¼¼°èÀÇ Áö½Ä ±×·¡ÇÁ ½ÃÀå
Knowledge Graph
»óǰÄÚµå : 1774962
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 381 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Áö½Ä ±×·¡ÇÁ ½ÃÀåÀº 2030³â±îÁö 84¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Áö½Ä ±×·¡ÇÁ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 39.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 84¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¾÷ Áö½Ä ±×·¡ÇÁ Ç÷§Æû ¼Ö·ç¼ÇÀº º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀ̸ç, CAGRÀº 41.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 55¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ¿£Áø ¼Ö·ç¼Ç ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 35.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 320¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 37.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Áö½Ä ±×·¡ÇÁ ½ÃÀåÀº 2024³â¿¡ 3¾ï 320¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 37.1%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 36.2%¿Í 33.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 27.1%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è Áö½Ä ±×·¡ÇÁ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

µ¥ÀÌÅÍ ¿¬°á¼ºÀ» °­È­Çϱâ À§ÇØ Áö½Ä ±×·¡ÇÁ ½ÃÀåÀº ¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

Áö½Ä ±×·¡ÇÁ ½ÃÀåÀº ÀÇ»ç°áÁ¤, °Ë»ö ÃÖÀûÈ­, ÀΰøÁö´É(AI) ¿ëµµ Çâ»óÀ» À§ÇØ ±¸Á¶È­µÇ°í »óÈ£ ¿¬°áµÈ µ¥ÀÌÅÍÀÇ °¡Ä¡¸¦ ÀνÄÇÏ´Â ±â¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áö½Ä ±×·¡ÇÁ´Â ¿£Æ¼Æ¼¿Í ±× °ü°è¸¦ ¿¬°áÇÏ¿© Á¤º¸¸¦ Á¤¸®Çϰí, º¸´Ù Áö´ÉÀûÀÎ µ¥ÀÌÅÍ °Ë»ö°ú ¸Æ¶ô ÀÌÇØ¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ½Ã¸Çƽ ³×Æ®¿öÅ©ÀÔ´Ï´Ù. Áö½Ä ±×·¡ÇÁ´Â Ãʱ⠱¸±Û°ú °°Àº °Ë»ö ¿£ÁøÀÌ °Ë»öÀÇ °ü·Ã¼ºÀ» ³ôÀ̱â À§ÇØ º¸±ÞÇÑ °ÍÀ¸·Î, ÇöÀç´Â ±ÝÀ¶, ÇコÄɾî, ¼Ò¸Å, »çÀ̹ö º¸¾È µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷Àº Áö½Ä ±×·¡ÇÁ¸¦ Ȱ¿ëÇÏ¿© µ¥ÀÌÅÍ »çÀϷθ¦ ÇØ¼ÒÇϰí, ¿©·¯ ¼Ò½ºÀÇ Á¤Çü µ¥ÀÌÅÍ¿Í ºñÁ¤Çü µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. À̱âÁ¾ µ¥ÀÌÅÍ °£ÀÇ °ü°è¸¦ Ãß·ÐÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¸¦ Çâ»ó½Ã۰í, ±â¾÷Àº º¸´Ù Á¤È®ÇÑ Ãßõ ½Ã½ºÅÛ, ºÎÁ¤ÇàÀ§ °¨Áö ¸ðµ¨, À§Çè Æò°¡ µµ±¸¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±×·¡ÇÁ ±â¹Ý µ¥ÀÌÅͺ£À̽º´Â º¹ÀâÇÏ°Ô »óÈ£ ¿¬°áµÈ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â µ¥ ÀÖ¾î ±âÁ¸ÀÇ °ü°èÇü µ¥ÀÌÅͺ£À̽º¸¦ ´É°¡Çϰí ÀÖÀ¸¸ç, Áö½Ä ±×·¡ÇÁ´Â Ãֽе¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ÀÇ Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ±â¾÷µéÀÌ ½Ç½Ã°£ ÀλçÀÌÆ®¿Í ¸Æ¶ô¿¡ ±â¹ÝÇÑ ÀÎÁö¸¦ Ãß±¸ÇÔ¿¡ µû¶ó, µ¥ÀÌÅÍ ¿¬°á°ú ºÐ¼®À» °­È­ÇϰíÀÚ ÇÏ´Â ¸ðµç ºÐ¾ß¿¡¼­ Áö½Ä ±×·¡ÇÁÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

