¼¼°èÀÇ ¾çÀÚ ¸Ó½Å·¯´×(QML) ½ÃÀå(2026-2040³â)
The Global Quantum Machine Learning Market 2026-2040
»óǰÄÚµå : 1734000
¸®¼­Ä¡»ç : Future Markets, Inc.
¹ßÇàÀÏ : 2025³â 05¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 143 Pages, 50 Tables, 21 Figures
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¡Ì 1,100 £Ü 2,054,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¾çÀÚ ¸Ó½Å·¯´×(QML)Àº ¾çÀÚ ¿ªÇÐÀÇ °íÀ¯ÇÑ Æ¯¼ºÀÎ Áßø, ¾ôÈû, ¾çÀÚ °£¼·À» ÀÌ¿ëÇÏ¿© °íÀü ÄÄÇ»Åͺ¸´Ù ±âÇϱ޼öÀûÀ¸·Î ºü¸¥ ¼Óµµ·Î ¸Ó½Å·¯´× ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¾çÀÚ ¸Ó½Å·¯´×Àº ¾çÀÚ ¾Ë°í¸®ÁòÀÌ ¾çÀÚ ÁßøÀ» ÅëÇØ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ µ¿½Ã¿¡ ó¸®ÇÏ°í ¿©·¯ °è»êÀ» º´·Ä·Î ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °è»ê Áö´ÉÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù. 0°ú 1ÀÇ °áÁ¤ÀûÀÎ »óÅ·ΠÁ¸ÀçÇÏ´Â °íÀü ºñÆ®¿Í ´Þ¸®, ¾çÀÚ ºñÆ®(qubit)´Â ÁßøµÈ »óÅ·ΠÁ¸ÀçÇÒ ¼ö Àֱ⠶§¹®¿¡ ¾çÀÚ ÄÄÇ»ÅÍ´Â ¿©·¯ ÇØ´äÀÇ °æ·Î¸¦ µ¿½Ã¿¡ Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾çÀÚ ÄÄÇ»ÅÍÀÇ ÀåÁ¡Àº ÃÖÀûÈ­ ¹®Á¦, ÆÐÅÏ ÀνÄ, ¸Ó½Å·¯´× ¾ÖÇø®ÄÉÀ̼ÇÀÇ ÇÙ½ÉÀÎ º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼® ÀÛ¾÷¿¡¼­ ƯÈ÷ µÎµå·¯Áý´Ï´Ù.

ÀÌ ºÐ¾ß¿¡´Â ¾çÀÚ ÇÁ·Î¼¼¼­¸¦ »ç¿ëÇÏ¿© °íÀü ¾Ë°í¸®ÁòÀ» °¡¼ÓÈ­ÇÏ´Â ¾çÀÚ °­È­ ¸Ó½Å·¯´×, ¾çÀÚ ¿ªÇÐÀû Ư¼ºÀ» Ȱ¿ëÇÑ ¿ÏÀüÈ÷ »õ·Î¿î ¾Ë°í¸®ÁòÀÎ ¾çÀÚ ³×ÀÌÆ¼ºê ¸Ó½Å·¯´× µî ¿©·¯ °¡Áö Áß¿äÇÑ Á¢±Ù¹ýÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ¾çÀÚ ½Å°æ¸Á, ¾çÀÚ Áö¿ø º¤ÅÍ ¸Ó½Å, ¾çÀÚ °­È­ ÇнÀÀº AI ½Ã½ºÅÛÀÇ ÇнÀ ¹æ¹ý°ú ÀÇ»ç°áÁ¤ ¹æ½ÄÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²Ü ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀÔ´Ï´Ù.

ÇöÀç ±¸ÇöÀº ¾çÀÚ ÇÁ·Î¼¼¼­°¡ ƯÁ¤ °è»ê ÀÛ¾÷À» ó¸®ÇÏ°í °íÀü ÄÄÇ»ÅͰ¡ µ¥ÀÌÅÍ Àüó¸®, ÈÄó¸® ¹× ½Ã½ºÅÛ Á¦¾î¸¦ °ü¸®ÇÏ´Â ¾çÀÚ °íÀü ÇÏÀ̺긮µå ½Ã½ºÅÛÀÌ ÁÖ¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº ³ëÀÌÁî, µðÄÚÈ÷¾î·±½º, ¾çÀÚ ºñÆ® ¼ö Á¦ÇѰú °°Àº ÇöÀç ¾çÀÚ Çϵå¿þ¾îÀÇ ÇѰ踦 ¿ÏÈ­Çϸ鼭 µÎ ÆÐ·¯´ÙÀÓÀÇ ÀåÁ¡À» ÃÖ´ëÇÑ È°¿ëÇÕ´Ï´Ù.

