¼¼°èÀÇ Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀå
Targeted Protein Degradation
»óǰÄÚµå : 1777614
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 384 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀåÀº 2030³â±îÁö 14¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 5¾ï 2,820¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 17.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ PROTAC´Â CAGR 20.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 9,880¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÐÀÚ Á¢ÂøÁ¦ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 15.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 4,390¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 24.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀåÀº 2024³â¿¡ 1¾ï 4,390¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 24.8%·Î 2030³â±îÁö 3¾ï 3,440¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 13.9%¿Í 16.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç¥Àû ´Ü¹éÁú ºÐÇØ°¡ ½Å¾à°³¹ß°ú Ä¡·áÁ¦¸¦ ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â?

Ç¥Àû ´Ü¹éÁú ºÐÇØ(TPD)´Â ½Å¾à°³¹ßÀÇ °¡Àå À¯¸Á ÇÁ·ÐƼ¾î Áß Çϳª·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ƯÈ÷ Áö±Ý±îÁö 'Ä¡·á ºÒ°¡´ÉÇÑ' Ç¥ÀûÀ» Æ÷ÇÔÇÑ Áúº´ Ä¡·á¿¡ »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» Á¦°øÇÕ´Ï´Ù. TPD´Â ´Ü¹éÁúÀÇ È°¼º ºÎÀ§¸¸ Â÷´ÜÇÏ´Â ±âÁ¸ ÀúºÐÀÚ ¾ïÁ¦Á¦¿Í ´Þ¸® ¼¼Æ÷ ÀÚüÀÇ ´Ü¹éÁú ºÐÇØ ¸ÞÄ¿´ÏÁòÀ» Ȱ¿ëÇÏ¿© Áúº´À» À¯¹ßÇÏ´Â ´Ü¹éÁúÀ» ½Ã½ºÅÛ¿¡¼­ ¿ÏÀüÈ÷ Á¦°ÅÇÕ´Ï´Ù. ÀÌ ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ ±âÁ¸ ¾à¸®ÇÐÀÇ ÇѰ踦 ³Ñ¾î Ä¡·á °¡´ÉÇÑ ÇÁ·ÎÅ׿ÈÀ» È®ÀåÇϸ鼭 ´õ ±í°í ¿À·¡ Áö¼ÓµÇ´Â Ä¡·á È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀÇ ÇÙ½ÉÀº PROTAC(Proteolysis-Targeting Chimera) ¹× ºÐÀÚÁ¢ÂøÁ¦¿Í °°Àº ÀÌÁ¾À̰ü´É¼º ºÐÀÚ¿Í E3 À¯ºñÄûƾ ¸®°¡Á¦¸¦ Ç¥Àû ´Ü¹éÁú¿¡ ÀÛ¿ë½ÃÄÑ ÇÁ·ÎÅ×¾ÆÁ»¿¡ ÀÇÇÑ ÆÄ±«¸¦ À¯µµÇÏ¿© ¼±ÅÃÀû ºÐÇØ¸¦ À¯µµÇÏ´Â ´Ù¸¥ »õ·Î¿î ¹æ¹ýÀÔ´Ï´Ù. ¹æ¹ýÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀº ±â´ÉÀû °áÇÕ Æ÷ÄÏÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í, ºñ°è ´Ü¹éÁú, Àü»ç ÀÎÀÚ, Á¶Àý º¹ÇÕü(¾Ï, ½Å°æ ÅðÇ༺ Áúȯ, ¸é¿ª Áúȯ µî)¸¦ ºÐÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Ä¡·áÀû Àǹ̴ ¸Å¿ì Å©¸ç, ¿¬±¸ÀÚµéÀº Áö±Ý±îÁö ¹ö·ÁÁø Ç¥ÀûÀ» Àç°ËÅäÇÏ°í »õ·Î¿î »ý¹°ÇÐÀû °æ·Î¸¦ Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾à»ç, »ý¸í°øÇÐ Çõ½Å±â¾÷, ±×¸®°í Çмú±â°üµéµµ ¸¶Âù°¡Áö·Î TPD¸¦ ´Ü¼øÇÑ ÅøÀÌ ¾Æ´Ñ Çõ½ÅÀûÀÎ Ç÷§Æû ±â¼ú·Î ÀνÄÇϰí ÀÌ ºÐ¾ß¿¡ ÀÚ¿øÀ» ½ñ¾Æ º×°í ÀÖ½À´Ï´Ù. Ãʱâ ÀÓ»ó ´Ü°èÀÇ TPD Ä¡·á°¡ À¯¸Á °á°ú¸¦ º¸À̱⠽ÃÀÛÇϸ鼭, ÀÌ ºÐ¾ß´Â Á¤¹ÐÀÇ·á¿Í Áúº´ Ä¡·áÀÇ Àü¸ÁÀ» ÀçÁ¤ÀÇÇÒ Áغñ¸¦ Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº TPD ¾ç½Ä°ú Ç÷§ÆûÀÇ ÁøÈ­¸¦ ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?

