¼¼°èÀÇ Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀå
Condensing Food Processing Boilers
»óǰÄÚµå : 1779844
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 382 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀåÀº 2030³â±îÁö 3¾ï 3,530¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 2¾ï 7,070¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 3.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 3¾ï 3,530¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ 10 MMBTU/hr´Â CAGR 4.6%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 7,620¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. 10-25 MMBTU/hr ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7,370¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀåÀº 2024³â¿¡ 7,370¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 6.8%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 6,770¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.4%¿Í 2.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½Äǰ °¡°ø »ê¾÷ÀÌ Äܵ§½Ì º¸ÀÏ·¯·Î ÀüȯÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½Äǰ °¡°ø »ê¾÷Àº °¡Àå ¿¡³ÊÁö Áý¾àÀûÀÎ ºÐ¾ß Áß ÇϳªÀ̸ç, Á¶¸®, »ì±Õ, Àú¿Â»ì±Õ, °ÇÁ¶ µî ´Ù¾çÇÑ »ý»ê ´Ü°è¿¡¼­ ¿­ÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀüÅëÀûÀÎ º¸ÀÏ·¯ ½Ã½ºÅÛÀº ¿À·§µ¿¾È ½Äǰ Á¦Á¶ÀÇ ±Ù°£À» ÁöÅÊÇØ ¿Ô½À´Ï´Ù. ±×·¯³ª Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Äܵ§½Ì º¸ÀÏ·¯ÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. Äܵ§½Ì º¸ÀÏ·¯´Â ±âÁ¸ º¸ÀÏ·¯¿Í ´Þ¸® ¹è±â°¡½º³» Àá¿­À» ȸ¼öÇÏ¿© ¿­È¿À²À» ±Ø´ëÈ­ÇÏ°í ¿¬·á ¼Òºñ¿Í ¹èÃâ·®À» ÁÙÀÔ´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á¿Í ±ÔÁ¦ Àǹ«È­´Â ÀÌ·¯ÇÑ Àüȯ¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç Àü¿ªÀÇ Á¤ºÎ ¹× ȯ°æ ±â°üÀº ¾ö°ÝÇÑ ¿¡³ÊÁö È¿À² ¹× ¹èÃâ ±âÁØÀ» µµÀÔÇϰí ÀÖÀ¸¸ç, ½Äǰ °¡°ø¾÷üµéÀº °íÈ¿À² º¸ÀÏ·¯ ½Ã½ºÅÛÀ¸·Î ¾÷±×·¹À̵åÇØ¾ß ÇÕ´Ï´Ù. À¯·´¿¬ÇÕÀÇ ¿¡ÄÚµðÀÚÀÎ Áöħ, ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ ¿¡³ÊÁö È¿À² ±ÔÁ¦ µîÀÇ Á¤Ã¥ÀÌ ÀÌ·¯ÇÑ º¯È­¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬·á °¡°ÝÀÇ »ó½ÂÀ¸·Î ÀÎÇØ ¿î¿µ ºñ¿ëÀÇ ÃÖÀûÈ­°¡ ½Äǰ Á¦Á¶¾÷üÀÇ ÃÖ¿ì¼± °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. Äܵ§½Ì º¸ÀÏ·¯´Â ±âÁ¸ ¸ðµ¨ ´ëºñ ÃÖ´ë 20-30%ÀÇ ¿¬·á Àý°¨ È¿°ú°¡ ÀÖÀ¸¸ç, ±â¾÷Àº Àå±âÀûÀÎ ¼öÀͼº È®º¸¸¦ À§ÇÑ Àü·«Àû ÅõÀÚ·Î ÀνÄÇϰí ÀÖ½À´Ï´Ù.

½Äǰ °¡°ø ºÎ¹®ÀÇ È®ÀåÀº ¾î¶»°Ô ¼ö¿ä¸¦ °ßÀÎÇϰí Àִ°¡?

