¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå
In Silico Clinical Trials
»óǰÄÚµå : 1781305
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 396 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ¼¼°è ½ÃÀåÀº 2030³â±îÁö 48¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 35¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ¼¼°è ½ÃÀåÀº 2024-2030³â ºÐ¼® ±â°£¿¡ CAGR 5.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 48¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾Ï Ä¡·á ºÐ¾ß´Â CAGR 4.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 13¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¨¿°Áõ Ä¡·á ºÐ¾ß ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 5,150¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀåÀº 2024³â¿¡ 9¾ï 5,150¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 8.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 9¾ï 4,190¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.6%¿Í 5.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè : ÀǾàǰ °³¹ß¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡, ¾Æ´Ï¸é Áö³ªÄ¡°Ô ´Ü¼øÈ­ÇÒ À§ÇèÀÌ Àִ°¡?

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè(ISCTs)Àº ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ÇÀ» »ç¿ëÇÏ¿© °¡»ó ȯÀÚ Áý´Ü¿¡ ´ëÇÑ ÀǾàǰ ¹× ÀÇ·á±â±âÀÇ È¿°ú¸¦ ¸ðµ¨¸µÇÔÀ¸·Î½á ±âÁ¸ ÀǾàǰ °³¹ßÀÇ ÆÇµµ¸¦ ¹Ù²Ù°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¹Ä·¹À̼ÇÀº °íµµÀÇ °è»ê ¸ðµ¨¸µ°ú µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© »ý¹°ÇÐÀû °úÁ¤À» ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á ±âÁ¸ÀÇ Àΰ£ ¹× µ¿¹° ½ÇÇè¿¡ ¼ö¹ÝµÇ´Â ¸¹Àº ½Ã°£°ú ºñ¿ëÀÌ ¼Ò¿äµÇ´Â °úÁ¤À» Á¦°ÅÇÕ´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È ÀÌ ±â¼úÀº ÀÌ·ÐÀû, Çй®Àû °ü½ÉÀ» ³Ñ¾î ÁÖ¿ä Á¦¾à»ç, »ý¸í°øÇÐ ±â¾÷ ¹× ±ÔÁ¦ ´ç±¹ÀÇ R&D ¿öÅ©Ç÷οìÀÇ ÀϺηΠºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ISCT ½ÃÀåÀº ½Å¼ÓÇÑ ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, µ¿¹° ½ÇÇè¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á Áõ°¡, ±ÔÁ¦ ÀÏÁ¤ÀÇ °­È­ µî¿¡ ÈûÀÔ¾î ±Þ°ÝÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ISCTÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº Èñ±Í ÁúȯÀ̳ª ±âÁ¸¿¡´Â äÅà ¹× ¿¬±¸°¡ ¾î·Á¿ü´ø ÀÌÁ¾ ȯÀÚ Áý´ÜÀ» ¸ðµ¨¸µÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.

¶ÇÇÑ, ISCTÀÇ Ã¤ÅÃÀ» ÁöÁöÇÏ´Â ±ÔÁ¦Àû ºÐÀ§±âµµ °íÁ¶µÇ°í ÀÖ½À´Ï´Ù. FDA ¹× EMA¿Í °°Àº ±â°üÀº ƯÈ÷ ÀüÀÓ»ó ¹× Ãʱâ ÀÓ»ó ´Ü°è¿¡¼­ ½Ã¹Ä·¹ÀÌ¼Ç °á°ú¸¦ ±ÔÁ¦ ÀÇ»ç°áÁ¤¿¡ ÅëÇÕÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ½ÇÁ¦·Î FDAÀÇ MIDD(Model-Informed Drug Development) ÀÌ´Ï¼ÅÆ¼ºê´Â ±Ù°Å ±â¹Ý Æò°¡¸¦ Áö¿øÇϱâ À§ÇØ ½Ã¹Ä·¹ÀÌ¼Ç µ¥ÀÌÅÍ È°¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÇコÄÉ¾î ºÐ¾ßÀÇ µðÁöÅÐ Àüȯ°ú ½ÇÁ¦ µ¥ÀÌÅÍ ¹× ¿¹Ãø ºÐ¼®À¸·ÎÀÇ ±¤¹üÀ§ÇÑ º¯È­¸¦ ¹Ý¿µÇÕ´Ï´Ù. ¶ÇÇÑ, ISCT¸¦ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡ Æ÷ÇÔ½ÃÅ´À¸·Î½á »ó´çÇÑ ºñ¿ë Àý°¨ÀÌ °¡´ÉÇϸç, ÀνǸ®ÄÜ ½ÃÇèÀ» ÅëÇØ °³¹ß ºñ¿ëÀ» 40-60% Àý°¨ÇÒ ¼ö ÀÖ´Ù´Â Ã߻굵 ÀÖ½À´Ï´Ù. ±× °á°ú, Á¦¾à»ç ¹× ÀÇ·á±â¼ú ±â¾÷µéÀº ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû, AI¸¦ Ȱ¿ëÇÑ ½Å¾à ÆÄÀÌÇÁ¶óÀÎ, ½Ã½ºÅÛ »ý¹°Çп¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇаü°èÀÇ ¼ö·ÅÀ¸·Î ISCT´Â ¼±ÅÃÀû Çõ½ÅÀÌ ¾Æ´Ñ Àü·«Àû Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ¾Æ°¡°í ÀÖ½À´Ï´Ù.