Ç¥Àû ´Ü¹éÁú ºÐÇØ ºÐ¾ß´Â TPD ±â¹Ý Ä¡·áÁ¦ÀÇ È­ÇÐÀû ´Ù¾ç¼º, Àü´Þ È¿À², Á¶Á÷ ƯÀ̼ºÀ» È®´ëÇÏ´Â ±â¼ú Çõ½ÅÀÇ ¹°°á·Î ºü¸£°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. Ãʱ⿡´Â Å©±â¿Í »ýüÀÌ¿ë·ü¿¡ ÀÇÇØ Á¦ÇѵǾú´ø ÇÁ·ÎŹÀº ÇöÀç ¸µÄ¿ ÃÖÀûÈ­, ´ëȯÇü ºñ°è, ±¸Á¶ À¯µµ ¼³°è ±â¼úÀ» ÅëÇØ ¾àµ¿ÇÐÀ» °³¼±ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÇÑÆí, ´Ü¹éÁú °£ »óÈ£ÀÛ¿ëÀ» À¯µµÇϰí À¯ºñÄûƾȭ¸¦ ÃËÁøÇÏ´Â ÀúºÐÀÚÀÎ ºÐÀÚÁ¢ÂøÁ¦´Â ±¸Á¶°¡ ´õ ´Ü¼øÇÏ°í ¾à¹°°ú À¯»çÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. ±ØÀú¿Â ÀüÀÚÇö¹Ì°æ°ú NMR ºÐ±¤¹ýÀ» Æ÷ÇÔÇÑ ±¸Á¶»ý¹°ÇÐÀÇ ¹ßÀüÀ¸·Î ºÐÇØÁ¦ÀÇ È¿´É¿¡ Áß¿äÇÑ ¿ä¼ÒÀÎ »ï¿ø º¹ÇÕü Çü¼º¿¡ ´ëÇÑ º¸´Ù ¸íÈ®ÇÑ ÀÌÇØ°¡ °¡´ÉÇØÁ³½À´Ï´Ù. DNA ¾Ïȣȭ ¶óÀ̺귯¸®, CRISPR ±â¹Ý ±â´É À¯ÀüüÇÐ, °íÇÔ·® Ç¥ÇöÇü ºÐ¼® µî »õ·Î¿î ½ºÅ©¸®´× Ç÷§ÆûÀº ºÐÇØ °¡´ÉÇÑ Ç¥ÀûÀ» ½Äº°Çϰí ÃÖÀûÀÇ E3 ¸®°¡Á¦ ÆÄÆ®³Ê¿Í ¸ÅĪÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í º´ÇàÇÏ¿© Á¶Á÷ ƯÀÌÀû ¸®°¡Á¦ ¹× Ç¥Àû Àü´Þ ½Ã½ºÅÛ °³¹ßÀÌ ÁøÇàµÇ¾î ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏÀ» °³¼±Çϰí TPDÀÇ Àû¿ë ¹üÀ§¸¦ Á¾¾çÇÐ ¿ÜÀÇ ºÐ¾ß·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù. PROTACs¸¦ À§ÇÑ Ç×ü-¾à¹° Á¢ÇÕü(ADC)¿Í ³ª³ëÀÔÀÚ Àü´ÞüÀÇ »ç¿ëÀº ƯÈ÷ ³ú³ª ´Ù¸¥ ħÅõÇϱ⠾î·Á¿î Á¶Á÷À» Ç¥ÀûÀ¸·Î »ï±â À§ÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ºÐÇØÁ¦ÀÇ È¿°ú¸¦ ¿¹ÃøÇÏ°í ±Ô¸ð¿¡ µû¶ó È­ÇÕ¹° ¼³°è¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ÀΰøÁö´É°ú ¸Ó½Å·¯´× ÅøÀÇ Àû¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ TPD´Â ½ÇÇèÀû °³³ä¿¡¼­ ´Ù¾çÇÑ Áúº´ ¿µ¿ª¿¡¼­ µ¿±Þ ÃÖÃÊ ¹× µ¿±Þ ÃÖ°­ÀÇ Ä¡·áÁ¦¸¦ °³¹ßÇÒ ¼ö ÀÖ´Â ´Ù°¢ÀûÀÎ Ç÷§ÆûÀ¸·Î ºü¸£°Ô º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

Ç¥Àû ´Ü¹éÁú ºÐÇØ°¡ ÀÓ»óÀû, »ó¾÷ÀûÀ¸·Î °¡Àå Å« ¿µÇâÀ» ¹ÌÄ¡´Â °÷Àº ¾îµðÀΰ¡?

