세계 체외독성시험 시장은 기술 발전, 동물실험의 윤리적, 과학적 한계에 대한 인식 증가, 점점 더 엄격해지는 규제 프레임워크의 시행으로 인해 빠르게 성장하고 있습니다. 시장 규모는 2024년 약 260억 달러에서 2033년에는 575억 5,000만 달러에 달할 것으로 예측됩니다. 2025-2033년의 예측 기간 중 9.23%의 연평균 복합 성장률(CAGR)을 보일 것으로 예측되며, 이는 기존 독성 테스트 방법을 대체할 수 있는 방법에 대한 수요가 지속적으로 증가하고 있음을 반영합니다.
시장이 진화하고 성숙 단계로 접어들면서 이해관계자들의 관심은 체외 독성 기술에 대한 접근을 민주화하고 표준화를 확대함으로써 이러한 성장 모멘텀을 유지하고 가속화하는 것으로 옮겨가고 있습니다. 이러한 전환을 촉진하는 중요한 진전 중 하나는 복잡한 생물학적 분석을 수행하는 데 필수적인 툴인 마이크로플루이딕스 칩의 비용이 급감하고 있다는 점입니다. 현재 이 칩은 사출성형된 환형 올레핀 폴리머를 사용하여 제조되고 있으며, 소매 가격은 개당 12달러 미만입니다. 이는 2021년에 유리 기기가 일반적으로 48달러에 판매되던 수준에서 크게 낮아진 것입니다.
솔루션별로는 Assay가 시장 점유율 42.70% 이상을 차지하며 지배적인 위치를 차지하고 있습니다. 이는 규제 당국의 신뢰, 업무 속도, 비용 효율성을 강력하게 결합하여 제공할 수 있는 독보적인 능력에 기인합니다. 화합물을 개발 파이프라인에 진입시키고자 하는 스폰서에게 이 분석은 과학적 및 규제적 요구 사항을 충족하는 신뢰할 수 있고 효율적인 솔루션을 제공합니다. 이 분석법이 시험 프로토콜에 널리 받아들여지고 통합되고 있다는 것은 동물 실험에 따른 윤리적 우려 없이 정확하고 재현 가능한 독성 데이터를 제공할 수 있다는 신뢰가 높아지고 있다는 것을 보여줍니다.
방법별로는 세포 분석이 약 44.5%를 차지하며 가장 큰 점유율을 차지하고 있습니다. 이는 생물학적 타당성과 실험실의 확장성 사이의 이상적인 균형을 제공할 수 있기 때문입니다. 세포 분석은 단순한 비세포성 생화학적 방법으로는 얻을 수 없는 독성 영향을 이해하는 데 중요한 세포 반응과 표현형에 대한 귀중한 정보를 제공합니다. 살아있는 세포를 사용함으로써 연구자들은 복잡한 생물학적 상호작용과 독성 메커니즘을 인간의 생리적 조건에 더 가깝게 관찰할 수 있으며, 안전성 평가의 예측 정확도를 향상시킬 수 있습니다.
기술별로는 세포배양 기술이 시장의 47.60% 이상의 매출 점유율을 차지하며 중심적인 역할을 하고 있습니다. 이는 인간의 생물학적 과정을 장기 절편이나 동물 조직으로는 불가능한 실험 규모로 재현할 수 있는 독보적인 능력에 기인합니다. 이 기술을 통해 연구자들은 인간 세포의 거동을 정확하게 모델링할 수 있으며, 안전성 및 유효성 평가에 중요한 정보를 제공할 수 있습니다. 또한 동물실험에 따른 윤리적, 번역상의 제약을 피할 수 있습니다. 자동화된 세포배양 바이오리액터의 전 세계 누적 도입 대수는 3,400대를 넘어섰으며, 이는 이 기술의 광범위한 보급과 확장성을 보여줍니다. 2024년 세포배양 산업 조사에 따르면 Thermo Fisher는 2021-2023년까지 1,260대의 Nunc High-Volume 바이오리액터를 판매할 것으로 예상되며, 이 성장의 대부분을 차지하여 첨단 세포배양 장비 공급에 있으며, 리더십을 보여주고 있습니다.
지역별 분석
유럽은 엄격한 규제 프레임워크, 막대한 연구개발 투자, 전문 실험실 네트워크가 결합되어 지배적인 지위를 차지하고 있습니다. 2023년에는 시장 매출이 약 99억 1,910만 달러에 달하고, 대체 독성 시험 방법의 추진 및 적용에 있으며, 지역 리더십을 보여주었습니다. 이 강력한 성장 궤도는 2030년까지 거의 두 배로 증가할 것으로 예상되며, 그 원동력은 EU의 화장품 규정 및 화학물질 안전 프레임워크인 REACH의 규제 요구사항에 있습니다. 이들 모두 동물실험에 의존하지 않는 시험 데이터 사용을 의무화하고 있습니다.
