세계의 의료 영상용 AI 시장 예측(-2029년) : 컴포넌트(하드웨어, 소프트웨어, 서비스), 모달리티(MRI, CT, X선), 용도(방사선, 심장, 폐암, 유방암, 전립선암), 최종사용자별(병원, 영상 진단 센터)
Artificial Intelligence (AI) in Medical Imaging Market by Component(Hardware, Software, Service), Modality (MRI, CT, X-Ray), Application (Radiology, Cardio, Cancer- Lung, Breast, Prostate), End User(Hospital, Imaging Center) - Global Forecast to 2029
상품코드:1636637
리서치사:MarketsandMarkets
발행일:2025년 01월
페이지 정보:영문 432 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
의료 영상용 AI 시장 규모는 2024년 16억 5,000만 달러에서 예측 기간 중 22.4%의 CAGR로 추이하며, 2029년에는 45억 3,000만 달러 규모로 성장할 것으로 예측됩니다.
이 현저한 성장의 요인으로는 AI 기술에 대한 정부 지원 증가, 방사선과 의사들의 AI 솔루션에 대한 신뢰도 향상, 이종 산업 간 협력 및 파트너십 등을 꼽을 수 있습니다. 반면, AI 전문 인력 부족, 일관성 없고 모호한 규제 프레임워크는 성장의 걸림돌로 작용할 것으로 보입니다.
조사 범위
조사 대상연도
2023-2029년
기준연도
2023년
예측 기간
2024-2029년
단위
금액(달러)
부문
컴포넌트·용도·최종사용자·지역
대상 지역
북미·유럽·아시아태평양·라틴아메리카·중동 & 아프리카
"서비스 분야가 예측 기간 중 가장 급성장할 전망"
컴포넌트별로는 운영 최적화, 프로세스 자동화, 진단 정확도 향상 등의 기능으로 인해 소프트웨어 부문이 2023년 시장을 주도할 것으로 예측되었습니다. 그러나 예측 기간 중 2024-2029년 서비스 부문이 가장 높은 성장세를 보일 것으로 예상되는데, 이는 헬스케어 분야의 AI 솔루션 도입 및 최적화에 필요한 관리형 서비스, 통합 지원, 교육에 대한 수요가 증가하기 때문입니다. 이러한 서비스를 통해 의료 서비스 프로바이더는 인력 부족 및 영상 처리 작업 증가와 같은 문제를 해결하여 업무 효율성을 높이고 환자에게 더 나은 의료 서비스를 제공할 수 있습니다.
"방사선 부문이 2023년에 가장 큰 점유율을 차지한다."
첨단 이미징 솔루션에 대한 높은 수요와 영상의학과 전문의의 진단 지원을 위한 AI 채택이 증가함에 따라 방사선 분야가 큰 비중을 차지하고 있으며, AI 기술은 진단 정확도를 높이고, 워크플로우를 간소화하며, 영상의학과 전문의의 업무 부담을 줄여 더 빠르고 정확한 결과를 제공하기 위해 방사선 진단에 널리 사용되고 있습니다. 결과를 가져다주기 때문에 방사선 진단에 널리 활용되고 있습니다. 의료 영상 진단 건수가 증가하고 있으며, AI 기술의 지속적인 발전으로 시장에서의 우위를 지속할 것으로 예상됩니다.
한편, 종양 분야에서의 응용도 빠르게 성장하고 있습니다. 종양의 AI 응용은 기본적으로 조기 발견, 치료 계획, 환자의 진행 상황을 추적하고, 예를 들어 비정상적인 증식 징후와 종양에 대한 CT 스캔, MRI, 생검과 같은 의료 이미지를 추가로 분석 할 수 있습니다. 이 용도는 AI가 암을 보다 정확하고 신속하게 진단하는 데 도움이 될 수 있으므로 빠르게 추진되고 있으며 가까운 미래에 성장할 것으로 예상됩니다.