Ç¥Àû ´Ü¹éÁú ºÐÇØ´Â BRD4, BCL-XL, ¾Èµå·Î°Õ ¶Ç´Â ¿¡½ºÆ®·Î°Õ ¼ö¿ëü µî ¸¹Àº °¡Ä¡ Àִ ǥÀûµéÀÌ ÀüÀÓ»ó ¹× Ãʱâ ÀÓ»ó¿¡¼­ ¼º°øÀûÀ¸·Î ºÐÇØµÈ Á¾¾çÇÐ ºÐ¾ß¿¡¼­ °¡Àå Áï°¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Àü¸³¼±¾Ï, À¯¹æ¾Ï, Ç÷¾×¾ÏÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â Èĺ¸¹°ÁúÀ» Æ÷ÇÔÇØ ¿©·¯ PROTAC ±â¹Ý ¾à¹°ÀÌ ÀÎü ÀÓ»ó½ÃÇè¿¡ µé¾î°¬À¸¸ç, ±âÁ¸ ¾ïÁ¦Á¦°¡ ½ÇÆÐÇϰųª ³»¼ºÀÌ »ý±ä °æ¿ì È¿´ÉÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¾Ï ¿Ü¿¡µµ ¾ËÃ÷ÇÏÀ̸Ӻ´, ÆÄŲ½¼º´, ¾ËÃ÷ÇÏÀ̸Ӻ´, ALS¿Í °°Àº ½Å°æ ÅðÇ༺ ÁúȯÀº ¾ïÁ¦ÇÏ±â ¾î·ÆÁö¸¸ ºÐÇØÇÒ ¼ö ÀÖ´Â À߸ø Á¢È÷°Å³ª ÀÀÁýµÇ°Å³ª º»ÁúÀûÀ¸·Î ¹«Áú¼­ÇÑ ´Ü¹éÁúÀÌ °ü·ÃµÇ¾î ÀÖÀ¸¹Ç·Î TPDÀÇ ÁÖ¿ä ±âȸ ¿µ¿ªÀÔ´Ï´Ù. ÀÚ°¡¸é¿ªÁúȯ°ú ¿°Áõ¼º Áúȯµµ »õ·Î¿î Ÿ°ÙÀ¸·Î, ƯÈ÷ »çÀÌÅäÄ«ÀÎ Á¶Àý¹°Áú°ú ¼¼Æ÷³» ¸é¿ªÁ¶Àý¹°Áú ºÐÇØÁ¦°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ´ëÇü Á¦¾àȸ»ç°¡ ºÐÇØÁ¦ ¹ß°ß ¹× ÃÖÀûÈ­¸¦ Àü¹®À¸·Î ÇÏ´Â »ý¸í°øÇРȸ»ç¿Í ¼ö½Ê¾ï ´Þ·¯ ±Ô¸ðÀÇ Á¦ÈÞ¸¦ ¸Î´Â µî »ó¾÷Àû »óȲÀÌ ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. Arvinas, Kymera Therapeutics, Nurix, C4 Therapeutics µîÀÇ ±â¾÷ÀÌ ÀÓ»ó °³¹ßÀÇ ÁÖ¿ä ±â¾÷À̸ç, ´Ù¾çÇÑ Ä¡·á ¿µ¿ª¿¡ °ÉÃÄ È¿°úÀûÀÎ ÆÄÀÌÇÁ¶óÀÎÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ÀÓ»óÀÇ Æ²À» ³Ñ¾î Çмú¿¬±¸¼¾ÅͰ¡ ´Ü¹éÁú ±â´É ¹× ¼¼Æ÷ »ý¹°ÇÐ ¿¬±¸¿¡ TPD ÅøÀ» äÅÃÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±â¼ú Çõ½ÅÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áö¿ªÀûÀ¸·Î´Â ºÏ¹Ì°¡ Ãʱ⠴ܰèÀÇ °³¹ß ¹× ÀÚ±Ý Á¶´ÞÀ» ÁÖµµÇϰí ÀÖÁö¸¸, À¯·´°ú ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÅõÀÚ, ±ÔÁ¦ ´ç±¹°úÀÇ °ü°è, ±â°ü°úÀÇ Á¦ÈÞ¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ÁöÀûÀç»ê±Ç Æ÷Æ®Æú¸®¿À°¡ È®´ëµÇ°í 1¼¼´ë ºÐÇØ ¾à¹°ÀÌ ±ÔÁ¦ ´ç±¹ÀÇ ½É»ç¿¡ °¡±î¿öÁü¿¡ µû¶ó TPDÀÇ »ó¾÷Àû °¡´É¼ºÀº Á¡Á¡ ´õ ±¸Ã¼È­µÇ°í ÀÖÀ¸¸ç, ÇâÈÄ 10³â°£ ÀǾàǰ ÆÄÀÌÇÁ¶óÀο¡ Å« º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â ÀáÀç·ÂÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