¾çÀÚ ¸Ó½Å·¯´×ÀÌ Å« ÀÌÁ¡À» °¡Á®´Ù ÁÙ ¼ö ÀÖ´Â ¼ö¸¹Àº °íºÎ°¡°¡Ä¡ ÀÀ¿ë ºÐ¾ß·Î ½ÃÀåÀÇ ÀáÀç·ÂÀº ¹«±Ã¹«ÁøÇÕ´Ï´Ù. ±ÝÀ¶ ±â°üÀº Æ÷Æ®Æú¸®¿À ÃÖÀûÈ­, À§Çè ºÐ¼®, »ç±â ŽÁö µî¿¡ »ç¿ëµÇ´Â ¾çÀÚ ¾Ë°í¸®ÁòÀ» ¿¬±¸Çϰí ÀÖÀ¸¸ç, ¿©·¯ ½ÃÀå ½Ã³ª¸®¿À¸¦ µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ¿ì¼öÇÑ ÅõÀÚ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¹× Á¦¾à ±â¾÷¿¡¼­´Â ¾çÀÚ ÄÄÇ»ÅͰ¡ ºÐÀÚ °£ »óÈ£ÀÛ¿ëÀ» Àü·Ê ¾ø´Â Á¤È®µµ·Î ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ Àֱ⠶§¹®¿¡ ¾çÀÚ¸¦ ÀÌ¿ëÇÑ ½Å¾à °³¹ß, ´Ü¹éÁú Æúµù ¿¹Ãø, ¸ÂÃãÇü ÀÇ·á¿¡ÀÇ Àû¿ëÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù.

Á¦Á¶ ºÎ¹®¿¡¼­´Â °ø±Þ¸Á °ü¸®, ǰÁú °ü¸®, ¿¹Áöº¸ÀüÀ» À§ÇÑ ¾çÀÚ ÃÖÀûÈ­°¡ Æò°¡¹Þ°í ÀÖÀ¸¸ç, »çÀ̹ö º¸¾È ºÐ¾ß¿¡¼­´Â ¾çÀÚ ³»¾Ïȣȭ ±â¼ú°ú ÷´Ü À§Çù ŽÁö ½Ã½ºÅÛÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀÇ ÀáÀç·ÂÀº ±âÈÄ ¸ðµ¨¸µ, ±³Åë ÃÖÀûÈ­, °úÇÐ ¿¬±¸ µî ±âÁ¸ ÄÄÇ»Åͷδ ÇѰ谡 ÀÖ´Â ºÐ¾ß·Î È®ÀåµÇ°í ÀÖ½À´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â 50-1,000 ¾çÀÚ ºñÆ®ÀÇ ¾çÀÚ ½Ã½ºÅÛÀ» Ư¡À¸·Î ÇÏ´Â ÇöÀçÀÇ Noisy Intermediate-Scale Quantum(NISQ) ½Ã´ë¸¦ »ìÆìº¾´Ï´Ù. ÀÌ·¯ÇÑ ¾çÀÚ ½Ã½ºÅÛÀº ¾ÆÁ÷ º¸ÆíÀûÀÎ ¾çÀÚ ¿ìÀ§¸¦ º¸¿©ÁÖÁö´Â ¸øÇÏÁö¸¸, º¹ÀâÇÑ QML ¾Ë°í¸®ÁòÀ» ¾ÈÁ¤ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â ³»°áÇÔ¼º ¾çÀÚ ÄÄÇ»ÅÍ·Î °¡´Â Áß¿äÇÑ µðµõµ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä °úÁ¦´Â ȯ°æ °£¼·À¸·Î ÀÎÇØ ¾çÀÚ »óŰ¡ ºü¸£°Ô ÀúÇϵǴ ¾çÀÚ µðÄÚÈ÷¾î·±½º, °íÀüÀû °è»êÀ» ´É°¡ÇÏ´Â ¾çÀÚ ¿À·ùÀ², ¾çÀÚ ÇÁ·Î±×·¡¹Ö Àü¹®°¡ ºÎÁ· µîÀÔ´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ±â¾÷µé¿¡°Ô Çϵå¿þ¾î ºñ¿ëÀÌ ¿©ÀüÈ÷ ºñ½Î±â ¶§¹®¿¡ Ŭ¶ó¿ìµå ±â¹Ý ¾×¼¼½º ¸ðµ¨À̳ª QaaS(Quantum-as-a-Service)°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù.

