by 2030

The global market for Artificial Intelligence in Predictive Toxicology estimated at US$508.8 Million in the year 2024, is expected to reach US$2.2 Billion by 2030, growing at a CAGR of 27.5% over the analysis period 2024-2030. AI in Predictive Toxicology Solutions, one of the segments analyzed in the report, is expected to record a 24.8% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the AI in Predictive Toxicology Services segment is estimated at 33.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$133.7 Million While China is Forecast to Grow at 26.2% CAGR

The Artificial Intelligence in Predictive Toxicology market in the U.S. is estimated at US$133.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$333.3 Million by the year 2030 trailing a CAGR of 26.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 24.7% and 24.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 19.3% CAGR.

Global Artificial Intelligence in Predictive Toxicology Market - Key Trends & Drivers Summarized

How Is AI Revolutionizing Toxicology Testing?

Artificial Intelligence (AI) is transforming toxicology by enabling faster, more accurate, and cost-effective methods for predicting the toxicity of chemicals and substances. Traditional toxicological assessments, which often rely on animal testing and lengthy experimental procedures, are being replaced by AI-powered predictive models that simulate human responses based on large datasets. AI leverages machine learning (ML), deep learning (DL), and data analytics to analyze molecular structures and predict potential toxic effects with high precision.

One of the key applications of AI in predictive toxicology is its ability to identify toxic substances at an early stage of drug development or chemical manufacturing. By analyzing vast datasets from chemical properties, biological interactions, and experimental results, AI systems can quickly identify compounds that are likely to be harmful. This accelerates the development process and significantly reduces the time and cost associated with safety testing. AI’s ability to predict toxicity in various biological systems also reduces the reliance on animal testing, aligning with ethical and regulatory standards.

AI models also enhance the ability to predict the long-term effects of exposure to chemicals, such as carcinogenicity, reproductive toxicity, and neurotoxicity. These capabilities are crucial for industries such as pharmaceuticals, chemicals, and environmental safety, where early identification of harmful substances can save lives and prevent regulatory violations.

What Drives the Adoption of AI in Predictive Toxicology?

The growing emphasis on safety and regulatory compliance is a significant driver of AI adoption in predictive toxicology. With increasing global concerns about environmental pollution, chemical exposure, and the ethical implications of animal testing, AI offers a promising alternative to traditional toxicology practices. AI systems provide regulatory bodies and industries with more reliable, scalable, and accurate methods for assessing chemical safety.

Additionally, the rise of precision medicine and personalized health care is accelerating the need for advanced predictive tools in toxicology. As more individualized drugs are developed, understanding how specific compounds affect different genetic profiles becomes increasingly important. AI’s ability to analyze complex biological data and predict toxicological effects based on an individual’s genetic makeup enhances drug safety and efficacy, ensuring that treatments are tailored to specific patient groups.

The shift toward more efficient and sustainable research practices is also driving the adoption of AI in predictive toxicology. Traditional toxicological studies can be time-consuming and expensive, while AI systems enable high-throughput screening and rapid toxicity predictions. This reduces the overall cost of product development, particularly in the pharmaceutical, chemical, and consumer goods industries, where safety testing is critical to market entry.

Can AI Improve the Accuracy and Efficiency of Toxicity Prediction?

AI is significantly improving the accuracy and efficiency of toxicity prediction, addressing the limitations of conventional methods. Traditional toxicology testing often involves extensive in vivo studies, which can be costly and time-consuming. AI algorithms, by analyzing large datasets of chemical properties and biological outcomes, can predict toxicity with a level of accuracy and speed that is far superior to manual methods. These AI-driven models can rapidly analyze millions of compounds, prioritizing those that need further investigation.

Furthermore, AI systems improve prediction accuracy by accounting for complex variables that influence toxicity, such as metabolic processes and genetic variations. By integrating data from genomics, proteomics, and other disciplines, AI enhances the predictive capabilities of toxicology models, making them more robust and reliable. This enables early-stage detection of potential safety concerns, leading to safer chemicals and drugs entering the market.

Another major advantage of AI in predictive toxicology is its ability to continuously learn from new data. As more toxicological data becomes available, machine learning algorithms refine their predictions, improving over time. This iterative learning process ensures that AI systems remain at the forefront of accuracy, enabling better risk assessments and improving safety profiles for chemicals and pharmaceuticals.

What’s Driving the Growth of the AI in Predictive Toxicology Market?

The growth in the Artificial Intelligence in Predictive Toxicology market is driven by several key factors, reflecting the increasing demand for safer and more efficient testing methods. The rising global demand for pharmaceutical and chemical products, coupled with stringent safety regulations, is fueling the need for advanced predictive toxicology tools. AI offers an efficient, scalable solution to meet these demands, significantly reducing the cost and time required for toxicity testing.

The growing shift toward sustainable and ethical testing methods is also propelling AI adoption. As public and regulatory pressure to reduce animal testing increases, AI-powered models offer a viable alternative for assessing chemical safety without the ethical concerns associated with animal studies.

Technological advancements in AI, such as deep learning, big data analytics, and high-performance computing, are enhancing the predictive capabilities of toxicology models. These innovations are enabling AI systems to process vast amounts of data from various sources, improving the accuracy of toxicity predictions.

Finally, the integration of AI in environmental safety and the growing importance of regulatory compliance are supporting the adoption of AI-driven predictive toxicology tools across multiple industries. These factors, combined with increasing investments in AI research, are fueling the rapid growth of the market and establishing AI as a key player in the future of toxicology testing.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Predictive Toxicology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions Component, Services Component); Technology (Machine Learning Technology, Natural Language Processing Technology, Computer Vision Technology, Other Technologies); Toxicity Endpoint (Genotoxicity Endpoint, Hepatotoxicity Endpoint, Neurotoxicity Endpoint, Cardiotoxicity Endpoint, Other Toxicity Endpoints); End-Use (Pharma & Biotech Companies End-Use, Chemical & Cosmetics End-Use, Contract Research Organizations End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â