¼¼°è Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀåÀÇ ±Þ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è Ç¥Àû ´Ü¹éÁú ºÐÇØ ½ÃÀåÀÇ ¼ºÀåÀº °úÇÐÀû Çõ½Å, ¹ÌÃæÁ·µÈ ÀÓ»óÀû ¿ä±¸, ÅõÀÚ ¸ð¸àÅÒ, Ä¡·á¿ëµµ È®´ë°¡ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÇÙ½É ¿øµ¿·Â Áß Çϳª´Â ±âÁ¸ÀÇ ÀúºÐÀÚ È­ÇÕ¹°À̳ª »ý¹°Á¦Á¦°¡ ´Ù·çÁö ¸øÇß´ø Áúº´ °ü·Ã ´Ü¹éÁúÀÇ ´ëºÎºÐ¿¡ Á¢±ÙÇÒ ¼ö ÀÖ´Â TPDÀÇ ¶Ù¾î³­ ´É·ÂÀÔ´Ï´Ù. TPD´Â º¸´Ù ¿ÏÀüÇÏ°í ³»±¸¼º ÀÖ´Â ´Ü¹éÁú ħ¹¬À» ±â´ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î ´Ü¹éÁú °ú¹ßÇöÀ̳ª µ¹¿¬º¯ÀÌ·Î ÀÎÇÑ º´¿ø¼ºÀ» Ư¡À¸·Î ÇÏ´Â ÁúȯÀÇ Ä¡·á¿¡ ¸Å¿ì ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ ¾Ï°ú ¸¸¼ºÁúȯ Áõ°¡·Î ÀÎÇØ º¸´Ù ¼±ÅÃÀûÀÌ°í ³»¼ºÀ» ȸÇÇÇÏ´Â Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â TPD°¡ °­·ÂÇÑ °æÀï·ÂÀ» °¡Áø ºÐ¾ßÀÔ´Ï´Ù. º¥Ã³Ä³ÇÇÅаú Àü·«Àû Á¦¾à ÆÄÆ®³Ê½ÊÀÇ À¯ÀÔÀº ÆÄÀÌÇÁ¶óÀÎ °³¹ßÀ» °¡¼ÓÈ­ÇÏ°í ´õ ¸¹Àº Èĺ¸¹°ÁúÀ» ÀÓ»ó Æò°¡·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. ¸®°£µå Ž»ö, ¸µÄ¿ È­ÇÐ, °è»ê ¸ðµ¨¸µ, ÇÏÀ̽º·çDz ½ºÅ©¸®´×ÀÇ ±â¼ú ¹ßÀüÀº ºÐÇØÁ¦ °³¹ßÀÇ ¼Óµµ¿Í ¼º°ø·üÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹µµ ÀÌ·¯ÇÑ »õ·Î¿î ¸ÞÄ¿´ÏÁò¿¡ °ü½ÉÀ» º¸À̰í ÀÖÀ¸¸ç, ƯÁ¤ ÇÁ·Î±×·¥¿¡ ´ëÇØ ÆÐ½ºÆ®Æ®·¢ ÁöÁ¤ ¹× Èñ±ÍÁúȯ Ä¡·áÁ¦ ƯÇý¸¦ Á¦°øÇÔÀ¸·Î½á »ó¾÷È­¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¼¼Æ÷ Åõ°ú¼º ¹× °æ±¸ »ý¹°ÇÐÀû ÀÌ¿ëÀÌ °¡´ÉÇÑ ºÐÇØÁ¦ÀÇ °¡¿ë¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Áö±Ý±îÁöÀÇ Ã¤Åà À庮ÀÌ ±Øº¹µÇ°í ÀÖ½À´Ï´Ù. Çмú¿¬±¸¿Í Á¶±â Á¢±ÙÀÌ °¡´ÉÇÑ TPD ÅøÅ°Æ®Àº ÀÎÁöµµ¸¦ ³ôÀ̰í, ºñ»ó¾÷Àû ¿¬±¸°³¹ß ±¸»óÀ» °¡´ÉÇÏ°Ô Çϸç, ´õ dzºÎÇÑ ½Å¾à °³¹ß »ýŰ踦 Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. º´¿ë¿ä¹ý ¹× Á¶Á÷ ƯÀÌÀû ºÐÇØÁ¦ÀÇ º¸±Þ°ú »õ·Î¿î E3 ¸®°¡Á¦ÀÇ ¹ß±¼ ¹× Ȱ¿ë¿¡ µû¶ó ½ÃÀåÀº ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, Ç¥Àû ´Ü¹éÁú ºÐÇØ´Â Á¤¹Ð Ä¡·á ¹× ½Ã½ºÅÛ ¼öÁØ Ä¡·áÀÇ ¹Ì·¡¿¡¼­ ÇÙ½ÉÀûÀÎ Ä¡·á¹ýÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(PROTAC, Molecular Glues, LYTACs, ±âŸ), ¿ëµµ(Drug Discovery, Ä¡·á °³¹ß), ÃÖÁ¾ ¿ëµµ(Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú¡¤¿¬±¸±â°ü, º´¿ø¡¤ÀÓ»ó ¿¬±¸¼Ò, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Targeted Protein Degradation Market to Reach US$1.4 Billion by 2030