AI¿Í ºòµ¥ÀÌÅÍ´Â ¾î¶»°Ô °¡»ó ÀçÆÇÀÇ ´ÙÀ½ ½Ã´ë¸¦ Çü¼ºÇϰí Àִ°¡?

ÀνǸ®ÄÜ Å×½ºÆ®ÀÇ ÇÙ½ÉÀº AI, ¸Ó½Å·¯´×, °í¼º´É ÄÄÇ»ÆÃ, ºòµ¥ÀÌÅÍ ºÐ¼®°ú °°Àº °­·ÂÇÑ ±â¼úÀÇ À¶ÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸µéÀº º¸´Ù º¹ÀâÇÏ°í »ý¸®ÇÐÀûÀ¸·Î Á¤È®ÇÑ ¸ðµ¨À» °³¹ßÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ´Ù¾çÇÑ È¯ÀÚ Áý´Ü¿¡¼­ ¾à¹°ÀÇ °Åµ¿ ¿¹ÃøÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº °¡»ó ȯÀÚ ³» Áúº´ ÁøÇà°ú ¾à¹° »óÈ£ÀÛ¿ëÀ» ½Ã¹Ä·¹À̼ÇÇÏ´Â µ¥ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ±âÁ¸ ÀÓ»ó½ÃÇè¿¡¼­´Â ¾î·Æ°Å³ª ºÒ°¡´ÉÇß´ø ¼¼¹ÐÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÀڰǰ­±â·Ï(EHR), À¯ÀüüÇÐ ¹× ½ÇÁ¦ Áõ°Å·ÎºÎÅÍ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó °¡»ó ½ÃÇèÀÇ Ãæ½Çµµ¿Í ´Ù¾ç¼ºÀÌ Çâ»óµÇ¾î ½ÇÁ¦ ȯÀÚ Áý´ÜÀ» ´õ Àß ¹Ý¿µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

µðÁöÅÐ Æ®À© ±â¼ú(ȯÀÚ °³°³ÀÎÀ» °¡»óÀ¸·Î Ç¥ÇöÇÏ´Â ±â¼ú)ÀÇ º´Çà ¹ßÀüµµ ISCT¿¡ ¸ÂÃãÇü ÀÇ·áÀÇ Ãø¸éÀ» ´õÇϰí ÀÖ½À´Ï´Ù. ÇöÀç °³¹ß»çµéÀº Ä¡·á¿¡ ´ëÇÑ ¹ÝÀÀÀ» ½Ã¹Ä·¹À̼ÇÇϰí, Ä¡·á È¿°ú¸¦ ÃÖÀûÈ­Çϰí, À§ÇèÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ È¯ÀÚº° ¸ðµ¨À» °³¹ßÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿Í È®Àå °¡´ÉÇÑ AI Ç÷§ÆûÀ» ÅëÇØ ¼öõ °³ÀÇ ½Ã³ª¸®¿À¸¦ µ¿½Ã¿¡ ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ¾î ¼ö ³âÀÌ °É¸®´Â ¿¬±¸¸¦ ´Ü ¸î ÁÖ ¸¸¿¡ ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ƯÈ÷ ȯÀÚÀÇ ºÒ±ÕÀϼº°ú º¹ÀâÇÑ Ä¡·á »óÈ£ ÀÛ¿ëÀÌ Áß¿äÇÑ Á¾¾çÇÐ, ½ÉÀ庴ÇÐ, ½Å°æÇÐ, Èñ±Í À¯Àü¼º Áúȯ¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ³ô½À´Ï´Ù. AI°¡ ½ÃÇè ÆÄ¶ó¹ÌÅÍÀÇ ¹Ýº¹ ÇнÀ°ú ÃÖÀûÈ­¸¦ °¡´ÉÇϰÔÇÔÀ¸·Î½á ISCT´Â ½ÇÁ¦ ÀÓ»ó½ÃÇèÀÌ ½ÃÀ۵DZâ Àü¿¡ Ž»öÀû ½ÃÇè, ÀûÀÀÁõ ½ÃÇè, °¡¼³ »ý¼º ½ÃÇèÀ» ¼öÇàÇϱâ À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î »ýŰè´Â ÀνǸ®ÄÚ Å×½ºÆ®¸¦ ³Î¸® äÅÃÇÒ Áغñ°¡ µÇ¾î Àִ°¡?