AI´Â Áö½Ä ±×·¡ÇÁ¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÀΰøÁö´É°ú ¸Ó½Å·¯´×Àº Áö½Ä ±×·¡ÇÁÀÇ ¹ßÀü¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÀÚµ¿È­, ÀÚ°¡ ÇнÀ ±â´É, ¿¹Ãø ºÐ¼®ÀÇ °­È­, AI ±â¹Ý Áö½Ä ±×·¡ÇÁ´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ¿£Æ¼Æ¼¸¦ ÀÚµ¿À¸·Î ÃßÃâÇϰí, ºÐ·ùÇϰí, ¿£Æ¼Æ¼ °£ÀÇ °ü°è¸¦ ¼³Á¤ÇÏ¿© ¼öÀÛ¾÷À¸·Î ÀÎÇÑ µ¥ÀÌÅÍ Å¥·¹À̼ÇÀÇ ¼ö°í¸¦ Å©°Ô ÁÙ¿©ÁÝ´Ï´Ù. ¼öÀÛ¾÷À¸·Î ÀÎÇÑ µ¥ÀÌÅÍ Å¥·¹À̼ÇÀÇ ¼ö°í¸¦ Å©°Ô ÁÙ¿©ÁÝ´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP)¿Í µö·¯´× ±â¼úÀº ÅØ½ºÆ® ¹®¼­, À̸ÞÀÏ, ¼Ò¼È ¹Ìµð¾î °Ô½Ã¹°°ú °°Àº ºñÁ¤Çü µ¥ÀÌÅ͸¦ ÀÌÇØÇϰí ó¸®ÇÏ´Â Áö½Ä ±×·¡ÇÁÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº °í±Þ °Ë»ö ±â´É, °³ÀÎÈ­µÈ Ãßõ, º¸´Ù Á¤È®ÇÑ ÀÀ´äÀ» Á¦°øÇÏ´Â »óȲ ÀÎ½Ä Ãªº¿À» À§ÇØ AI°¡ žÀçµÈ Áö½Ä ±×·¡ÇÁ¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. »çÀ̹ö º¸¾È ºÐ¾ß¿¡¼­´Â AI·Î °­È­µÈ Áö½Ä ±×·¡ÇÁ°¡ °ú°Å µ¥ÀÌÅÍ¿Í ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀáÀçÀûÀÎ °ø°Ý ÆÐÅÏÀ» ¸ÅÇÎÇÏ¿© »çÀ̹ö À§ÇùÀ» °¨ÁöÇÏ°í ¿¹¹æÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. °­È­ÇнÀÀÇ ÅëÇÕÀº ÁøÈ­ÇÏ´Â ÆÐÅÏ¿¡ µû¶ó µ¥ÀÌÅÍ Æ÷ÀÎÆ® °£ÀÇ °ü°è¸¦ Áö¼ÓÀûÀ¸·Î °³¼±ÇÔÀ¸·Î½á Áö½Ä ±×·¡ÇÁ¸¦ ´õ¿í °­È­ÇÕ´Ï´Ù. ¶ÇÇÑ, »õ·Î¿î Á¤º¸°¡ Ãß°¡µÉ ¶§¸¶´Ù ÀÚÀ²ÀûÀ¸·Î ±¸Á¶¸¦ ¾÷µ¥ÀÌÆ®ÇÏ´Â ÀÚ°¡ ±¸ÃàÇü Áö½Ä ±×·¡ÇÁÀÇ ÃâÇöÀº AI ±â¹Ý Áö½Ä °ü¸®ÀÇ ÇѰ踦 ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» À§ÇÑ È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã°í ÀÖ´Â °¡¿îµ¥, AI ±â¹Ý Áö½Ä ±×·¡ÇÁ´Â º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ÀÇ¹Ì ÀÖ´Â ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍÀÇ º¹À⼺ÀÌ Áö½Ä ±×·¡ÇÁ ±â¾÷ µµÀÔÀÇ ¿øµ¿·Â?