The global market for Targeted Protein Degradation estimated at US$528.2 Million in the year 2024, is expected to reach US$1.4 Billion by 2030, growing at a CAGR of 17.9% over the analysis period 2024-2030. PROTAC, one of the segments analyzed in the report, is expected to record a 20.8% CAGR and reach US$598.8 Million by the end of the analysis period. Growth in the Molecular Glues segment is estimated at 15.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$143.9 Million While China is Forecast to Grow at 24.8% CAGR

The Targeted Protein Degradation market in the U.S. is estimated at US$143.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$334.4 Million by the year 2030 trailing a CAGR of 24.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.9% and 16.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.9% CAGR.

Global Targeted Protein Degradation Market - Key Trends & Drivers Summarized

Why Is Targeted Protein Degradation Redefining Drug Discovery and Therapeutics?

Targeted protein degradation (TPD) has emerged as one of the most promising frontiers in drug discovery, offering a new paradigm in the way diseases-particularly those involving previously “undruggable” targets-can be treated. Unlike conventional small molecule inhibitors that merely block the active sites of proteins, TPD leverages the cell’s own protein degradation machinery to completely eliminate disease-causing proteins from the system. This mechanism offers the potential for deeper and longer-lasting therapeutic effects while expanding the druggable proteome beyond the limits of traditional pharmacology. Central to this approach are heterobifunctional molecules such as PROTACs (Proteolysis-Targeting Chimeras), molecular glues, and other novel modalities that induce selective degradation by recruiting E3 ubiquitin ligases to tag target proteins for proteasomal destruction. This method bypasses the need for a functional binding pocket and allows degradation of scaffolding proteins, transcription factors, and regulatory complexes-many of which are implicated in cancers, neurodegenerative diseases, and immune disorders. The therapeutic implications are profound, enabling researchers to revisit previously abandoned targets and explore new biological pathways. Pharmaceutical companies, biotech innovators, and academic institutions alike are pouring resources into this domain, seeing it not just as a tool, but as a revolutionary platform technology. As the first clinical-stage TPD therapies begin to show encouraging results, the field is poised to redefine the landscape of precision medicine and disease modification.

How Are Technological Innovations Driving the Evolution of TPD Modalities and Platforms?

