¼¼°èÀÇ µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀå
Digital Freight Matching
»óǰÄÚµå : 1774764
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 492 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,206,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,620,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀåÀº 2030³â±îÁö 2,124¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 458¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â µðÁöÅÐ È­¹° ¸ÅĪ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 29.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2,124¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿îÀÓ ¸ÅĪ ¼­ºñ½º´Â CAGR26.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,153¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºÎ°¡°¡Ä¡ ¼­ºñ½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 33.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 125¾ï ´Þ·¯, Áß±¹Àº CAGR 37.7%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀåÀº 2024³â¿¡ 125¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 524¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 37.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 23.8%¿Í 26.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 24.6%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

AI¸¦ Ȱ¿ëÇÑ È­¹° ¸ÅĪÀÌ ¹°·ù º´¸ñÇö»óÀ» ÇØ°áÇÒ ¼ö ÀÖÀ»±î?

¹°·ù ¹× ¿î¼Û ¾÷°è´Â ÀΰøÁö´É(AI), ¸Ó½Å·¯´×, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© È­¹°ÀÇ ¸ÅĪ ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­ÇÏ´Â µðÁöÅÐ È­¹° ¸ÅĪ(DFM) Ç÷§ÆûÀÇ µîÀåÀ¸·Î Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. Convoy, Uber Freight, Loadsmart¿Í °°Àº AI ±â¹Ý DFM Ç÷§ÆûÀº ½Ç½Ã°£ ¼ö¿ä, °æ·Î, ¿î¼Û Áö¿¬, ºñ¿ë Áõ°¡ µîÀÇ ºñÈ¿À²ÀûÀÎ ¹®Á¦¸¦ ÇØ°áÇϰí, È­ÁÖ¿Í ¿î¼Û¾÷ü°¡ ÃÖÀûÀÇ È­¹° ¸ÅĪÀ» ã´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¼ö¿ä, °æ·Î ÃÖÀûÈ­, Â÷·® ¿ë·®À» ±â¹ÝÀ¸·Î »ç¿ë °¡´ÉÇÑ È­¹°°ú ÀûÀýÇÑ ¿î¼Û¾÷ü¸¦ Áï½Ã ¸ÅĪÇÏ¿© ÀÌ·¯ÇÑ ¾÷¹«¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ç÷§ÆûÀº ¿¹Ãø ºÐ¼®À» ÅëÇÕÇÏ¿© È­¹° ¼ö¿ä¸¦ ¿¹ÃøÇϰí È­ÁÖ¿Í ¿î¼Û¾÷ü°¡ ´Éµ¿ÀûÀ¸·Î °èȹÀ» ¼¼¿ï ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È­¹° ¸ÅĪÀÇ ÀÚµ¿È­´Â ¼öÀÛ¾÷À» ÁÙÀ̰í, Áß°³ ¼ö¼ö·á¸¦ ÃÖ¼ÒÈ­Çϸç, ÀÚ»ê Ȱ¿ëµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ±×·¯³ª DFM ¼Ö·ç¼ÇÀÇ µµÀÔÀº ±ÔÁ¦ Áؼö, ±âÁ¸ ¿î¼Û °ü¸® ½Ã½ºÅÛ(TMS)°úÀÇ ÅëÇÕ, µ¥ÀÌÅÍ º¸¾È ¹®Á¦ µîÀÇ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, AI¸¦ Ȱ¿ëÇÑ ¿îÀÓ ¸ÅĪ ¼Ö·ç¼ÇÀÌ Á¦°øÇÏ´Â È¿À²¼º, ºñ¿ë Àý°¨, Åõ¸í¼º Çâ»óÀº ¹°·ù ºÐ¾ß¿¡¼­ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºí·ÏüÀÎÀº ¾î¶»°Ô È­¹° ¹°·ùÀÇ Åõ¸í¼ºÀ» ³ôÀ̴°¡?

