¼¼°èÀÇ ÀÇ·á¿ë ¿µ»ó Áø´Ü ºÐ¾ß ÀΰøÁö´É ½ÃÀå
Artificial Intelligence in Medical Imaging
»óǰÄÚµå : 1643507
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 199 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,502,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,507,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß ÀΰøÁö´É ¼¼°è ½ÃÀå, 2030³â±îÁö 81¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ßÀÇ ¼¼°è ÀΰøÁö´É ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 32.9%ÀÇ CAGR(¿¬Æò±Õ ¼ºÀå·ü)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 81¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ µö·¯´× ±â¼úÀº CAGR 30.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 42¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP) ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 36.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 3¾ï 8,640¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 31.4%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß ÀΰøÁö´É ½ÃÀåÀº 2024³â 3¾ï 8,640¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È CAGRÀº 31.4%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 29.7% ¹× 28.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 23.2%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

AI´Â ÀÇ·á ¿µ»ó Áø´Ü¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº Áø´Ü Á¤È®µµ¸¦ ³ôÀ̰í, ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϸç, Áúº´À» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ÀÇ·á ¿µ»ó Áø´Ü¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¿µ»ó Áø´Ü ¹æ¹ýÀº ¼öÀÛ¾÷¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ½Ã°£ÀÌ ¿À·¡ °É¸®°í, ÆíÂ÷°¡ ¹ß»ýÇϱ⠽¬¿îµ¥, AI ±â¹Ý ½Ã½ºÅÛÀº ¿µ»ó µ¥ÀÌÅ͸¦ ¶Ù¾î³­ ¼Óµµ¿Í Á¤È®µµ·Î ºÐ¼®ÇÏ¿© ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí, »ç¶÷ÀÇ ´«À¸·Î´Â ³õÄ¥ ¼ö ÀÖ´Â ÀÌ»ó ¡Èĸ¦ ã¾Æ³À´Ï´Ù.

¹æ´ëÇÑ ÀÇ·á ¿µ»ó µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÈ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¾Ï, ½ÉÇ÷°üÁúȯ, ½Å°æ Áúȯ µîÀÇ Áúº´À» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿µ»óÀÇÇаú AI µµ±¸´Â CT ½ºÄµ, MRI, ¿¢½º·¹À̸¦ ºÐ¼®ÇÏ¿© Á¾¾ç, °ñÀý, ±âŸ ÀÌ»ó ¡Èĸ¦ ã¾Æ³»¾î Áø´Ü ¿À·ù¸¦ ÁÙÀ̰í ȯÀÚ ¿¹Èĸ¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â Ä¡·áÀÇ ÁúÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¿µ»óÀÇÇаú ÀÇ»çÀÇ ¾÷¹« ºÎ´ãÀ» ÁÙ¿©ÁÝ´Ï´Ù.

AI´Â ¶ÇÇÑ È¯ÀÚº° ¿µ»ó µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Áúº´ÀÇ ÁøÇà°ú Ä¡·á ¹ÝÀÀÀ» ¿¹ÃøÇÔÀ¸·Î½á ¸ÂÃãÇü ÀÇ·áÀÇ Áøº¸¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº ȯÀÚ °³°³Àο¡°Ô ÃÖÀûÀÇ Ä¡·á¸¦ º¸ÀåÇÏ°í ¸ÂÃãÇü Ä¡·á Àü·«À» Áö¿øÇÕ´Ï´Ù. ÀÌó·³ ÀÇ·á ¿µ»ó Áø´Ü ½Ã½ºÅÛ¿¡ AI¸¦ ÅëÇÕÇÏ´Â °ÍÀº Áø´ÜÀÇ Á¤È®¼º°ú È¿À²¼ºÀÇ ±âÁØÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

ÀÇ·á ¿µ»ó Áø´Ü¿¡¼­ AI µµÀÔÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¸¸¼ºÁúȯÀÇ Áõ°¡¿Í Á¶±â Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÀÇ·á ¿µ»ó Áø´Ü¿¡ AI¸¦ µµÀÔÇÏ´Â ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¾Ï, ½ÉÇ÷°üÁúȯ, ½Å°æ ÅðÇ༺ Áúȯ µîÀÇ Ä¡·á¸¦ À§Çؼ­´Â È¿°úÀûÀÎ Ä¡·á¸¦ À§ÇÑ Àû½Ã ¹ß°ßÀÌ ÇÊ¿äÇϸç, AI ±â¹Ý ¿µ»ó Áø´Ü µµ±¸´Â ÀÇ·á Àü¹®°¡¿¡°Ô ÀÌ·¯ÇÑ ÁúȯÀ» Á¶±â¿¡ Áø´ÜÇϰí, ȯÀÚ ¿¹Èĸ¦ °³¼±Çϸç, ÀÇ·á ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