"북미가 2023년 시장 주도"
지역별로는 북미가 2023년 시장을 주도할 것으로 예상됩니다. 이는 이 지역의 높은 수준의 의료 인프라, AI 기술의 광범위한 채택, 주요 기업 및 기관들의 연구개발에 대한 대규모 투자에 기인합니다. 반면, 아시아태평양은 암 유병률 증가, 진단을 위한 AI 활용 증가, 의료 시스템 현대화를 위한 정부의 구상에 힘입어 예측 기간 중 가장 높은 CAGR을 보일 것으로 예상됩니다.
세계의 의료 영상용 AI 시장을 조사했으며, 시장 개요, 시장 성장에 대한 각종 영향요인 분석, 기술·특허의 동향, 법규제 환경, 사례 연구, 시장 규모 추이·예측, 각종 구분·지역별 상세 분석, 경쟁 환경, 주요 기업의 개요 등을 정리하여 전해드립니다.
목차
제1장 서론
제2장 조사 방법
제3장 개요
제4장 주요 인사이트
제5장 시장 개요
시장 역학
촉진요인
억제요인
기회
과제
에코시스템 분석
사례 연구 분석
밸류체인 분석
무역 분석
Porter's Five Forces 분석
주요 이해관계자와 구입 기준
규제 분석
특허 분석
기술 분석
가격 분석
2025-2026년의 주요 컨퍼런스와 이벤트
고객 사업에 영향을 미치는 동향/파괴적 변화
미충족 요구 분석
최종사용자 기대
환불 시나리오
투자와 자금조달 시나리오
제6장 의료 영상용 AI 시장 : 컴포넌트별
소프트웨어
서비스
하드웨어
프로세서
메모리
네트워크
제7장 의료 영상용 AI 시장 : 용도별
방사선
제8장 의료 영상용 AI 시장 : 모달리티별
컴퓨터 단층촬영(CT)
X선
MRI
초음파
맘모그래피
기타
제9장 의료 영상용 AI 시장 : 최종사용자별
병원
진단 영상 센터
기타
제10장 의료 영상용 AI 시장 : 지역별
북미
거시경제 전망
미국
캐나다
유럽
거시경제 전망
독일
프랑스
영국
이탈리아
스페인
기타
아시아태평양
거시경제 전망
중국
일본
인도
기타
라틴아메리카
거시경제 전망
브라질
멕시코
기타
중동 및 아프리카
GCC 국가
기타
제11장 경쟁 구도
개요
주요 참여 기업의 전략/강점
매출 분석
시장 점유율 분석
기업 평가 매트릭스 : 주요 기업
기업 평가 매트릭스 : 스타트업/중소기업
기업 가치 평가와 재무 지표
브랜드/제품 비교
경쟁 시나리오
제12장 기업 개요
주요 기업
MICROSOFT
NVIDIA CORPORATION
MERATIVE
GOOGLE(ALPHABET, INC.)
INTEL CORPORATION
SIEMENS HEALTHINEERS AG
GE HEALTHCARE
ADVANCED MICRO DEVICES, INC.
KONINKLIJKE PHILIPS N.V.
CANON MEDICAL SYSTEMS CORPORATION
FUJIFILM HOLDINGS CORPORATION
기타 기업
HEARTFLOW, INC.
ENLITIC, INC.
AIDENCE
BUTTERFLY NETWORK, INC.
NANO-X IMAGING LTD.
VIZ.AI, INC.
QUIBIM
QURE.AI
THERAPIXEL
AIDOC
LUNIT, INC.
ECHONOUS, INC.
ICOMETRIX
BRAINOMIX
제13장 부록
KSA
영문 목차
영문목차
The global AI in medical imaging market is projected to reach USD 4.53 Billion by 2029 from USD 1.65 Billion in 2024, at a CAGR of 22.4% during the forecast period. Factors contributing to this significant growth would be increasing government support of AI technologies, increased dependability of radiologists towards AI solutions to reduce loads, and cross-industry collaborations and partnerships. Conversely, the market is posed to suffer from a lack of professional AI workers and inconsistent and ambiguous regulatory frameworks.