ºí·ÏüÀÎ ±â¼úÀº °ø±Þ¸Á ¿î¿µ¿¡ ºñ±³ÇÒ ¼ö ¾ø´Â Åõ¸í¼º, º¸¾È, ÃßÀû¼ºÀ» Á¦°øÇÔÀ¸·Î½á µðÁöÅÐ È­¹° ¸ÅĪ¿¡ Çõ¸íÀ» ÀÏÀ¸Å°´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. È­¹° ¹°·ùÀÇ °¡Àå Å« ¹®Á¦ Áß Çϳª´Â ¿©·¯ ÀÌÇØ°ü°èÀÚ°£ÀÇ ½Ç½Ã°£ °¡½Ã¼º ºÎÁ·À¸·Î ÀÎÇØ ºñÈ¿À²°ú ºÐÀïÀÌ ¹ß»ýÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. ºí·ÏüÀÎ ±â¹Ý DFM ¼Ö·ç¼ÇÀº ¿îÀÓ ¿¹¾àºÎÅÍ ÃÖÁ¾ ¹è¼Û±îÁö ¸ðµç °Å·¡°¡ ºÒº¯ÀÇ ¿øÀå¿¡ ±â·ÏµÇ¾î ºÎÁ¤°ú ºÐÀïÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ® °áÁ¦´Â °áÁ¦ ¹× ÄÄÇöóÀ̾𽺠°ËÁõÀ» ÀÚµ¿È­Çϰí Áß°³ÀÚ¸¦ Á¦°ÅÇÏ¿© È¿À²¼ºÀ» ´õ¿í ³ôÀÔ´Ï´Ù. ±âÁ¸¿¡´Â ó¸®Çϴµ¥ ¸î ÁÖ°¡ °É¸®´ø È­¹° °¨»ç³ª ¼ÛÀå ´ëÁ¶µµ ½Ç½Ã°£À¸·Î ¿Ï·áÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿î¼Ûȸ»çÀÇ Çö±Ý È帧ÀÌ °¡¼ÓÈ­µË´Ï´Ù. ¶ÇÇÑ ºí·ÏüÀΰú IoT ¼¾¼­ÀÇ ÅëÇÕÀ¸·Î ¿Âµµ, ½Àµµ µî È­¹°ÀÇ »óŸ¦ ½Ç½Ã°£À¸·Î ÃßÀûÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÀǾàǰÀ̳ª ºÎÆÐÇϱ⠽¬¿î »óǰ°ú °°Àº »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. È­¹° ¹°·ù¿¡ ºí·ÏüÀÎÀ» µµÀÔÇÏ´Â °ÍÀº ¾ÆÁ÷ Ãʱ⠴ܰèÀÌÁö¸¸, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø°ú ¾÷°è¿ÍÀÇ Çù·ÂÀÌ °­È­µÇ¸é µµÀÔÀÌ Å©°Ô È®´ëµÇ°í µðÁöÅÐ È­¹° ¸ÅĪÀÇ ¾ÈÀü¼º, È¿À²¼º, Åõ¸í¼ºÀÌ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Áö¼Ó°¡´É¼ºÀº µðÁöÅÐ È­¹° ÃÖÀûÈ­ÀÇ ¿øµ¿·ÂÀΰ¡?

±â¾÷µéÀÌ Åº¼Ò ¹ßÀÚ±¹À» ÁÙÀ̰í È­¹° ¹°·ùÀÇ È¿À²¼ºÀ» ³ôÀ̰íÀÚ ÇÏ´Â Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀº µðÁöÅÐ È­¹° ¸ÅĪÀ» äÅÃÇÏ´Â Å« °è±â°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿î¼Û »ê¾÷Àº Àü ¼¼°è ź¼Ò ¹èÃâ·®ÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϸç, ºÒÇÊ¿äÇÑ ¿¬·á ¼Òºñ¿Í ȯ°æ ÆÄ±«ÀÇ ¿øÀÎÀÌ µÇ´Â °øÈ¸Àü °Å¸®·Î ÀÎÇØ DFM Ç÷§ÆûÀº È­¹° ¹èºÐÀ» ÃÖÀûÈ­Çϰí, µ¥µåÇìµå ¸¶ÀÏÀ» ÃÖ¼ÒÈ­Çϸç, Æ®·°ÀÇ °¡µ¿·üÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. AI ±â¹Ý °æ·Î ÃÖÀûÈ­ µµ±¸´Â ¿î¼Û¾÷ü°¡ ¿¬·á È¿À²ÀÌ ³ôÀº °æ·Î¸¦ ¼±ÅÃÇϰí, ¿î¿µ ºñ¿ëÀ» Àý°¨Çϸ鼭 ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, Àü±â Æ®·°°ú ÀÚÀ²ÁÖÇà Æ®·°ÀÇ µµÀÔÀº DFM Ç÷§ÆûÀÌ ½Ç½Ã°£ EV ÃæÀü¼Ò µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ÃÖÀûÈ­µÈ °æ·Î °èȹÀ» À§ÇØ ½Ç½Ã°£ EV ÃæÀü¼Ò µ¥ÀÌÅ͸¦ ÅëÇÕÇÔÀ¸·Î½á Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ´õ¿í ºÎÇÕÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ´ë±â¾÷µéÀÌ Áö¼Ó °¡´ÉÇÑ ¿î¼Û °üÇàÀ» ¿ì¼±½ÃÇϰí ÀÖÀ¸¸ç, ¹°·ù Á¦°ø¾÷üµéÀÌ Ä£È¯°æ È­¹° ¸ÅĪ ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶óÀÇ ÇѰè¿Í Áö¼Ó°¡´É¼º ±â¼ú¿¡ ´ëÇÑ ³ôÀº ¼±ÅõÀÚ µîÀÇ °úÁ¦°¡ ³²¾ÆÀÖÁö¸¸, ģȯ°æ ¹°·ù ¼Ö·ç¼ÇÀÇ È®»êÀ¸·Î ÀÎÇØ µðÁöÅÐ È­¹° ¸ÅĪÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