÷´Ü Áø´Ü µµ±¸¿Í ÀüÀÚ ÀÇ·á ±â·Ï¿¡ ÀÇÇØ »ý¼ºµÇ´Â À̹ÌÁö µ¥ÀÌÅÍÀÇ ±ÞÁõµµ Áß¿äÇÑ ¿äÀÎÀ¸·Î, AI ½Ã½ºÅÛÀº ÀÌ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÆÐÅϰú »ó°ü°ü°è¸¦ ¹àÇô³»°í Áø´Ü Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ¿µ»óÀÇÇаú Àü¹®Àǰ¡ ¾ÐµµÀûÀÎ ¾÷¹«·®¿¡ ½Ã´Þ¸®´Â ´ë±Ô¸ð ÀÇ·á ½Ã¼³¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ¿§Áö AIÀÇ ¹ßÀüÀ¸·Î ÀÇ·á ¿µ»ó ¼Ö·ç¼ÇÀÌ ´õ¿í Ä£¼÷ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ÀÇ·á ¼­ºñ½º Á¦°øÀÚ´Â ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀ̵µ AI ±â¹Ý Áø´ÜÀ» Ȱ¿ëÇÒ ¼ö ÀÖÀ¸¸ç, Áö¹æ ¹× ÀÇ·á Ãë¾à Áö¿ªÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ÀÇ·á ȯ°æ¿¡¼­ AI µµ±¸ÀÇ µµÀÔÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI°¡ ÀÇ·á ¿µ»ó Áø´ÜÀÇ È¿À²¼º°ú Á¢±Ù¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

AI´Â ÀÏ»óÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ¿ø°Ý Áø´ÜÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÀÇ·á ¿µ»ó Áø´ÜÀÇ È¿À²¼º°ú Á¢±Ù¼ºÀ» Çõ½ÅÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý ½Ã½ºÅÛÀº À̹ÌÁö ºÐÇÒ, ÁÖ¼® ¹× º¸°í¼­ ÀÛ¼ºÀ» ÀÚµ¿È­ÇÏ¿© ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϰí, ¹æ»ç¼±»ç°¡ ¹Ýº¹ÀûÀÎ ÀÛ¾÷¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» ÁÙ¿©ÁÝ´Ï´Ù. ¹Ýº¹ÀûÀÎ ÀÛ¾÷¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ È¿À²¼ºÀ» ÅëÇØ ¹æ»ç¼±»ç´Â º¹ÀâÇÑ ÄÉÀ̽º¿¡ ÁýÁßÇÒ ¼ö ÀÖ¾î ¿µ»ó Áø´Ü ºÎ¼­ ÀüüÀÇ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

AI´Â ¶ÇÇÑ ¿ø°Ý ¿µ»ó Áø´Ü ¹× ¿ø°Ý Áø´ÜÀ» Áö¿øÇÔÀ¸·Î½á Á¢±Ù¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àü¹®ÀÇ¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Á¦ÇÑµÈ Áö¿ª¿¡¼­´Â AI µµ±¸°¡ ÀÇ·á À̹ÌÁö¸¦ ºÐ¼®Çϰí Áø´Ü º¸°í¼­¸¦ ÀÛ¼ºÇÏ¿© ÀÇ·á ¼­ºñ½º Á¦°øÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº Àû½Ã¿¡ Á¤È®ÇÑ Áø´ÜÀÌ »ý¸íÀ» ±¸ÇÒ ¼ö ÀÖ´Â ÀÚ¿øÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

¶ÇÇÑ, AI´Â ±ä±ÞÇÑ ´ëÀÀÀÌ ÇÊ¿äÇÑ ¿µ»ó °Ë»ç¿¡ ¿ì¼±¼øÀ§¸¦ ºÎ¿©ÇÏ¿© ÀÀ±ÞȯÀÚ¸¦ ½Å¼ÓÇÏ°Ô ºÐ·ùÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¿¹¸¦ µé¾î, AI ½Ã½ºÅÛÀº ³úÁ¹ÁßÀ̳ª Æó»öÀüÁõ°ú °°Àº ½É°¢ÇÑ »óŸ¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÏ¿© ȯÀÚ°¡ ½Å¼ÓÇÏ°Ô Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÀÇ·á ¿µ»ó ¼­ºñ½º Á¦°øÀ» º¸´Ù È¿À²ÀûÀÌ°í ´õ ¸¹Àº »ç¶÷µéÀÌ ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