Scope of the Report
Years Considered for the Study
2023-2029
Base Year
2023
Forecast Period
2024-2029
Units Considered
Value (USD)
Segments
Component, Application, End User, And Region
Regions covered
North America, Europe, Asia Pacific, Latin America, Middle East & Africa (GCC Countries and RoMEA).
"The services segment is expected to experience the fastest growth in the AI in medical imaging market between 2024 and 2029"
The market has been segmented into software, hardware, and service components. In 2023, the software segment led the market due to its capabilities of optimizing operations, automation of processes, and increased diagnostic precision. However, the services segment is expected to show the highest growth from 2024 to 2029 through rising demand for managed services, integration assistance, and training required for the implementation and optimization of AI solutions in healthcare. These services solve the problems of staff shortage and increased imaging workloads; thus, healthcare providers may enhance operational efficiency and better care for patients.
"The Radiology segment is estimated to account for the largest share of the global AI in medical imaging market in 2023"
The radiology application segment accounts for a large share in the AI in medical imaging market, as there is a strong demand for advanced imaging solutions and the increasing adoption of AI to support radiologists in diagnosing various conditions. The AI technologies are widely applied in radiology to improve diagnostic accuracy, streamline workflow, and reduce the workload of the radiologist, thus yielding faster and more accurate results. The volume of medical imaging procedures is growing, and ongoing advancements in AI technology lead to an expected continuation of its dominance in the market.
Meanwhile, the oncology application segment is also growing pretty fast. The application of AI in oncology is basically an area of early detection, planning of treatment, and the tracking of patient progress that could further analyze medical images, for instance, a CT scan, MRI, and biopsies for symptoms of unusual growths or tumors. This application is being driven rapidly as AI helps to diagnose cancers more accurately and faster, making this aspect of the oncology sector grow in the near future.testing and analysis, is expected to exhibit vigorous growth during the forecast period, driven by growing advancements in AI for precision diagnostics and laboratory automation.
"The Hospitals segment is estimated to account for the largest share of the global AI in medical imaging market in 2023"
In 2023, the hospitals segment is expected to hold the largest share of the global AI in medical imaging market. This is driven by factors such as the growing adoption of minimally invasive surgery (MIS) procedures in hospitals, which enhance the quality of patient care, as well as advancements in imaging technologies that improve workflow efficiency within these healthcare settings.
"North America to dominate the AI in medical imaging market in 2023."
Regarding regional dominance, North America is anticipated to lead the AI in medical imaging market in 2023. This is attributed to the region's advanced healthcare infrastructure, widespread adoption of AI technologies, and significant investments in research and development by key companies and institutions. However, the Asia-Pacific region is projected to experience the highest growth rate (CAGR) between 2024 and 2029, driven by the rising prevalence of cancer, increased utilization of AI in diagnostics, and government efforts to modernize healthcare systems.
Breakdown of supply-side primary interviews, by company type, designation, and region:
By Company Type: Tier 1 (35%), Tier 2 (45%), and Tier 3 (20%)
By Designation: C-level (35%), Director-level (25%), and Others (40%)
By Region: North America (40%), Europe (30%), Asia Pacific (20%), Latin America(5%), and Middle East & Africa (5%)
The prominent players in this market are Microsoft (US), NVIDIA Corporation (US), Merative (US), Intel Corporation (US), Google (US), Siemens Healthineers (Germany), GE HealthCare (US), Digital Diagnostics Inc. (US), Advanced Micro Devices, Inc. (US), InformAI (US), HeartFlow, Inc. (US), Enlitic, Inc. (US), icometrix (Belgium), Aidence (Netherlands), Butterfly Network, Inc. (US), Nano-X Imaging LTD. (Israel), Viz.ai, Inc. (US), Quibim (Spain), Qure.ai (India), Therapixel (France), Aidoc (US), Koninklijke Philips N.V. (Netherlands), Lunit, Inc. (South Korea), EchoNous, Inc. (US), Brainomix (UK).
Research Coverage
The report comprehensively studies the AI in the medical imaging market based on various aspects, including component, application, end user, modality, and region. It analyzes key factors influencing market growth, such as drivers, restraints, opportunities, and challenges. Additionally, the report evaluates the opportunities and challenges faced by stakeholders and provides detailed insights into the competitive landscape for market leaders. It also examines micro-markets, highlighting their growth trends, prospects, and contributions to the overall AI in the medical imaging market. Furthermore, the report forecasts the revenue of market segments across five major regions.