µðÁöÅÐ È­¹° ¸ÅĪ ½ÃÀåÀÇ ¼ºÀåÀº ½Ç½Ã°£ È­¹° °¡½Ã¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹°·ù ¿î¿µ ºñ¿ë Àý°¨, AI ¹× ÀÚµ¿È­ µµÀÔ È®´ë µî ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. DFM ¼Ö·ç¼ÇÀÇ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºí·ÏüÀΰú IoTÀÇ ÅëÇÕÀº È­¹° °Å·¡ÀÇ Åõ¸í¼º°ú ¾ÈÀü¼ºÀ» ³ôÀ̰í, ¿¹Ãø ºÐ¼®Àº º¸´Ù ½º¸¶Æ®ÇÑ ÀûÀç °èȹ°ú ¼ö¿ä ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â°ú ź¼Ò ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ ±â¾÷µéÀº ÃÖÀûÈ­µÈ È­¹° ¸ÅĪ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¿î¼Û °ü¸® ½Ã½ºÅÛ(TMS)ÀÇ È®´ë´Â DFM Ç÷§Æû°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ÃËÁøÇÏ¿© ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ ¹°·ù ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í È­¹° ¿î¼Û¾÷ü, È­ÁÖ, ±â¼ú Á¦°ø¾÷ü °£ÀÇ Àü·«Àû Á¦ÈÞµµ ½ÃÀå È®´ë¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² µðÁöÅÐ È­¹° ¸ÅĪÀº ¾÷°è Ç¥ÁØÀÌ µÇ¾î Àü ¼¼°è ¹°·ù ¹× °ø±Þ¸Á °ü¸®¿¡ º¯È­¸¦ °¡Á®¿Ã °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

¼­ºñ½º(È­¹° ¸ÅĪ ¼­ºñ½º, ºÎ°¡°¡Ä¡ ¼­ºñ½º), Ç÷§Æû(À¥ ±â¹Ý Ç÷§Æû, ¸ð¹ÙÀÏ ±â¹Ý Ç÷§Æû, Android Ç÷§Æû, iOS Ç÷§Æû), ¿î¼Û ÇüÅÂ(Ç® Æ®·° ÀûÀç, ¼Ò·® Æ®·° ÀûÀç, º¹ÇÕ Àϰü¼ö¼Û, ±âŸ ¿î¼Û ÇüÅÂ), ÃÖÁ¾»ç¿ëÀÚ(½Äǰ ¹× À½·á ÃÖÁ¾»ç¿ëÀÚ, ¼Ò¸Å ¹× E-Commerce ÃÖÁ¾»ç¿ëÀÚ, Á¦Á¶ ÃÖÁ¾»ç¿ëÀÚ, ¼®À¯ ¹× °¡½º ÃÖÁ¾»ç¿ëÀÚ, ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Digital Freight Matching Market to Reach US$212.4 Billion by 2030

The global market for Digital Freight Matching estimated at US$45.8 Billion in the year 2024, is expected to reach US$212.4 Billion by 2030, growing at a CAGR of 29.1% over the analysis period 2024-2030. Freight Matching Services, one of the segments analyzed in the report, is expected to record a 26.2% CAGR and reach US$115.3 Billion by the end of the analysis period. Growth in the Value Added Services segment is estimated at 33.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$12.5 Billion While China is Forecast to Grow at 37.7% CAGR

The Digital Freight Matching market in the U.S. is estimated at US$12.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$52.4 Billion by the year 2030 trailing a CAGR of 37.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 23.8% and 26.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 24.6% CAGR.

Global Digital Freight Matching Market - Key Trends & Drivers Summarized

Can AI-Powered Freight Matching Solve the Logistics Bottleneck?