이 지역은 대체 독성 시험에 특화된 33개 이상의 과학 시설로 구성된 광범위한 인프라를 보유하고 있습니다. 이들 센터는 경제협력개발기구(OECD)가 승인한 검증된 분석법 및 첨단 인간 유래 세포 모델에 대한 즉각적인 접근을 스폰서에게 제공합니다. 이 네트워크는 윤리적이고 과학적으로 타당한 동물실험 대체법에 대한 수요 증가에 대응하기 위해 신속하고 적합한 시험을 가능하게 하여 규제 승인을 촉진하고 제품 개발 파이프라인을 가속화할 수 있도록 지원합니다.
세계의 In-Vitro 독성 시험 시장을 조사했으며, 시장 개요, 시장 성장에 대한 각종 영향요인의 분석, 시장 규모 추이·예측, 각종 구분별 상세 분석, 경쟁 구도, 주요 기업의 개요 등을 정리하여 전해드립니다.
The global in-vitro toxicology testing market is experiencing rapid growth, fueled by significant technological advancements, heightened recognition of the ethical and scientific limitations associated with animal testing, and the enforcement of increasingly stringent regulatory frameworks. In 2024, the market was valued at approximately US$ 26.00 billion, and it is projected to expand substantially, reaching an estimated valuation of US$ 57.55 billion by 2033. This growth corresponds to a compound annual growth rate (CAGR) of 9.23% over the forecast period from 2025 to 2033, reflecting strong and sustained demand for alternatives to traditional toxicological testing methods.
As the market evolves and moves into a more mature phase, attention among stakeholders has shifted toward democratizing access to in-vitro toxicology technologies and scaling standards to maintain and accelerate this growth momentum. One key development facilitating this transition is the dramatic reduction in the cost of microfluidic chips, which are critical tools for conducting complex biological assays. These chips, now fabricated using injection-molded cyclic olefin polymers, are available at retail prices below USD 12 per unit-a sharp decrease from the USD 48 price point typical of glass devices in 2021.
Competition in the in-vitro toxicology testing market is increasingly focused on integrated platforms that combine high-content imaging with mass-spectrometric metabolite profiling, reflecting a trend toward more comprehensive and precise toxicological assessments. Thermo Fisher Scientific has established a strong presence with an installed base exceeding 400 CellInsight CX7 LZR systems, while Agilent Technologies supports toxicology laboratories worldwide with 310 Seahorse XF Pro analyzers. These numbers highlight the rapid turnover and widespread adoption of advanced instrumentation designed to deliver detailed cellular and metabolic insights.
For example, Eurofins' Predictiv AI suite processed an astonishing 18 billion cellular images last year, significantly accelerating the decision-making process for cardiotoxicity prediction by reducing the timeline from seventeen days to just nine. This combination of cutting-edge imaging, metabolite analysis, and artificial intelligence-driven data processing is reshaping how toxicology testing is conducted, enabling faster, more accurate, and more actionable results. The market's competitive landscape is further energized by a vibrant investment environment that mirrors both the scientific advances and favorable regulatory momentum propelling the sector forward. In 2023 alone, there were 41 publicly disclosed venture capital deals focused on key areas such as assay development, bioinformatics analytics, and organ-chip hardware.
Core Growth Drivers
Between 2022 and 2024, the introduction of stringent legislative timelines has significantly reshaped the in-vitro toxicology testing market, compelling sponsors to prioritize cell-based safety studies earlier in their development processes rather than relying on traditional animal models. These regulatory changes are designed to accelerate the adoption of alternative testing methods that reduce animal use while maintaining or enhancing the rigor of safety evaluations.
A notable example of this regulatory tightening is the U.S. Environmental Protection Agency's Revised New Approach Methodologies (NAM) Directive, which came into effect in January 2024. This directive explicitly requires that toxicology submissions include at least one validated in vitro assay addressing critical endpoints such as acute toxicity, developmental toxicity, or endocrine disruption. Submissions that fail to meet this criterion are no longer accepted, representing a clear mandate for the inclusion of cell-based testing methods in safety assessments.
Emerging Opportunity Trends
Microphysiological systems (MPS) transitioned from experimental pilot projects to integral components of mainstream workflows in the in-vitro toxicology testing market during 2023 and 2024. This advancement was driven by remarkable performance achievements and significant regulatory endorsements that underscored the technology's growing reliability and acceptance. MPS, which simulate human organ functions using interconnected microfluidic chips, offer more physiologically relevant models compared to traditional in-vitro assays, enabling detailed study of complex biological interactions and drug metabolism.