ISCTÀÇ ±â¼úÀû ±â¹ÝÀº ºü¸£°Ô ±»¾îÁö°í ÀÖÁö¸¸, »ýŰè Áغñ´Â ¾ÆÁ÷ À¯µ¿ÀûÀÔ´Ï´Ù. ±ÔÁ¦ ´ç±¹, ÀÇ·á Á¦°øÀÚ, ÁöºÒÀÚ ¹× ȯÀÚÀÇ ¼ö¿ëÀº °í¹«ÀûÀÎ ÁøÀü¿¡µµ ºÒ±¸ÇÏ°í ¿©ÀüÈ÷ ÁøÇà ÁßÀÔ´Ï´Ù. ±ÔÁ¦ °úÇÐÀº ¾ÆÁ÷ ºñ½Ç¸®ÄÜ ¸ðµ¨ÀÇ ´É·ÂÀ» µû¶óÀâÁö ¸øÇϰí ÀÖÀ¸¸ç, ¸ðµ¨ÀÇ Ç¥ÁØÈ­¿Í °ËÁõÀÌ Å« Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. FDA, EMA, ij³ª´Ù º¸°ÇºÎ¿Í °°Àº ±â°üµéÀÌ ÇÁ·¹ÀÓ¿öÅ©¿Í ÁöħÀ» ¹ßÇ¥Çϸ鼭 ÁøÀüÀ» º¸À̰í ÀÖÁö¸¸, ¸ðµ¨ °ËÁõ ÇÁ·ÎÅäÄÝ¿¡ Àϰü¼ºÀÌ ¾ø°í, º¸ÆíÀûÀ¸·Î ¹Þ¾Æµé¿©Áö´Â º¥Ä¡¸¶Å©°¡ ¾ø±â ¶§¹®¿¡ °³¹ßÀÚ¿Í Á¦Á¶¾÷ü¿¡°Ô ºÒÈ®½Ç¼ºÀ» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¸Çè»ç ¹× ÀÇ·á ½Ã½ºÅÛÀº ISCT ±â¹Ý µ¥ÀÌÅ͸¦ º¸Çè±Ý Áö±Þ °áÁ¤¿¡ ¿ÏÀüÈ÷ ÅëÇÕÇϱâ Àü¿¡ ÀÓ»óÀû À¯¿ë¼º°ú ºñ¿ë È¿°ú¼º¿¡ ´ëÇÑ º¸´Ù °­·ÂÇÑ Áõ°Å°¡ ÇÊ¿äÇÕ´Ï´Ù.