ÀÇ·á ¿µ»ó Áø´Ü AI ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ß ÀΰøÁö´É ½ÃÀåÀÇ ¼ºÀåÀº ÇコÄɾîÀÇ Çõ½Å °¡´É¼ºÀ» ¹Ý¿µÇÏ´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Á¤¹Ð Áø´Ü ¹× ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Áß¿äÇÑ ÃËÁø¿äÀÎÀ̸ç, AI ±â¹Ý ¿µ»ó Áø´Ü µµ±¸´Â Áø´Ü Á¤È®µµ¸¦ ³ôÀÌ°í ¸ÂÃãÇü Ä¡·á °èȹÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Çö´ë ÀÇ·áÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ºÎÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

µö·¯´×°ú ÄÄÇ»ÅÍ ºñÀüÀ» Æ÷ÇÔÇÑ AIÀÇ ±â¼úÀû ¹ßÀüÀº ÀÇ·á¿ë ¿µ»ó ó¸® ½Ã½ºÅÛÀÇ ´É·ÂÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Áúº´ÀÇ ¹ß°ß°ú Ư¼ºÈ­¸¦ °³¼±Çϰí, AI¸¦ ¹æ»ç¼±°ú ÀÇ»ç¿Í ÀÓ»óÀÇ¿¡°Ô ÇʼöÀûÀÎ µµ±¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, CT, MRI, ÃÊÀ½ÆÄ µî ¿µ»ó Áø´Ü ¾ç½Ä°ú AIÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¸é¼­ ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

AI ±â¹Ý ÀÇ·á±â±â¿¡ ´ëÇÑ ±ÔÁ¦Àû Áö¿ø°ú °¡Ä¡ ±â¹Ý ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ÀÇ·á ±â°üÀº ȯÀÚ °á°ú¸¦ °³¼±ÇÏ°í ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ AI µµÀÔÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ¸¸¼ºÁúȯÀÇ À¯º´·ü Áõ°¡¿Í AI ¾Ë°í¸®ÁòÀÇ Áö¼ÓÀûÀÎ °³¹ß°ú ÇÔ²² ÀÇ·á ¿µ»ó Áø´Ü ºÐ¾ßÀÇ AI ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, Áø´Ü ¹× ÀÇ·á ¼­ºñ½º Á¦°øÀÇ ¹Ì·¡ ¹ßÀüÀ» À§ÇÑ Ãʼ®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(µö·¯´× ±â¼ú, ÀÚ¿¬¾î ó¸®(NLP) ±â¼ú, ±âŸ ±â¼ú), ¾ç½Ä(CT ½ºÄµ ¾ç½Ä, MRI ¾ç½Ä, ¿¢½º·¹ÀÌ ¾ç½Ä, ÃÊÀ½ÆÄ ¾ç½Ä, ÇÙÀÇÇÐ ¾ç½Ä), ¿ëµµ(½Å°æÇÐ ¿ëµµ, È£Èí±â/È£Èí±â ¿ëµµ, Á¤Çü¿Ü°ú ¿ëµµ, ¼øÈ¯±â ¿ëµµ, À¯¹æ ½ºÅ©¸®´× ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø ÃÖÁ¾ ¿ëµµ, ¿µ»ó Áø´Ü¼¾ÅÍ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ ÇÕ°è 25°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Medical Imaging Market to Reach US$8.1 Billion by 2030

The global market for Artificial Intelligence in Medical Imaging estimated at US$1.5 Billion in the year 2024, is expected to reach US$8.1 Billion by 2030, growing at a CAGR of 32.9% over the analysis period 2024-2030. Deep Learning Technology, one of the segments analyzed in the report, is expected to record a 30.1% CAGR and reach US$4.2 Billion by the end of the analysis period. Growth in the Natural Language Processing (NLP) Technology segment is estimated at 36.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$386.4 Million While China is Forecast to Grow at 31.4% CAGR

The Artificial Intelligence in Medical Imaging market in the U.S. is estimated at US$386.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 31.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 29.7% and 28.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 23.2% CAGR.

Global Artificial Intelligence in Medical Imaging Market - Key Trends & Drivers Summarized

How Is AI Revolutionizing Medical Imaging Diagnostics?