Áö½Ä ±×·¡ÇÁ°¡ ³Î¸® äÅõǴ ¹è°æ¿¡´Â ±â¾÷ µ¥ÀÌÅÍÀÇ º¹À⼺ÀÌ Å©°Ô ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ±â¾÷Àº IoT ±â±â, µðÁöÅÐ Æ®·£Àè¼Ç, °í°´°úÀÇ »óÈ£ÀÛ¿ë, ¾÷¹« ¿öÅ©ÇÃ·Î¿ì µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ °ü°èÇü µ¥ÀÌÅͺ£À̽º´Â »óÈ£ ¿¬°áµÈ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹À¸¸ç, ±â¾÷µéÀº º¸´Ù ³ôÀº À¯¿¬¼º°ú È®À强À» Á¦°øÇÏ´Â ±×·¡ÇÁ ±â¹Ý ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. Áö½Ä ±×·¡ÇÁ´Â µµ¸ÞÀÎ °£ µ¥ÀÌÅÍ ÅëÇÕÀ» ÃËÁøÇϰí, ±â¾÷ÀÌ ³»ºÎ µ¥ÀÌÅÍ¿Í ¿ÜºÎ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© º¸´Ù Á¾ÇÕÀûÀÎ ºÐ¼®À» ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÇコÄÉ¾î ¹× »ý¸í°úÇÐ µîÀÇ »ê¾÷¿¡¼­´Â Áö½Ä ±×·¡ÇÁ¸¦ À¯ÀüÀÚ µ¥ÀÌÅÍ, ÀÓ»ó µ¥ÀÌÅÍ, ÀǾàǰ µ¥ÀÌÅÍ¿Í ¿¬°èÇÏ¿© ½Å¾à°³¹ß, Áúº´ ¸ðµ¨¸µ, °³ÀÎ ¸ÂÃãÇü Ä¡·á¹ý Ãßõ¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ºÐ¾ß¿¡¼­´Â Áö½Ä ±×·¡ÇÁ°¡ ±ÝÀ¶ °Å·¡ÀÇ º¹ÀâÇÑ °ü°è¸¦ ¸ÅÇÎÇÏ¿© ¸®½ºÅ© Æò°¡¿Í ±ÔÁ¦ Áؼö¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. ¹ý·ü ºÐ¾ß¿¡¼­µµ Áö½Ä ±×·¡ÇÁ´Â ´ë·®ÀÇ ¹ý·ü ¹®¼­ ³» ÀÇÁ¸ °ü°è¸¦ ÆÄ¾ÇÇÏ¿© °è¾à ºÐ¼® ¹× ÄÄÇöóÀ̾𽺠ÃßÀû¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ µ¥ÀÌÅÍ °Å¹ö³Í½º¿Í Áö½Ä °ü¸®¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Áö½Ä ±×·¡ÇÁ´Â Çù¾÷, Çõ½Å, ¾÷¹« È¿À²¼ºÀ» ÃËÁøÇÏ´Â Àü»çÀû µ¥ÀÌÅÍ »ýŰ踦 ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

