의약품 무균 테스트 시장 - 세계 산업 규모, 점유율, 동향, 기회, 예측, 유형별, 제품 유형별, 시험 유형별, 지역별, 경쟁별(2020-2030년)
Pharmaceutical Sterility Testing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Product Type, By Test Type, By Region, and Competition, 2020-2030F
상품코드 : 1692178
리서치사 : TechSci Research
발행일 : 2025년 03월
페이지 정보 : 영문 182 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,500 ₩ 6,497,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 5,500 ₩ 7,940,000
PDF and Excel (Multi-User License) help
PDF 및 Excel 보고서를 기업의 팀이나 기관에서 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다.
US $ 8,000 ₩ 11,550,000
PDF and Excel (Custom Research License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다. 80시간의 애널리스트 타임이 포함되어 있고 Copy & Paste 가능한 PPT 버전도 제공됩니다. 짧은 Bespoke 리서치 프로젝트 수행에 맞는 라이선스입니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.

한글목차

의약품 무균 테스트 세계 시장은 2024년에 12억 9,000만 달러로 평가되며, 예측 기간 동안 10.43%의 연평균 복합 성장률(CAGR)로 성장하여 2030년에는 23억 4,000만 달러에 달할 것으로 예상됩니다.

의약품 무균 테스트은 의약품이 박테리아, 곰팡이, 효모 및 기타 잠재적으로 유해한 오염 물질을 포함한 생존 가능한 미생물이 없는지 확인하기 위해 제약 산업에서 사용되는 중요한 품질 관리 프로세스입니다. 무균 시험의 주요 목적은 의약품이 무균이고 환자가 안전하게 사용할 수 있는지 확인하는 것입니다.

시장 개요
예측 기간 2026-2030년
시장 규모(2024년) 12억 9,000만 달러
시장 규모(2030년) 23억 4,000만 달러
CAGR(2025-2030년) 10.43%
급성장 부문 아웃소싱 부문
최대 시장 북미

시장 성장 촉진요인

생명공학의 발전

주요 시장 이슈

복잡한 생물학적 제제

주요 시장 동향

무균 처리의 발전

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 소리

제5장 세계의 의약품 무균 테스트 시장 전망

제6장 아시아태평양의 의약품 무균 테스트 시장 전망

제7장 유럽의 의약품 무균 테스트 시장 전망

제8장 북미의 의약품 무균 테스트 시장 전망

제9장 남미의 의약품 무균 테스트 시장 전망

제10장 중동 및 아프리카의 의약품 무균 테스트 시장 전망

제11장 시장 역학

제12장 시장 동향과 발전

제13장 세계의 의약품 무균 테스트 시장 : SWOT 분석

제14장 Porter의 Five Forces 분석

제15장 PESTEL 분석

제16장 경쟁 구도

제17장 전략적 제안

제18장 리서치사에 대해 & 면책사항

LSH
영문 목차

영문목차

Global Pharmaceutical Sterility Testing Market was valued at USD 1.29 billion in 2024 and is expected to reach USD 2.34 billion by 2030 with a CAGR of 10.43% during the forecast period. Pharmaceutical sterility testing is a critical quality control process used in the pharmaceutical industry to ensure that a pharmaceutical product is free from viable microorganisms, including bacteria, fungi, yeast, and other potentially harmful contaminants. The primary objective of sterility testing is to verify that a pharmaceutical product is sterile and safe for patient use.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.29 Billion
Market Size 2030USD 2.34 Billion
CAGR 2025-203010.43%
Fastest Growing SegmentOutsourcing Segment
Largest MarketNorth America

Key Market Drivers

Biotechnology Advancements

Biotechnology has introduced molecular biology methods, such as Polymerase Chain Reaction (PCR) and real-time PCR, for the detection of specific microbial DNA or RNA in samples. These techniques allow for rapid and highly specific identification of microorganisms, improving the speed and accuracy of sterility testing. Next-Generation Sequencing (NGS) technology has revolutionized microbial identification and genotypic characterization. It enables comprehensive microbial profiling and can detect a wide range of microorganisms in a single test. NGS can be applied to environmental monitoring and identifying contaminants in pharmaceutical products. Microarrays allow for the simultaneous detection of multiple microorganisms in a single test. They are especially valuable for environmental monitoring and identifying potential sources of contamination in pharmaceutical manufacturing facilities. Flow cytometry, coupled with fluorescent staining techniques, can rapidly assess microbial viability and cell count. This technology is useful for both in-process monitoring and the final product sterility testing. Biotechnology has enhanced traditional culture methods. Automated microbial detection systems, using technologies like bioluminescence or impedance, speed up the detection process and provide a real-time assessment of microbial growth. Biotechnology has enabled high-throughput sterility testing systems, which can process many samples simultaneously. This is particularly valuable for pharmaceutical manufacturers dealing with a high volume of products.