°¡°ø½Äǰ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä´Â ÃÖ±Ù ¼ö³â°£ µµ½ÃÈ­, ½Ä»ýȰÀÇ º¯È­, ƯÈ÷ ½ÅÈï °æÁ¦±ÇÀÇ °¡Ã³ºÐ ¼Òµæ Áõ°¡¿¡ ÈûÀÔ¾î ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ Á¶¸®½Äǰ, ³Ãµ¿½Äǰ, ½Äǰ ¹× À½·á µîÀÇ ÆíÀǼº Çâ»óÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ½Äǰ°¡°ø¾÷üµéÀº »ý»ê´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±Þ°ÝÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ¾ö°ÝÇÑ »ê¾÷ ±ÔÁ¦¸¦ ÁؼöÇϸ鼭 ´ë±Ô¸ðÀÇ Áß´Ü ¾ø´Â ¿î¿µÀ» Áö¿øÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀÎ ³­¹æ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àεµ, Áß±¹, ºê¶óÁú, µ¿³²¾Æ½Ã¾Æ µî ½ÅÈï ½ÃÀå¿¡¼­´Â ½Ä·®¾Èº¸¿Í ³ó¾÷ ¼ºÀåÀ» Áö¿øÇϱâ À§ÇÑ Á¤ºÎ ±¸»ó¿¡ ÈûÀÔ¾î ½Äǰ Á¦Á¶°¡ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀεµÀÇ ½Äǰ °¡°ø¿¡ ´ëÇÑ »ý»ê ¿¬µ¿ Àå·Á±Ý(PLI) Á¦µµ´Â °íÈ¿À² º¸ÀÏ·¯¸¦ Æ÷ÇÔÇÑ Çö´ë½Ä Á¦Á¶ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼±Áø Áö¿ª¿¡¼­´Â ÁÖ¿ä ½Äǰ ±â¾÷ÀÌ ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ µû¶ó Áö¼Ó°¡´ÉÇÑ ³­¹æ ±â¼úÀ» ÅëÇÕÇϱâ À§ÇØ »ý»ê ½Ã¼³À» ´ë´ëÀûÀ¸·Î °³Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Äǰ ¾ÈÀü ±ÔÁ¦ÀÇ ¹ßÀüÀ¸·Î Á¤È®ÇÑ ¿Âµµ °ü¸®°¡ Áß¿äÇÑ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­ ¼¶¼¼ÇÑ °øÁ¤¿¡ ¾ÈÁ¤ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿­¿¡³ÊÁö¸¦ Á¦°øÇÏ´Â Äܵ§½Ì º¸ÀÏ·¯ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº º¸ÀÏ·¯ È¿À²À» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