A pivotal moment for MPS came with the U.S. Food and Drug Administration's (FDA) Innovative Science Group formally accepting liver-kidney dual-chip data as part of two Investigational New Drug (IND) applications. The compounds involved were Bayer's candidate for non-alcoholic steatohepatitis, BAY 123456, and Amgen's oncology drug AMG 957. In both cases, the 28-day exposure studies conducted using MPS demonstrated metabolite profiles that closely matched in vivo biopsy results, with convergence within just 3.8 nanomoles.
Barriers to Optimization
Despite significant advancements in hardware and in vitro modeling technologies, accurately replicating xenobiotic metabolism remains a persistent challenge within the in vitro toxicology testing market, often causing delays in product development timelines. One of the key hurdles is the limited enzymatic diversity present in current models, even among the most sophisticated 3D hepatic spheroids. While these advanced systems have improved the representation of liver function, they still fall short of mimicking the full spectrum of metabolic activity found in adult human liver tissue.
Specifically, the human liver contains 57 active cytochrome P450 isozymes responsible for metabolizing a wide range of xenobiotics, but most commercial testing panels include no more than 14 isoforms. This gap in enzymatic coverage limits the ability of in-vitro models to fully replicate human metabolic processes, leading to incomplete or inaccurate predictions of how compounds are processed in the body.
By Solutions, assays hold a dominant position in the in-vitro toxicology testing market, capturing over 42.70% of the market share due to their unique ability to provide a powerful combination of regulatory confidence, operational speed, and cost-effectiveness. For sponsors looking to advance compounds through the development pipeline, assays offer a reliable and efficient solution that meets both scientific and regulatory demands. Their widespread acceptance and integration into testing protocols reflect a growing trust in their ability to deliver accurate and reproducible toxicity data without the ethical concerns associated with animal testing.
By Method, cellular assays hold the largest share in the in-vitro toxicology testing market, accounting for approximately 44.5% of the total, due to their ability to deliver an ideal balance between biological relevance and laboratory scalability. These assays provide valuable insights into cellular responses and phenotypes that are crucial for understanding toxicological effects in a way that simpler, acellular biochemical methods cannot achieve. By using living cells, researchers can observe complex biological interactions and mechanisms of toxicity that more closely mimic human physiological conditions, thereby improving the predictive accuracy of safety assessments.
By Toxicity Endpoint & Test, skin-related toxicity endpoints dominate the in-vitro toxicology testing market, capturing over 38.3% of the market share due to their critical importance at the crossroads of strict regulatory requirements, heightened consumer awareness, and substantial testing volumes. These endpoints are essential for assessing the safety of substances that come into direct contact with human skin, such as cosmetics, personal care products, and topical pharmaceuticals. The regulatory environment in the European Union (EU) has played a significant role in driving demand in this segment, particularly through the EU Cosmetics Regulation, which has prohibited animal testing for dermal toxicity endpoints since 2013. This ban has created a pressing need for reliable alternative testing methods that can accurately evaluate skin-related toxicity without relying on animal models.
By Technology, cell culture technology holds a central position in the in-vitro toxicology testing market, commanding over 47.60% of the revenue share due to its unique ability to replicate human biological processes at experimental scales that are impossible to achieve with organotypic slices or animal tissues. This technology enables researchers to model human cell behavior precisely, providing critical insights during safety and efficacy assessments without the ethical and translational limitations associated with animal testing. The global installed capacity for automated cell-culture bioreactors has now surpassed 3,400 units, highlighting the widespread adoption and scalability of this technology. According to the 2024 Cell Culture Industry Survey, Thermo Fisher alone accounted for a significant portion of this growth by selling 1,260 Nunc High-Volume bioreactors between 2021 and 2023, underscoring its leadership in supplying advanced cell culture equipment.
By Solutions
By Method
By Technology
By Toxicity Endpoint & Test
By End User
By Region
Geography Breakdown
Europe holds a dominant position in the in-vitro toxicology testing market, driven by a combination of stringent regulatory frameworks, substantial research and development investments, and a well-established network of specialized laboratories. In 2023, market revenues reached approximately 9,919.1 million dollars, reflecting the region's leadership in advancing and applying alternative toxicology methods. This strong growth trajectory is expected to nearly double by 2030, largely propelled by regulatory mandates such as the EU Cosmetics Regulation and the REACH chemical-safety framework, both of which require the use of non-animal testing data.
The region benefits from an extensive infrastructure of more than thirty-three dedicated scientific facilities that focus exclusively on alternative toxicology testing. These centers provide sponsors with immediate access to validated assays recognized by the Organisation for Economic Co-operation and Development (OECD), as well as advanced human-derived cell models. This network enables rapid, compliant testing that meets the rising demand for ethical and scientifically robust alternatives to animal testing, facilitating smoother regulatory approvals and accelerating product development pipelines.