ÃÖÁ¾»ç¿ëÀÚÀÇ Àǽĵµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À Á¦¾à±â¾÷°ú ÀÇ·á±â±â ±â¾÷ÀÌ ÁÖ¿ä µµÀÔ ±â¾÷À̸ç, CRO(ÀǾàǰ °³¹ß ¾÷¹« À§Å¹±â°ü)¿Í Çмú±â°üÀÇ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±×·¯³ª ±× º¸±ÞÀ» À§Çؼ­´Â ÀÓ»óÀÇ, µ¥ÀÌÅÍ °úÇÐÀÚ, ±ÔÁ¦ ´ç±¹ÀÇ ±³À°, ±â¼ú Çâ»ó, ´ÙÇÐÁ¦Àû Çù·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù. À¯¸ÁÇÑ ¹ßÀü Áß Çϳª´Â ISCT ÀÎÇÁ¶ó¸¦ È®ÀåÇϱâ À§ÇÑ Áö½Ä°ú ÀÚ¿ø °øÀ¯¸¦ ¸ñÀûÀ¸·Î ÇÏ´Â ¹Î°ü ÆÄÆ®³Ê½Ê°ú ÄÁ¼Ò½Ã¾öÀÇ ÃâÇöÀÔ´Ï´Ù. ±× ¿¹·Î EUÀÇ Virtual Physiological Human ÀÌ´Ï¼ÅÆ¼ºê¿Í Avicenna Alliance¸¦ µé ¼ö ÀÖÀ¸¸ç, ¾çÃø ¸ðµÎ Ç¥ÁØ È®¸³°ú Á¤Ã¥Àû Áö¿ø È®´ë¿¡ Èû¾²°í ÀÖ½À´Ï´Ù. °á±¹, ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ Àå±âÀûÀÎ ¼º°ø ¿©ºÎ´Â ¸ðµ¨, À̸¦ Á¦°øÇÏ´Â µ¥ÀÌÅÍ, ±×¸®°í À̸¦ ÇØ¼®ÇÏ´Â »ç¶÷µé¿¡ ´ëÇÑ ½Å·Ú¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾»ç¿ëÀÚ ¼ö¿äÀÇ ÁøÈ­, ±ÔÁ¦ °­È­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¹«¾ùº¸´Ùµµ ÀǾàǰ ¿¬±¸°³¹ß¿¡ AI¿Í ¸Ó½Å·¯´×À» µµÀÔÇÏ´Â »ç·Ê°¡ ±ÞÁõÇϰí ÀÖ´Â °ÍÀÌ ½ÃÀåÀ» Ȱ¼ºÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¾à¹°°ú Ç¥ÀûÀÇ »óÈ£ÀÛ¿ë ¿¹Ãø, °¡»ó ½ºÅ©¸®´×, ¾àµ¿ÇÐ ½Ã¹Ä·¹À̼ǿ¡ AI¸¦ Ȱ¿ëÇÏ´Â °í±Þ ¸ðµ¨¸µ Ç÷§ÆûÀº ½ÇÇè½Ç¿¡¼­ ½ÃÇèÇÒ ÇÊ¿ä ¾øÀÌ Èĺ¸ ºÐÀÚ¸¦ ½±°Ô Æò°¡ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº º¹ÀâÇϰí À§Çèµµ°¡ ³ôÀº Ä¡·á ¿µ¿ªÀÎ Á¾¾çÇÐ, ½Å°æÇÐ, ¼øÈ¯±âÇÐ, ¸é¿ªÇп¡¼­ Ȱ¿ëµµ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¿©·¯ ºÐ¾ß¿¡¼­ ISCTÀÇ À¯¿ë¼ºÀÌ Áõ°¡Çϰí ÀÖÀ½À» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù.

µÑ°, Á¦¾àȸ»ç, ƯÈ÷ Áß°ß ¹× ½Å»ý ¹ÙÀÌ¿À±â¾÷Àº ÀÚ¿øÀÇ Á¦¾àÀ» ±Øº¹ÇÏ°í °³¹ß ±â°£À» ´ÜÃàÇϱâ À§ÇØ ISCT¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷µéÀº ½ÇÁ¦ ÀÓ»ó½ÃÇè¿¡ ÅõÀÚÇϱâ Àü¿¡ Ÿ°Ù °ËÁõ, ¿ë·® ÃÖÀûÈ­, ȯÀÚ °èÃþÈ­¿¡ ISCT¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ¸ÂÃãÇü ÀÇ·áÀÇ ºÎ»óÀ¸·Î ȯÀÚ ¸ÂÃãÇü ½Ã¹Ä·¹À̼ÇÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ µðÁöÅÐ Æ®À© ¸ðµ¨¸µ Ç÷§Æû°ú »ý¸®Àû ½Ã½ºÅÛ ¸ðµ¨¸µ ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ °­·ÂÇÑ ¿øµ¿·ÂÀº Èñ±Í ÁúȯÀ̳ª ¼Ò¾Æ Áý´Ü°ú °°ÀÌ ±âÁ¸ÀÇ ÀÓ»ó½ÃÇèÀÌ ºÒ°¡´ÉÇϰųª À±¸®ÀûÀ¸·Î ¹®Á¦°¡ Àְųª µµ´ÞÇϱ⠾î·Á¿î ÄÚȣƮ¸¦ ¸ðµ¨¸µÇØ¾ß ÇÒ Çʿ伺ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ÌÃæÁ· ¼ö¿ä´Â ISCT Àü¹® Á¦°ø¾÷ü¿Í ¼ÒÇÁÆ®¿þ¾î º¥´õ¿¡°Ô À¯¸®ÇÑ ½ÃÀå ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ÀÇ·á ±â·ÏÀÇ µðÁöÅÐÈ­, ¸ÖƼ¿À¹Í½º µ¥ÀÌÅÍÀÇ °¡¿ë¼º, ¿þ¾î·¯ºí °Ç°­ ±â¼úÀÇ ÅëÇÕÀº °ß°íÇÑ ºñ½Ç¸®ÄÜ ¸ðµ¨¸µ¿¡ ÇÊ¿äÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ dzºÎÇÏ°Ô ÇÏ¿© ½Ã¹Ä·¹À̼ÇÀ» ´õ¿í °­·ÂÇÏ°í ´Ù¾çÇÏ¸ç ½Å·ÚÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Ä¡·á ºÐ¾ß(Á¾¾çÇÐ Ä¡·á ºÐ¾ß, °¨¿°Áõ Ä¡·á ºÐ¾ß, Ç÷¾×ÇÐ Ä¡·á ºÐ¾ß, ½ÉÀåÇÐ Ä¡·á ºÐ¾ß, ÇǺΰúÇÐ Ä¡·á ºÐ¾ß, ½Å°æÇÐ Ä¡·á ºÐ¾ß, ´ç´¢º´ Ä¡·á ºÐ¾ß, ±âŸ Ä¡·á ºÐ¾ß), ´Ü°è(´Ü°è i, ´Ü°è II, ´Ü°è III, ´Ü°è IV), ÃÖÁ¾»ç¿ëÀÚ(ÀÇ·á±â±â ÃÖÁ¾»ç¿ëÀÚ, ÀǾàǰ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In Silico Clinical Trials Market to Reach US$4.8 Billion by 2030