The field of targeted protein degradation is being rapidly transformed by a wave of technological innovation, which is expanding the chemical diversity, delivery efficiency, and tissue specificity of TPD-based therapeutics. PROTACs, initially limited by size and bioavailability, are now being engineered with improved pharmacokinetics through linker optimization, macrocyclic scaffolds, and structure-guided design techniques. Meanwhile, molecular glues-small molecules that induce protein-protein interactions to promote ubiquitination-are gaining momentum due to their simpler structures and favorable drug-like properties. Advances in structural biology, including cryo-EM and NMR spectroscopy, are enabling a clearer understanding of ternary complex formation, a critical factor in the efficacy of degraders. New screening platforms, such as DNA-encoded libraries, CRISPR-based functional genomics, and high-content phenotypic assays, are helping identify degradable targets and match them with optimal E3 ligase partners. In parallel, tissue-specific ligases and targeted delivery systems are being developed to enhance safety profiles and expand TPD’s applicability beyond oncology. The use of antibody-drug conjugates (ADCs) and nanoparticle delivery vehicles for PROTACs is also under investigation, particularly for targeting the brain and other difficult-to-penetrate tissues. Artificial intelligence and machine learning tools are increasingly being applied to predict degrader efficacy and optimize compound design at scale. These innovations are rapidly converting TPD from an experimental concept into a multi-faceted platform capable of producing first-in-class and best-in-class therapeutics across a wide spectrum of diseases.

Where Is Targeted Protein Degradation Making the Strongest Clinical and Commercial Impact?

Targeted protein degradation is making its most immediate impact in the field of oncology, where many high-value targets-such as BRD4, BCL-XL, and androgen or estrogen receptors-have been successfully degraded in preclinical and early clinical studies. Several PROTAC-based drugs have entered human trials, including candidates targeting prostate cancer, breast cancer, and hematologic malignancies, often showing efficacy where traditional inhibitors have failed or encountered resistance. In addition to cancer, neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and ALS represent a major area of opportunity for TPD, given the involvement of misfolded, aggregated, or intrinsically disordered proteins that are difficult to inhibit but potentially degradable. Autoimmune and inflammatory diseases are also emerging targets, particularly as degraders are developed for cytokine modulators and intracellular immune regulators. The commercial landscape is expanding rapidly, with major pharmaceutical companies entering multi-billion-dollar partnerships with biotech firms that specialize in degrader discovery and optimization. Companies like Arvinas, Kymera Therapeutics, Nurix, and C4 Therapeutics are leading clinical development efforts and have established validated pipelines spanning various therapeutic areas. Beyond the clinical setting, academic research centers are increasingly adopting TPD tools to study protein function and cellular biology, further driving innovation. Geographically, North America dominates early-stage development and funding, but Europe and Asia-Pacific are ramping up investment, regulatory engagement, and institutional collaborations. As intellectual property portfolios grow and first-generation degrader drugs approach regulatory review, the commercial potential of TPD is becoming increasingly tangible, signaling a major shift in how drug pipelines may be shaped in the coming decade.

What’s Fueling the Rapid Growth of the Global Targeted Protein Degradation Market?

The growth of the global targeted protein degradation market is driven by a confluence of scientific breakthroughs, unmet clinical needs, investment momentum, and broadening therapeutic applications. One of the core drivers is the significant ability of TPD to access the large swath of disease-related proteins that have remained unaddressable by conventional small molecules and biologics. The promise of more complete and durable protein silencing makes it a highly attractive option for treating diseases characterized by protein overexpression or mutation-driven pathogenicity. Rising incidence of cancers and chronic illnesses globally is also pushing demand for more selective, resistance-evading therapies-an area where TPD has strong competitive advantage. The influx of venture capital and strategic pharmaceutical partnerships is accelerating pipeline development and pushing more candidates into clinical evaluation. Technological advancements in ligand discovery, linker chemistry, computational modeling, and high-throughput screening are increasing the speed and success rate of degrader development. Regulatory agencies are also showing interest in these novel mechanisms, offering fast-track designations and orphan drug incentives for certain programs, further supporting commercialization. Meanwhile, the growing availability of cell-permeable, orally bioavailable degraders is overcoming previous barriers to adoption. Academic research and early-access TPD toolkits are expanding awareness and enabling non-commercial R&D initiatives, fostering a richer discovery ecosystem. As combination therapies and tissue-specific degraders gain traction, and new E3 ligases are identified and harnessed, the market is set to expand rapidly-positioning targeted protein degradation as a core modality in the future of precision and systems-level therapeutics.

SCOPE OF STUDY:

The report analyzes the Targeted Protein Degradation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (PROTAC, Molecular Glues, LYTACs, Others); Application (Drug Discovery, Therapy Development); End-Use (Pharma & Biotech Companies, Academic & Research Institutes, Hospitals & Clinical Laboratories, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â