º¸ÀÏ·¯ ±â¼úÀÇ ¹ßÀüÀº ÀÚµ¿È­, ½º¸¶Æ® ¸ð´ÏÅ͸µ, ¿¬·á ÀûÀÀ¼º¿¡ ÁßÁ¡À» µÐ Á¦Á¶¾÷ü°æÀï ±¸µµ¸¦ ÀçÆíÇϰí ÀÖ½À´Ï´Ù. IoT ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ÅëÇÕÀº ½Äǰ °¡°ø ½Ã¼³ÀÌ ¿¡³ÊÁö ¼Òºñ¸¦ ÃßÀûÇϰí, ¿¬·á È¿À²À» ÃÖÀûÈ­Çϰí, ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á º¸ÀÏ·¯ ¿î¿µ¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ½Ã½ºÅÛÀº ´Ù¿îŸÀÓÀ» Å©°Ô ÁÙÀ̰í, ¼ö¿ä°¡ ¸¹Àº ½Äǰ °¡°ø °øÀå¿¡¼­ ¿øÈ°ÇÑ ¿î¿µÀ» º¸ÀåÇÕ´Ï´Ù. õ¿¬°¡½º, ¹ÙÀÌ¿À°¡½º, ¼ö¼Ò¸¦ Æ÷ÇÔÇÑ ¿©·¯ ¿¬·á·Î ¿îÀüÇÒ ¼ö ÀÖ´Â ÇÏÀ̺긮µå º¸ÀÏ·¯ÀÇ °³¹ßµµ ¶Ç ´Ù¸¥ Å« ÁøÀüÀÔ´Ï´Ù. ½Äǰ °¡°ø¾÷üµéÀÌ Á¡Á¡ ´õ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ÀÌÁß ¿¬·á ¹× ´ëü ¿¬·á º¸ÀÏ·¯ÀÇ Ã¤ÅÃÀÌ Á¡Á¡ ´õ ¸¹Àº °ßÀηÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³»½Ä ÇÕ±Ý ¹× ½ºÅ×Àθ®½º°­°ú °°Àº ¿­±³È¯±â Àç·áÀÇ °­È­·Î º¸ÀÏ·¯ÀÇ ³»±¸¼ºÀÌ Çâ»óµÇ¾î Àå±âÀûÀ¸·Î ´õ È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡¼­ ÀÀÃà¼ö¸¦ ȸ¼öÇϰí Àç»ç¿ëÇÒ ¼ö ÀÖ´Â ´É·ÂÀº È¿À²À» ´õ¿í ³ôÀÌ°í ¿¬·á¿Í ¹° ¼Òºñ¸¦ ¸ðµÎ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °³¼±À¸·Î ÀÎÇØ ÀÀÃà º¸ÀÏ·¯´Â ¿¡³ÊÁö Àý¾à°ú ¿î¿µ À§ÇèÀ» ÁÙÀÌ·Á´Â ½Äǰ °¡°ø ±â¾÷¿¡°Ô ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯ ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ ¾Ð·Â, ºñ¿ë È¿À²¼º, ±â¼ú ¹ßÀü, »ê¾÷º° ¿ä±¸ »çÇ× µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ȯ°æ ±ÔÁ¦¸¦ °­È­ÇÔ¿¡ µû¶ó ½Äǰ Á¦Á¶¾÷üµéÀº Àú¹èÃâ, °íÈ¿À² ³­¹æ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÒ ¼ö¹Û¿¡ ¾ø´Â »óȲÀÔ´Ï´Ù. õ¿¬°¡½º ¹× È­¼®¿¬·áÀÇ ºñ¿ë »ó½Âµµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, °¢ »ê¾÷°è´Â ¿î¿µ È¿À²À» À¯ÁöÇϸ鼭 ¿¬·á ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ½ÅÈï ±¹°¡ÀÇ ½Äǰ °¡°ø ½Ã¼³ È®´ëµµ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î, ´ë±Ô¸ð »ý»ê °øÀå¿¡ ´ëÇÑ ÅõÀÚ°¡ ÷´Ü º¸ÀÏ·¯ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ÆÑÅ丮 ÀÚµ¿È­ÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó ½Ç½Ã°£ ¼º´É ÃßÀû, ¿ø°Ý Áø´Ü, ÀÚµ¿ È¿À² ÃÖÀûÈ­¸¦ Á¦°øÇÏ´Â IoT Áö¿ø º¸ÀÏ·¯°¡ Á¦Á¶¾÷ü¸¦ µ½°í ÀÖ½À´Ï´Ù. ´ëü ¿¡³ÊÁö ¹× Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö´Â ½Äǰ »ê¾÷¿¡¼­ ÇÏÀ̺긮µå ¹× ÀÌÁß ¿¬·á Äܵ§½Ì º¸ÀÏ·¯ÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ Áö¼Ó°¡´ÉÇÑ ¹æ½ÄÀ¸·Î »ý»êµÈ ½Äǰ¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷Àº ź¼Ò ¹èÃâ·®À» ÁÙ¿©¾ß Çϸç, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº º¸ÀÏ·¯´Â Áö¼Ó°¡´É¼º Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ ºñÃß¾î º¼ ¶§, Äܵ§½Ì ½Äǰ °¡°ø º¸ÀÏ·¯¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¼ö³â°£ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¼¼°è ½Äǰ Á¦Á¶ ºÎ¹®ÀÇ ¿¡³ÊÁö È¿À²ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

¿ë·®(10 MMBTU/hr, 10-25 MMBTU/hr, 25-50 MMBTU/hr, 50-75 MMBTU/hr, 75-100 MMBTU/hr, 100-175 MMBTU/hr, 175-250 MMBTU/hr, 250 MMBTU/hr ÀÌ»ó), Á¦Ç° À¯Çü(È­°üº¸ÀÏ·¯, ¼ö°ü º¸ÀÏ·¯), ¿¬·á À¯Çü(õ¿¬°¡½º, ¼®À¯, ¼®Åº, ±âŸ À¯Çü)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Condensing Food Processing Boilers Market to Reach US$335.3 Million by 2030

The global market for Condensing Food Processing Boilers estimated at US$270.7 Million in the year 2024, is expected to reach US$335.3 Million by 2030, growing at a CAGR of 3.6% over the analysis period 2024-2030. 10 MMBTU/hr, one of the segments analyzed in the report, is expected to record a 4.6% CAGR and reach US$76.2 Million by the end of the analysis period. Growth in the 10 - 25 MMBTU/hr segment is estimated at 3.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$73.7 Million While China is Forecast to Grow at 6.8% CAGR

The Condensing Food Processing Boilers market in the U.S. is estimated at US$73.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$67.7 Million by the year 2030 trailing a CAGR of 6.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.4% and 2.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.1% CAGR.

Global Condensing Food Processing Boilers Market - Key Trends & Drivers Summarized

Why Is the Food Processing Industry Shifting Toward Condensing Boilers?