The global market for In Silico Clinical Trials estimated at US$3.5 Billion in the year 2024, is expected to reach US$4.8 Billion by 2030, growing at a CAGR of 5.3% over the analysis period 2024-2030. Oncology Therapeutic Area, one of the segments analyzed in the report, is expected to record a 4.7% CAGR and reach US$1.3 Billion by the end of the analysis period. Growth in the Infectious Disease Therapeutic Area segment is estimated at 4.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$951.5 Million While China is Forecast to Grow at 8.2% CAGR

The In Silico Clinical Trials market in the U.S. is estimated at US$951.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$941.9 Million by the year 2030 trailing a CAGR of 8.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.6% and 5.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.4% CAGR.

Global In Silico Clinical Trials Market - Key Trends & Drivers Summarized

In Silico Clinical Trials: Revolutionizing Drug Development or Risking Oversimplification?

In silico clinical trials (ISCTs) are transforming the traditional pharmaceutical development landscape by employing computer simulations to model the effects of drugs and medical devices on virtual patient populations. These simulations leverage advanced computational modeling and data analytics to simulate biological processes, eliminating many of the time-consuming and expensive processes involved in conventional human and animal trials. In recent years, the technology has rapidly progressed beyond theoretical and academic interest, becoming an operational part of R&D workflows for leading pharmaceutical firms, biotech companies, and regulatory bodies. The ISCT market is witnessing exponential growth, propelled by increasing demand for faster drug development, heightened ethical concerns around animal testing, and tightening regulatory timelines. Another major factor boosting the adoption of ISCTs is their ability to model rare diseases and heterogeneous patient populations that are traditionally hard to recruit and study.

Moreover, regulatory momentum is increasingly in favor of ISCT adoption. Organizations like the FDA and EMA have begun integrating simulation results into regulatory decision-making, particularly in the preclinical and early clinical stages. In fact, the FDA’s Model-Informed Drug Development (MIDD) initiative promotes the use of simulation data to support evidence-based evaluations. This reflects a broader shift toward digital transformation and the incorporation of real-world data and predictive analytics in healthcare. The integration of ISCTs into regulatory frameworks also enables significant cost reductions, with estimates suggesting that in silico trials could cut development costs by as much as 40-60%. This, in turn, incentivizes pharmaceutical companies and medtech firms to invest in simulation platforms, AI-driven drug discovery pipelines, and systems biology. These converging dynamics are turning ISCTs into a strategic necessity rather than an optional innovation.

How Are AI and Big Data Shaping the Next Era of Virtual Trials?