The logistics and transportation industry is undergoing a major transformation with the rise of digital freight matching (DFM) platforms, leveraging artificial intelligence (AI), machine learning, and real-time data analytics to optimize load-matching processes. Traditional freight brokerage models often suffer from inefficiencies, with shippers and carriers struggling to find optimal load matches, leading to empty miles, delayed shipments, and increased costs. AI-driven DFM platforms such as Convoy, Uber Freight, and Loadsmart are streamlining these operations by instantly matching available loads with suitable carriers based on real-time demand, route optimization, and vehicle capacity. These platforms also integrate predictive analytics to forecast freight demand, helping shippers and carriers plan proactively. Furthermore, automation in freight matching is reducing manual intervention, minimizing brokerage fees, and improving asset utilization. However, the adoption of DFM solutions faces challenges such as regulatory compliance, integration with legacy transportation management systems (TMS), and data security concerns. Nevertheless, the efficiency gains, cost reductions, and increased transparency offered by AI-powered freight matching solutions are expected to drive widespread adoption in the logistics sector.

How Is Blockchain Enhancing Transparency in Freight Logistics?

Blockchain technology is playing a crucial role in revolutionizing digital freight matching by providing unparalleled transparency, security, and traceability in supply chain operations. One of the biggest challenges in freight logistics is the lack of real-time visibility across multiple stakeholders, leading to inefficiencies and disputes. Blockchain-based DFM solutions ensure that every transaction, from freight booking to final delivery, is recorded on an immutable ledger, reducing fraud and disputes. Smart contracts further enhance efficiency by automating payments and compliance verification, eliminating the need for intermediaries. Freight auditing and invoice reconciliation, which traditionally take weeks to process, can now be completed in real-time, accelerating cash flow for carriers. Additionally, blockchain integration with IoT sensors enables real-time tracking of cargo conditions such as temperature and humidity, which is critical for industries like pharmaceuticals and perishable goods. While blockchain adoption in freight logistics is still in its nascent stages, increasing regulatory support and industry collaborations are expected to drive significant adoption, making digital freight matching more secure, efficient, and transparent.

Is Sustainability a Driving Force Behind Digital Freight Optimization?

Sustainability concerns are becoming a major catalyst for digital freight matching adoption, as businesses seek to reduce their carbon footprint and improve efficiency in freight logistics. The transportation industry accounts for a significant share of global carbon emissions, with empty miles contributing to unnecessary fuel consumption and environmental degradation. DFM platforms address this challenge by optimizing load distribution, minimizing deadhead miles, and improving truck utilization rates. AI-driven route optimization tools help carriers choose fuel-efficient routes, reducing emissions while lowering operational costs. Additionally, the adoption of electric and autonomous trucks is further aligning with sustainability goals, with DFM platforms integrating real-time EV charging station data for optimized route planning. Many large corporations are also prioritizing sustainable shipping practices, pushing logistics providers to adopt greener freight-matching solutions. While challenges such as infrastructure limitations and high upfront investment in sustainability technologies persist, the push for environmentally friendly logistics solutions is expected to accelerate the adoption of digital freight matching.

What Is Driving the Growth of the Digital Freight Matching Market?

The growth in the digital freight matching market is driven by several key factors, including the increasing demand for real-time freight visibility, cost reduction in logistics operations, and growing adoption of AI and automation. The surge in e-commerce and the need for faster, more efficient last-mile deliveries are prompting logistics companies to adopt DFM solutions. The integration of blockchain and IoT is enhancing transparency and security in freight transactions, while predictive analytics is enabling smarter load planning and demand forecasting. Sustainability initiatives and regulatory pressure to reduce carbon emissions are pushing companies toward optimized freight-matching solutions. The expansion of cloud-based transportation management systems (TMS) is also facilitating seamless integration with DFM platforms, improving operational efficiency. Additionally, increasing investments in digital logistics startups and strategic partnerships among freight carriers, shippers, and technology providers are accelerating market expansion. As technology continues to advance, digital freight matching is expected to become the industry standard, transforming global logistics and supply chain management.

SCOPE OF STUDY:

The report analyzes the Digital Freight Matching market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Service (Freight Matching Services, Value Added Services); Platform (Web-based Platform, Mobile-based Platform, Android Platform, iOS Platform); Transportation Mode (Full Truckload, Less-than-Truckload, Intermodal, Other Transportation Modes); End-Use (Food & Beverages End-Use, Retail & E-commerce End-Use, Manufacturing End-Use, Oil & Gas End-Use, Automotive End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â