The food processing industry is one of the most energy-intensive sectors, with heat playing a crucial role in various production stages, including cooking, sterilization, pasteurization, and drying. Traditional boiler systems have long been the backbone of food manufacturing; however, the growing focus on sustainability and energy efficiency has propelled the adoption of condensing boilers. Unlike conventional models, condensing boilers maximize thermal efficiency by recovering latent heat from exhaust gases, reducing fuel consumption and lowering emissions. Environmental concerns and regulatory mandates have played a pivotal role in this transition. Governments and environmental agencies across the U.S., Europe, and Asia-Pacific have introduced stringent energy efficiency and emissions standards, compelling food processors to upgrade to high-efficiency boiler systems. Policies such as the European Union’s Ecodesign Directive and the U.S. Department of Energy’s energy efficiency regulations are accelerating this shift. Moreover, the rising volatility in fuel prices has made operational cost optimization a top priority for food manufacturers. With condensing boilers offering fuel savings of up to 20-30% compared to traditional models, companies are increasingly viewing them as a strategic investment for long-term profitability.

How Is the Expansion of the Food Processing Sector Driving Demand?

The global demand for processed food has surged in recent years, fueled by urbanization, changing dietary habits, and rising disposable incomes, particularly in emerging economies. As consumers seek greater convenience through ready-to-eat meals, frozen food, and packaged beverages, food processing companies are expanding their production capacities. This rapid growth has intensified the need for efficient heating solutions that can support large-scale, uninterrupted operations while ensuring compliance with stringent industry regulations. Emerging markets such as India, China, Brazil, and Southeast Asia are witnessing a significant expansion in food manufacturing, driven by government initiatives supporting food security and agro-industrial growth. For example, India’s Production-Linked Incentive (PLI) scheme for food processing is expected to boost investment in modern manufacturing infrastructure, including high-efficiency boilers. In developed regions, major food corporations are overhauling their production facilities to integrate sustainable heating technologies, aligning with their corporate sustainability goals. Additionally, advancements in food safety regulations have made precise temperature control a critical factor, further driving the adoption of condensing boilers, which provide more stable and reliable thermal energy for sensitive processes.

How Are Technological Innovations Transforming Boiler Efficiency?

Advancements in boiler technology are reshaping the competitive landscape, with manufacturers focusing on automation, smart monitoring, and fuel adaptability. The integration of IoT-based monitoring systems has revolutionized boiler operations, allowing food processing facilities to track energy consumption, optimize fuel efficiency, and enable predictive maintenance. These smart systems significantly reduce downtime, ensuring seamless operations in high-demand food processing plants. The development of hybrid boilers capable of running on multiple fuel sources, including natural gas, biogas, and hydrogen, is another major breakthrough. With food processors increasingly shifting toward sustainable energy sources, the adoption of dual-fuel and alternative fuel boilers is gaining traction. Additionally, enhanced heat exchanger materials, such as corrosion-resistant alloys and stainless steel, are improving boiler durability, making them more efficient and cost-effective over the long term. The ability to recover and reuse condensate water in these systems further enhances their efficiency, reducing both fuel and water consumption. These technological improvements are making condensing boilers the preferred choice for food processing companies aiming to achieve greater energy savings and lower operational risks.

What Are the Key Drivers Behind the Market’s Growth?

The growth in the condensing food processing boilers market is driven by several factors, including regulatory pressures, cost efficiency, technological advancements, and industry-specific requirements. As governments worldwide tighten environmental regulations, food manufacturers are compelled to transition to low-emission, high-efficiency heating solutions. The rising cost of natural gas and fossil fuels is also playing a crucial role, as industries look for ways to minimize fuel consumption while maintaining operational efficiency. The expansion of food processing facilities in emerging economies is another major driver, with investments in large-scale production plants boosting demand for advanced boiler systems. Moreover, the increasing integration of smart factory automation is pushing manufacturers toward IoT-enabled boilers that offer real-time performance tracking, remote diagnostics, and automated efficiency optimization. The food industry's growing reliance on alternative and renewable energy sources has further accelerated the adoption of hybrid and dual-fuel condensing boilers. As consumer preferences shift toward sustainably produced food products, companies are under greater pressure to reduce their carbon footprint, making energy-efficient boilers a critical component of their sustainability strategies. Given these trends, the demand for condensing food processing boilers is expected to witness significant growth in the coming years, shaping the future of energy efficiency in the global food manufacturing sector.

SCOPE OF STUDY:

The report analyzes the Condensing Food Processing Boilers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Capacity (10 MMBTU/hr, 10 - 25 MMBTU/hr, 25 - 50 MMBTU/hr, 50 - 75 MMBTU/hr, 75 - 100 MMBTU/hr, 100 - 175 MMBTU/hr, 175 - 250 MMBTU/hr, > 250 MMBTU/hr); Product Type (Fire-Tube Boilers, Water-Tube Boilers); Fuel Type (Natural Gas, Oil, Coal, Other Types)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â