Artificial Intelligence (AI) is transforming medical imaging by enhancing diagnostic accuracy, streamlining workflows, and enabling early disease detection. Traditional imaging methods often rely on manual interpretation, which can be time-consuming and prone to variability. AI-powered systems address these challenges by analyzing imaging data with exceptional speed and precision, identifying abnormalities that might be missed by human eyes.

Machine learning algorithms trained on vast datasets of medical images can detect diseases such as cancer, cardiovascular conditions, and neurological disorders at an early stage. For instance, AI tools in radiology can analyze CT scans, MRIs, and X-rays to identify tumors, fractures, and other anomalies, reducing diagnostic errors and improving patient outcomes. These tools not only enhance the quality of care but also alleviate the workload of radiologists.

AI is also enabling advancements in personalized medicine by analyzing patient-specific imaging data to predict disease progression and response to treatments. This capability supports tailored therapeutic strategies, ensuring optimal care for individual patients. The integration of AI into medical imaging systems is thus redefining the standards of precision and efficiency in diagnostics.

What Drives the Adoption of AI in Medical Imaging?

The increasing prevalence of chronic diseases and the growing demand for early and accurate diagnostics are major drivers of AI adoption in medical imaging. Conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders require timely detection for effective treatment. AI-powered imaging tools provide healthcare professionals with the insights needed to diagnose these diseases at earlier stages, improving patient outcomes and reducing healthcare costs.

The surge in imaging data generated by advanced diagnostic tools and electronic health records is another critical factor. AI systems analyze this data to uncover patterns and correlations, offering actionable insights that improve diagnostic accuracy. These capabilities are particularly valuable in large healthcare facilities, where radiologists often face overwhelming workloads.

Moreover, advancements in cloud computing and edge AI are making medical imaging solutions more accessible. These technologies enable healthcare providers to leverage AI-driven diagnostics without significant infrastructure investments, facilitating the adoption of AI tools across diverse healthcare settings, including rural and underserved areas.

Can AI Improve Efficiency and Accessibility in Medical Imaging?

AI is revolutionizing efficiency and accessibility in medical imaging by automating routine tasks and enabling remote diagnostics. AI-powered systems streamline workflows by automating image segmentation, annotation, and report generation, reducing the time radiologists spend on repetitive tasks. This efficiency allows radiologists to focus on complex cases and improves overall productivity in diagnostic imaging departments.

AI also enhances accessibility by supporting teleradiology and remote diagnostics. In areas with limited access to specialists, AI tools analyze medical images and generate diagnostic reports, bridging the gap in healthcare delivery. These capabilities are particularly beneficial in low-resource settings, where timely and accurate diagnostics can save lives.

Additionally, AI is enabling faster triage of emergency cases by prioritizing imaging studies that require immediate attention. For instance, AI systems can identify critical conditions such as strokes or pulmonary embolisms in real time, ensuring that patients receive prompt treatment. These advancements are transforming the delivery of medical imaging services, making them more efficient and accessible to a broader population.

What’s Driving the Growth of the AI in Medical Imaging Market?

The growth in the Artificial Intelligence in Medical Imaging market is driven by several key factors, reflecting its transformative potential in healthcare. The rising demand for precision diagnostics and personalized medicine is a significant growth driver. AI-powered imaging tools enhance diagnostic accuracy and enable tailored treatment plans, addressing the evolving needs of modern healthcare.

Technological advancements in AI, including deep learning and computer vision, are expanding the capabilities of medical imaging systems. These innovations improve the detection and characterization of diseases, making AI an indispensable tool for radiologists and clinicians. Furthermore, the increasing integration of AI with imaging modalities such as CT, MRI, and ultrasound is driving innovation in the field.

Regulatory support for AI-based medical devices and the growing focus on value-based care are also fueling market growth. Governments and healthcare organizations are encouraging the adoption of AI to improve patient outcomes and reduce costs. These factors, combined with the rising prevalence of chronic diseases and the continuous development of AI algorithms, are propelling the rapid growth of the AI in Medical Imaging market, positioning it as a cornerstone of future advancements in diagnostics and healthcare delivery.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Medical Imaging market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Deep Learning Technology, Natural Language Processing (NLP) Technology, Other Technologies); Modality (CT Scan Modality, MRI Modality, X-ray Modality, Ultrasound Modality, Nuclear Imaging Modality); Application (Neurology Application, Respiratory & Pulmonary Application, Orthopedics Application, Cardiology Application, Breast Screening Application, Other Applications); End-Use (Hospitals End-Use, Diagnostic Imaging Centers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 25 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â