Áö½Ä ±×·¡ÇÁ ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è Áö½Ä ±×·¡ÇÁ ½ÃÀåÀÇ ¼ºÀåÀº AI ±â¹Ý ºÐ¼®ÀÇ Ã¤Åà Áõ°¡, ±â¾÷ µ¥ÀÌÅÍÀÇ º¹À⼺ Áõ°¡, ÀÇ»ç°áÁ¤ ¿ª·® °­È­ ¿ä±¸ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ µ¥ÀÌÅÍ Á᫐ ¸ðµ¨·Î ÀüȯÇÔ¿¡ µû¶ó ´ÜÆíÈ­µÈ Á¤º¸¸¦ »óÈ£ ¿¬°áµÈ ÅëÂû·ÂÀ¸·Î º¯È¯ÇÏ´Â Áö½Ä ±×·¡ÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Áö½Ä ±×·¡ÇÁ°¡ AI ¿ëµµÀÇ ±âº» ±¸¼º ¿ä¼Ò·Î ÀÛ¿ëÇϱ⠶§¹®¿¡ ƯÈ÷ ÀÚ¿¬¾î ÀÌÇØ ¹× ¿¹Ãø ºÐ¼® ºÐ¾ß¿¡¼­ AI »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ °í°´ °æÇèÀÇ ºÎ»óÀ¸·Î ÀÎÇØ ÀüÀÚ»ó°Å·¡, ½ºÆ®¸®¹Ö Ç÷§Æû, µðÁöÅÐ ¸¶ÄÉÆÃ ±â¾÷¿¡¼­ »ç¿ëÇÏ´Â Ãßõ ¿£Áø¿¡ Áö½Ä ±×·¡ÇÁ¸¦ µµÀÔÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ±ÝÀ¶, ÇコÄɾî, »çÀ̹ö º¸¾È ºÐ¾ßÀÇ ±ÔÁ¦ Áؼö ¿ä±¸»çÇ×À¸·Î ÀÎÇØ ¸®½ºÅ© ºÐ¼®°ú ºÎÁ¤ÇàÀ§ °¨Áö¸¦ À§ÇÑ Áö½Ä ±×·¡ÇÁÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ã¸Çƽ °Ë»ö°ú Áö´ÉÇü ÀÚµ¿È­¿¡¼­ Áö½Ä ±×·¡ÇÁÀÇ ¿µÇâ·ÂÀÌ Ä¿Áö¸é¼­ º¹ÀâÇÑ µ¥ÀÌÅÍ °Ë»ö ÇÁ·Î¼¼½º¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷ÀÌ ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Áö½Ä ±×·¡ÇÁ ¼Ö·ç¼ÇÀº ½ÃÀåÀÇ Á¢±Ù¼ºÀ» ´õ¿í È®´ëÇÏ¿© ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡°Ô È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ µµÀÔ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ±â¾÷ÀÌ µ¥ÀÌÅÍ ÀÚ»êÀÇ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇϰíÀÚ ÇÏ´Â °¡¿îµ¥, Áö½Ä ±×·¡ÇÁ´Â AI ±â¹Ý ºÐ¼®, ±â¾÷ Áö½Ä °ü¸®, Áö´ÉÇü µ¥ÀÌÅÍ ÅëÇÕÀÇ Çõ½ÅÀ» ÃËÁøÇϸç Áö¼ÓÀûÀÎ ¼ºÀåÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

¼Ö·ç¼Ç(¿£ÅÍÇÁ¶óÀÌÁî Áö½Ä ±×·¡ÇÁ Ç÷§Æû ¼Ö·ç¼Ç, ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ¿£Áø ¼Ö·ç¼Ç, Áö½Ä °ü¸® µµ±¸ ¼¼Æ® ¼Ö·ç¼Ç); ¼­ºñ½º(Àü¹® ¼­ºñ½º, °ü¸®Çü ¼­ºñ½º); ¸ðµ¨ À¯Çü(¸®¼Ò½º ¼³¸í ÇÁ·¹ÀÓ¿öÅ© Æ®¸®Çà ½ºÅä¾î ¸ðµ¨ À¯Çü, ¶óº§¸µµÈ ¼Ó¼º ±×·¡ÇÁ ¸ðµ¨ À¯Çü); ¾÷Á¾(ÀºÇà, ±ÝÀ¶ ¼­ºñ½º ¹× º¸Çè ¾÷Á¾, ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ¾÷Á¾, ÇコÄÉ¾î ¾÷Á¾, »ý¸í°úÇÐ ¾÷Á¾, Á¦¾à Åë½Å ¹× ±â¼ú ¾÷Á¾, Á¤ºÎ ¾÷Á¾, Á¦Á¶ ¹× ÀÚµ¿Â÷ ¾÷Á¾, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¾÷Á¾, ¿¡³ÊÁö ¾÷Á¾, À¯Æ¿¸®Æ¼ ¹× ÀÎÇÁ¶ó ¾÷Á¾, ¿©Çà ¹× Á¢°´¾÷ ¾÷Á¾, ¿î¼Û ¹× ¹°·ù ¾÷Á¾, ±âŸ ¾÷Á¾); ¾ÖÇø®ÄÉÀ̼Ç(µ¥ÀÌÅÍ °Å¹ö³Í½º ¹× ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, µ¥ÀÌÅÍ ºÐ¼® ¹× ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¾ÖÇø®ÄÉÀ̼Ç, Áö½Ä ¹× ÄÜÅÙÃ÷ °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, °¡»ó ºñ¼­ ¾ÖÇø®ÄÉÀ̼Ç, ¼¿ÇÁ ¼­ºñ½º µ¥ÀÌÅÍ ¹× µðÁöÅÐ ÀÚ»ê °Ë»ö ¾ÖÇø®ÄÉÀ̼Ç, Á¦Ç° ¹× ±¸¼º °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ÀÎÇÁ¶ó ¹× ÀÚ»ê °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ÇÁ·Î¼¼½º ÃÖÀûÈ­ ¹× ÀÚ¿ø °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ¸®½ºÅ© °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ±ÔÁ¤ Áؼö ¾ÖÇø®ÄÉÀ̼Ç, ±ÔÁ¦ º¸°í ¾ÖÇø®ÄÉÀ̼Ç, ½ÃÀå ¹× °í°´ ÀÎÅÚ¸®Àü½º ¾ÖÇø®ÄÉÀ̼Ç, ¿µ¾÷ ÃÖÀûÈ­ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Knowledge Graph Market to Reach US$8.4 Billion by 2030