Rationale to Buy the Report
The research report aims to assist both emerging and established companies in understanding the current state of the AI in medical imaging market, enabling them to strategically increase their market share. Companies that acquire the study can utilize the following tactics to enhance their market presence:
The report offers valuable insights on the following aspects:
Key Drivers: Factors such as the influx of big data, a growing number of cross-industry partnerships, the rising adoption of AI solutions to alleviate radiologists' workload, and increasing government initiatives are highlighted as significant growth drivers in the AI in medical imaging market.
Restraints: Challenges include the reluctance among medical practitioners to adopt AI-based technologies, the shortage of skilled AI professionals, and ambiguous regulatory guidelines for medical software, all of which are factors hindering market growth.
Opportunities: The report identifies untapped emerging markets and the increasing focus on developing human-aware AI systems as key opportunities in the market.
Challenges: Budgetary constraints and the presence of unstructured healthcare data are among the challenges that businesses need to overcome to grow in this sector.
Additionally, the report provides the following market insights:
Market Penetration: Detailed analysis of the product portfolios offered by leading players in the AI in medical imaging market.
Product Development/Innovation: Insightful coverage of the innovative products and technologies offered by top players in the AI medical imaging space.
Market Development: Data on profitable developing areas, helping businesses identify opportunities for market expansion.
Market Diversification: Details about recent developments and advancements in the AI in the medical imaging market.
Competitive Assessment: Extensive assessment of the products, growth tactics, revenue projections, and market categories of the top competitors.
This comprehensive research report aims to equip businesses with actionable insights to navigate the evolving landscape of the AI in medical imaging market.
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.3 STUDY SCOPE
1.3.1 MARKETS COVERED & REGIONAL SCOPE
1.3.2 INCLUSIONS & EXCLUSIONS
1.3.3 YEARS CONSIDERED
1.4 CURRENCY CONSIDERED
1.5 LIMITATIONS
1.5.1 SCOPE-RELATED LIMITATIONS
1.5.2 METHODOLOGY-RELATED LIMITATIONS
1.6 STAKEHOLDERS
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.1.1 Key data from secondary sources
2.1.2 PRIMARY DATA
2.1.2.1 List of primary sources
2.1.2.2 Key data from primary sources
2.1.2.3 Key industry insights
2.1.2.4 Breakdown of interviews with experts
2.2 MARKET SIZE ESTIMATION
2.3 MARKET DATA ESTIMATION & TRIANGULATION
2.4 RESEARCH ASSUMPTIONS
2.5 RISK ASSESSMENT
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 AI IN MEDICAL IMAGING MARKET OVERVIEW
4.2 NORTH AMERICA: AI IN MEDICAL IMAGING MARKET, BY COMPONENT AND COUNTRY (2023)
4.3 AI IN MEDICAL IMAGING MARKET: GEOGRAPHIC GROWTH OPPORTUNITIES
4.4 AI IN MEDICAL IMAGING MARKET: REGIONAL MIX
5 MARKET OVERVIEW
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Influx of big data with increasing digitization and adoption of information systems