At the core of in silico trials lies a convergence of powerful technologies-AI, machine learning, high-performance computing, and big data analytics. These tools are not only enabling the development of more complex and physiologically accurate models but are also accelerating the prediction of drug behavior across varied patient cohorts. Machine learning algorithms are increasingly used to simulate disease progression and drug interactions within virtual patients, providing granular insights that are often difficult or impossible to obtain through traditional trials. Furthermore, the availability of large datasets from electronic health records (EHRs), genomics, and real-world evidence has enhanced the fidelity and diversity of virtual trials, making them more reflective of actual patient populations.

Parallel advancements in digital twin technology-whereby virtual representations of individual patients are created-have also added a personalized medicine dimension to ISCTs. Companies are now developing patient-specific models to simulate responses to therapies, optimizing treatment efficacy and minimizing risks. Cloud computing infrastructure and scalable AI platforms allow for the simulation of thousands of scenarios simultaneously, thereby compressing years of research into mere weeks. These advancements are particularly valuable in oncology, cardiology, neurology, and rare genetic disorders, where patient heterogeneity and complex treatment interactions pose significant challenges. With AI enabling iterative learning and optimization of trial parameters, ISCTs are increasingly being used to conduct exploratory, adaptive, and hypothesis-generating studies before real-world testing even begins.

Is the Healthcare Ecosystem Ready for Broad Adoption of In Silico Trials?

While the technological foundation of ISCTs is rapidly solidifying, the ecosystem's readiness is still in flux. Acceptance by regulators, healthcare providers, payers, and patients remains a work in progress, despite encouraging developments. Regulatory science is still catching up to the capabilities of in silico models, with standardization and validation of models being a major hurdle. Although organizations like the FDA, EMA, and Health Canada have made strides in issuing frameworks and guidance, inconsistencies in model validation protocols and the lack of universally accepted benchmarks create uncertainties for developers and manufacturers. Moreover, insurers and health systems require stronger evidence of clinical utility and cost-effectiveness before fully integrating ISCT-driven data into reimbursement decisions.

End-user awareness is also evolving. Biopharmaceutical companies and medical device firms are the primary adopters, with growing interest from CROs (contract research organizations) and academic institutions. Yet, widespread implementation remains dependent on education, skill-building, and interdisciplinary collaboration between clinicians, data scientists, and regulators. One promising development is the emergence of public-private partnerships and consortia aimed at sharing knowledge and resources to scale ISCT infrastructure. Examples include the Virtual Physiological Human initiative in the EU and the Avicenna Alliance, both of which are working to establish standards and advocate for greater policy support. Ultimately, the long-term success of in silico clinical trials will hinge on trust-trust in the models, the data that feeds them, and the people who interpret them.

What Is Driving the Growth of the In Silico Clinical Trials Market?

The growth in the in silico clinical trials market is driven by several factors, each rooted in technological progress, evolving end-use demand, and regulatory acceleration. First and foremost, the surge in adoption of AI and machine learning across pharmaceutical R&D is catalyzing the market. Advanced modeling platforms that utilize AI for drug-target interaction prediction, virtual screening, and pharmacokinetic simulations are making it easier to assess candidate molecules without lab-based testing. These platforms are increasingly used in oncology, neurology, cardiology, and immunology-therapeutic areas with high complexity and risk-underscoring the growing utility of ISCTs across multiple domains.

Secondly, pharmaceutical companies, particularly mid-sized and emerging biotechs, are adopting ISCTs to overcome resource constraints and shorten development timelines. These companies use ISCTs for target validation, dose optimization, and patient stratification before investing in physical trials. Likewise, the rise of personalized medicine is driving the need for patient-specific simulations, pushing demand for digital twin modeling platforms and physiological systems modeling software. Another strong driver is the need to model rare diseases, pediatric populations, and other hard-to-reach cohorts where traditional trials are infeasible or unethical. This unmet need is opening lucrative market opportunities for specialized ISCT providers and software vendors. Finally, the increasing digitization of healthcare records, availability of multi-omics data, and integration of wearable health tech are enriching the datasets required for robust in silico modeling, thus making the simulations more powerful, diverse, and reliable.

SCOPE OF STUDY:

The report analyzes the In Silico Clinical Trials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Therapeutic Area (Oncology Therapeutic Area, Infectious Disease Therapeutic Area, Hematology Therapeutic Area, Cardiology Therapeutic Area, Dermatology Therapeutic Area, Neurology Therapeutic Area, Diabetes Therapeutic Area, Other Therapeutic Areas); Phase (Phase I, Phase II, Phase III, Phase IV); End-Use (Medical Devices End-Use, Pharmaceutical End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â