°æÀï ±¸µµ¿¡´Â ¾çÀÚ Çϵå¿þ¾î ¹× ¾çÀÚ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀ» °³¹ßÇÏ´Â ´ëÇü ±â¼ú ±â¾÷, ¾çÀÚ ÄÄÇ»ÆÃ Àü¹® ±â¾÷, ±âÁ¸ Á¦Ç°¿¡ ¾çÀÚ ±â´ÉÀ» ÅëÇÕÇÏ´Â ÀüÅë ±â¼ú ±â¾÷ µîÀÌ ÀÖ½À´Ï´Ù. Á¤ºÎ ÅõÀÚ, Çмú ¿¬±¸ ÇÁ·Î±×·¥, º¥Ã³ ijÇÇÅ»ÀÇ ÀÚ±Ý Áö¿øÀ¸·Î °³¹ß ÀÏÁ¤°ú »ó¾÷Àû Ȱ¿ëÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¾çÀÚ ¸Ó½Å·¯´×(QML) ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, ¾Ë°í¸®Áò ¹× ¼ÒÇÁÆ®¿þ¾î µ¿Çâ, ÅõÀÚ ¹× ÀÚ±Ý Á¶´Þ ¿¡ÄڽýºÅÛ, ÁÖ¿ä ±â¾÷ 49°³»çÀÇ ÇÁ·ÎÇÊ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼Ò°³

Á¦3Àå QML ¾Ë°í¸®Áò°ú ¼ÒÇÁÆ®¿þ¾î

Á¦4Àå QML Çϵå¿þ¾î¿Í ÀÎÇÁ¶ó

Á¦5Àå QML ½ÃÀå°ú ¿ëµµ

Á¦6Àå ÅõÀÚ¿Í ÀÚ±Ý Á¶´Þ

Á¦7Àå ±â¾÷ °³¿ä(±â¾÷ 47°³»ç ÇÁ·ÎÆÄÀÏ)

Á¦8Àå ¿ë¾îÁý

Á¦9Àå Á¶»ç ¹æ¹ý

Á¦10Àå Âü°í¹®Çå

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Quantum Machine Learning (QML) harnesses the unique properties of quantum mechanics-superposition, entanglement, and quantum interference-to potentially solve machine learning problems exponentially faster than classical computers. Quantum Machine Learning represents a paradigm shift in computational intelligence, where quantum algorithms can process vast datasets simultaneously through quantum superposition, enabling multiple calculations to occur in parallel. Unlike classical bits that exist in definitive states of 0 or 1, quantum bits (qubits) can exist in superposition states, allowing quantum computers to explore multiple solution paths simultaneously. This quantum advantage becomes particularly pronounced in optimization problems, pattern recognition, and complex data analysis tasks that form the core of machine learning applications.

The field encompasses several key approaches including quantum-enhanced machine learning, where classical algorithms are accelerated using quantum processors, and quantum-native machine learning, where entirely new algorithms leverage quantum mechanical properties. Quantum neural networks, quantum support vector machines, and quantum reinforcement learning represent emerging methodologies that could fundamentally transform how artificial intelligence systems learn and make decisions.

Current implementations focus on hybrid quantum-classical systems, where quantum processors handle specific computational tasks while classical computers manage data preprocessing, post-processing, and system control. This approach maximizes the strengths of both paradigms while mitigating current quantum hardware limitations such as noise, decoherence, and limited qubit counts.

The market potential spans numerous high-value applications where quantum machine learning could provide significant advantages. Financial institutions are exploring quantum algorithms for portfolio optimization, risk analysis, and fraud detection, where the ability to process multiple market scenarios simultaneously could yield superior investment strategies. Healthcare and pharmaceutical companies are investigating quantum-enhanced drug discovery, protein folding prediction, and personalized medicine applications, where quantum computers could simulate molecular interactions with unprecedented accuracy.

Manufacturing sectors are evaluating quantum optimization for supply chain management, quality control, and predictive maintenance, while cybersecurity applications include quantum-resistant cryptography and advanced threat detection systems. The technology's potential extends to climate modeling, traffic optimization, and scientific research applications where classical computational limitations currently constrain progress.

The report examines the current Noisy Intermediate-Scale Quantum (NISQ) era, characterized by quantum systems with 50-1000 qubits that exhibit significant noise and limited error correction. While these systems cannot yet demonstrate universal quantum advantage, they serve as crucial stepping stones toward fault-tolerant quantum computers capable of running complex QML algorithms reliably.

Key challenges include quantum decoherence, where quantum states deteriorate rapidly due to environmental interference, quantum error rates that currently exceed classical computation, and the scarcity of quantum programming expertise. Hardware costs remain prohibitive for most organizations, necessitating cloud-based access models and quantum-as-a-service offerings.

The competitive landscape includes technology giants developing quantum hardware and software platforms, specialized quantum computing companies, and traditional technology firms integrating quantum capabilities into existing products. Government investments, academic research programs, and venture capital funding are accelerating development timelines and commercial applications.

Report contents include:

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. INTRODUCTION

3. QML ALGORITHMS AND SOFTWARE

4. QML HARDWARE AND INFRASTRUCTURE

5. QML MARKETS AND APPLICATIONS

6. INVESTMENT AND FUNDING

7. COMPANY PROFILES (47 company profiles)

8. GLOSSARY OF TERMS

9. RESEARCH METHODOLOGY

10. REFERENCES

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â