5.2.1.3 Increasing demand for AI-based solutions to reduce work pressure on radiologists
5.2.1.4 Rising government initiatives to support AI-based technologies in healthcare
5.2.1.5 Availability of extensive funding for AI-based startups
5.2.2 RESTRAINTS
5.2.2.1 Reluctance among medical practitioners to adopt AI-based technologies
5.2.2.2 Inadequate AI workforce and ambiguous regulatory guidelines for medical software
5.2.3 OPPORTUNITIES
5.2.3.1 Untapped emerging markets
5.2.3.2 Increasing focus on developing human-aware AI systems
5.2.4 CHALLENGES
5.2.4.1 Budgetary constraints
5.2.4.2 Unstructured healthcare data due to growing digital footprint and technology trends
5.2.4.3 Data privacy concerns amid growing data volume
5.2.4.4 Limited interoperability for AI solutions
5.3 ECOSYSTEM ANALYSIS
5.4 CASE STUDY ANALYSIS
5.4.1 CASE STUDY 1: INTEGRATING AI INTO CLINICAL WORKFLOWS AT LAHEY HOSPITAL & MEDICAL CENTER
5.4.2 CASE STUDY 2: RESOLVING CHALLENGES OF UNDERSTAFFED WORKFORCE AND BACKLOG WITH VEYE LUNG NODULES
5.4.3 CASE STUDY 3: NVIDIA AI ENTERPRISE SOFTWARE AND GPUS HELP IMPROVE PERFORMANCE AND PRECISION OF TUMOR TARGETING
5.4.4 CASE STUDY 4: ZHEJIANG UNIVERSITY AND ZHEJIANG DE IMAGE SOLUTIONS USE INTEL AI SOLUTION TO PROCESS ULTRASOUND
5.4.5 CASE STUDY 5: WAITEMATA DISTRICT HEALTH BOARD PROJECT UTILIZES PRECISION-DRIVEN HEALTH SOLUTIONS
5.5 VALUE CHAIN ANALYSIS
5.5.1 UPSTREAM
5.5.2 MID-STREAM
5.5.3 DOWNSTREAM
5.6 TRADE ANALYSIS
5.6.1 IMPORT DATA
5.6.2 EXPORT DATA
5.7 PORTER'S FIVE FORCES ANALYSIS
5.7.1 THREAT OF NEW ENTRANTS
5.7.2 THREAT OF SUBSTITUTES
5.7.3 BARGAINING POWER OF SUPPLIERS
5.7.4 BARGAINING POWER OF BUYERS
5.7.5 INTENSITY OF COMPETITIVE RIVALRY
5.8 KEY STAKEHOLDERS & BUYING CRITERIA
5.8.1 INFLUENCE OF STAKEHOLDERS
5.8.2 BUYING CRITERIA
5.9 REGULATORY ANALYSIS
5.9.1 REGULATORY LANDSCAPE
5.9.1.1 North America
5.9.1.1.1 Health Insurance Portability and Accountability Act of 1996 (HIPAA)
5.9.1.1.2 Health Information Technology for Economic and Clinical Health Act of 2009 (HITECH)
5.9.1.1.3 Consumer Privacy Protection Act of 2017
5.9.1.1.4 National Cybersecurity Protection Advancement Act of 2015
5.9.1.1.5 Future of Life Institute's Asilomar AI Principles
5.9.1.2 Europe
5.9.1.2.1 European Medical Devices Regulation (EU) 2017/745 and In-vitro Diagnostic Medical Devices Regulation (EU) 2017/746, in combination with General Data Protection Regulation 2016/679
5.9.1.2.2 Artificial Intelligence Act (AI Act)
5.9.1.3 Asia Pacific
5.9.1.3.1 Cybersecurity Law of the People's Republic of China
5.9.1.4 Rest of the World
5.9.1.4.1 Protection of Personal Information Act
5.9.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.10 PATENT ANALYSIS
5.10.1 PATENT PUBLICATION TRENDS FOR AI IN MEDICAL IMAGING
5.10.2 JURISDICTION AND TOP APPLICANT ANALYSIS
5.11 TECHNOLOGY ANALYSIS
5.11.1 KEY TECHNOLOGIES
5.11.1.1 Machine learning
5.11.1.2 Deep learning
5.11.2 COMPLEMENTARY TECHNOLOGIES
5.11.2.1 Laboratory automation
5.11.2.2 EHR
5.11.3 ADJACENT TECHNOLOGIES
5.11.3.1 Natural language processing
5.11.3.2 Big data analytics
5.12 PRICING ANALYSIS
5.12.1 INDICATIVE PRICING ANALYSIS FOR AI IN MEDICAL IMAGING HARDWARE, 2021-2023
5.12.2 AVERAGE SELLING PRICE OF AI IN MEDICAL IMAGING HARDWARE, BY KEY PLAYER (2023)