The global market for Knowledge Graph estimated at US$1.2 Billion in the year 2024, is expected to reach US$8.4 Billion by 2030, growing at a CAGR of 39.3% over the analysis period 2024-2030. Enterprise Knowledge Graph Platform Solutions, one of the segments analyzed in the report, is expected to record a 41.8% CAGR and reach US$5.5 Billion by the end of the analysis period. Growth in the Graph Database Engine Solutions segment is estimated at 35.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$303.2 Million While China is Forecast to Grow at 37.1% CAGR

The Knowledge Graph market in the U.S. is estimated at US$303.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 37.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 36.2% and 33.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 27.1% CAGR.

Global Knowledge Graph Market - Key Trends & Drivers Summarized

How Is the Knowledge Graph Market Evolving to Enhance Data Connectivity?

The knowledge graph market has seen rapid growth as enterprises increasingly recognize the value of structured, interconnected data for improved decision-making, search optimization, and artificial intelligence (AI) applications. A knowledge graph is a semantic network that organizes information by linking entities and their relationships, enabling more intelligent data retrieval and contextual understanding. Initially popularized by search engines like Google to improve search relevance, knowledge graphs are now being adopted across various industries, including finance, healthcare, retail, and cybersecurity. Organizations are leveraging knowledge graphs to break down data silos, enabling seamless integration of structured and unstructured data from multiple sources. The ability to infer relationships between disparate data points enhances business intelligence, allowing enterprises to build more accurate recommendation systems, fraud detection models, and risk assessment tools. Additionally, graph-based databases are outperforming traditional relational databases in handling complex, interconnected data, making knowledge graphs an essential component of modern data architectures. As enterprises strive for real-time insights and contextual awareness, knowledge graph adoption is accelerating across sectors seeking enhanced data connectivity and analytics.

How Is AI Revolutionizing Knowledge Graphs?

Artificial intelligence and machine learning are playing a pivotal role in the advancement of knowledge graphs, enabling automation, self-learning capabilities, and enhanced predictive analytics. AI-driven knowledge graphs automatically extract, categorize, and establish relationships between entities from vast datasets, significantly reducing manual data curation efforts. Natural language processing (NLP) and deep learning techniques are improving the ability of knowledge graphs to understand and process unstructured data, such as textual documents, emails, and social media posts. Enterprises are using AI-powered knowledge graphs for advanced search capabilities, personalized recommendations, and context-aware chatbots that deliver more accurate responses. In cybersecurity, AI-enhanced knowledge graphs are helping organizations detect and prevent cyber threats by mapping potential attack patterns based on historical and real-time data. The integration of reinforcement learning further enhances knowledge graphs by continuously refining relationships between data points based on evolving patterns. Additionally, the emergence of self-constructing knowledge graphs, which autonomously update their structures as new information is added, is pushing the boundaries of AI-driven knowledge management. As businesses seek scalable solutions for data-driven decision-making, AI-powered knowledge graphs are becoming indispensable for extracting meaningful insights from complex datasets.

Is Enterprise Adoption of Knowledge Graphs Driven by Data Complexity?

The growing complexity of enterprise data is a major driver behind the widespread adoption of knowledge graphs. Organizations are dealing with exponentially increasing volumes of data generated from multiple sources, including IoT devices, digital transactions, customer interactions, and operational workflows. Traditional relational databases often struggle to manage interconnected data efficiently, leading enterprises to adopt graph-based technologies that provide greater flexibility and scalability. Knowledge graphs facilitate cross-domain data integration, enabling enterprises to unify internal and external data for more holistic analytics. Industries such as healthcare and life sciences are leveraging knowledge graphs for drug discovery, disease modeling, and personalized treatment recommendations by linking genetic, clinical, and pharmaceutical data. In finance, knowledge graphs are improving risk assessment and regulatory compliance by mapping intricate relationships between entities in financial transactions. The legal sector is also utilizing knowledge graphs for contract analysis and compliance tracking by identifying dependencies within large volumes of legal documents. As organizations prioritize data governance and knowledge management, knowledge graphs are becoming critical for creating enterprise-wide data ecosystems that foster collaboration, innovation, and operational efficiency.

What Are the Key Growth Drivers in the Knowledge Graph Market?

The growth in the global knowledge graph market is driven by several factors, including the rising adoption of AI-driven analytics, increasing enterprise data complexity, and the need for enhanced decision-making capabilities. As businesses transition to data-centric models, the demand for knowledge graphs is surging due to their ability to transform fragmented information into interconnected insights. The rapid expansion of the AI industry, particularly in natural language understanding and predictive analytics, is further fueling market growth, as knowledge graphs serve as a foundational component for AI applications. The rise of personalized customer experiences has led to increased deployment of knowledge graphs in recommendation engines used by e-commerce, streaming platforms, and digital marketing firms. Regulatory compliance requirements, especially in finance, healthcare, and cybersecurity, have also accelerated the adoption of knowledge graphs for risk analysis and fraud detection. Additionally, the growing influence of knowledge graphs in semantic search and intelligent automation is reshaping industries that rely on complex data retrieval processes. Cloud-based knowledge graph solutions are further expanding market accessibility, providing scalable, cost-effective deployment options for businesses of all sizes. As enterprises seek to unlock the full potential of their data assets, knowledge graphs are poised for continued growth, driving innovation in AI-powered analytics, enterprise knowledge management, and intelligent data integration.

SCOPE OF STUDY:

The report analyzes the Knowledge Graph market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Solutions (Enterprise Knowledge Graph Platform Solutions, Graph Database Engine Solutions, Knowledge Management Toolset Solutions); Services (Professional Services, Managed Services); Model Type (Resource Description Framework Triple Stores Model Type, Labeled Property Graph Model Type); Vertical (Banking, Financial Services & Insurance Vertical, Retail & Ecommerce Vertical, Healthcare Vertical, Life Sciences Vertical, Pharmaceuticals Telecom & Technology Vertical, Government Vertical, Manufacturing & Automotive Vertical, Media & Entertainment Vertical, Energy Vertical, Utilities & Infrastructure Vertical, Travel & Hospitality Vertical, Transportation & Logistics Vertical, Other Verticals); Applications (Data Governance & Master Data Management Application, Data Analytics & Business Intelligence Application, Knowledge & Content Management Application, Virtual Assistants Application, Self-Service Data & Digital Asset Discovery Application, Product & Configuration Management Application, Infrastructure & Asset Management Application, Process Optimization & Resource Management Application, Risk Management Application, Compliance Application, Regulatory Reporting Application, Market & Customer Intelligence Application, Sales Optimization Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â