Microfluidic devices allow for miniaturized and automated sterility testing systems. They enable precise handling of small sample volumes and can reduce the time required for testing. Advances in bioinformatics and data analysis tools help in interpreting the vast amount of data generated by modern sterility testing methods. These tools facilitate microbial identification and genotypic characterization. Biotechnology has facilitated the development of portable and rapid sterility testing devices, which can be used in field applications and remote locations, enhancing access to sterility testing in resource-limited settings. Biotechnology has enabled the development of single-use sterility testing systems, reducing the risk of cross-contamination, and improving the efficiency of testing in pharmaceutical manufacturing. Biotechnology advancements have also contributed to the quality control and validation of sterility testing processes. This includes the development of reference materials, standards, and proficiency testing programs to ensure the accuracy and reliability of testing. Biotechnology-driven automation, including robotics, has enhanced the sterility testing process, reducing the potential for human error, and improving overall efficiency. This factor will help in the development of the Global Pharmaceutical Sterility Testing Market.

Key Market Challenges

Complex and Biologic Drug Products

Complex and biologic drug products, such as monoclonal antibodies and gene therapies, can be sensitive to traditional sterilization methods like heat or radiation. Sterility testing methods must be adapted to ensure that the product's efficacy is not compromised during the testing process. Cell-based therapies, such as stem cell treatments, are considered biologic drug products. Sterility testing for these therapies must address the presence of live cells, making traditional methods less suitable. Specialized techniques are required to detect potential contamination without harming the therapeutic cells. Some complex drug products have intricate formulations, often involving liposomes, nanoparticles, or emulsions. These complex formulations can interfere with traditional sterility testing methods, requiring the development of novel techniques to ensure accurate results. Biologic drug products, especially those derived from cell cultures, are at risk of viral contamination. Sterility testing for these products includes specific tests to detect the presence of viral contaminants. Some biologic drugs are administered in extremely low dosages. The sensitivity and accuracy of sterility testing methods become critical to detect any potential contamination in such small quantities.

Key Market Trends

Advancements in Aseptic Processing

Pharmaceutical manufacturers are increasingly adopting advanced barrier systems, including isolators and Restricted Access Barrier Systems (RABS). These systems create physical barriers that prevent external contaminants from entering the manufacturing process. These technologies improve sterility assurance during drug product filling and packaging. Single-use systems, such as disposable bags, tubing, and connectors, are being integrated into aseptic processing. They reduce the risk of cross-contamination and simplify the cleaning and sterilization processes, thereby enhancing sterility control. Automation and robotics play a vital role in aseptic processing by minimizing human intervention and reducing the potential for contamination. Automated filling, capping, and inspection systems enhance product sterility and consistency. Innovations in fill-finish technologies, such as pre-sterilized containers, nested syringes, and ready-to-use vials, are simplifying the aseptic filling process. These advancements reduce the handling of components and minimize the risk of contamination. Advanced microbial detection methods, including rapid microbial methods (RMM), are being integrated into aseptic processing to allow for real-time monitoring of microbial contamination. This enables proactive responses and corrective actions.

Key Market Players

Report Scope:

In this report, the Global Pharmaceutical Sterility Testing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Pharmaceutical Sterility Testing Market, By Type:

Pharmaceutical Sterility Testing Market, By Product Type:

Pharmaceutical Sterility Testing Market, By Test Type:

Pharmaceutical Sterility Testing Market, By Region:

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Pharmaceutical Sterility Testing Market.

Available Customizations:

Global Pharmaceutical Sterility Testing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customer

5. Global Pharmaceutical Sterility Testing Market Outlook

6. Asia Pacific Pharmaceutical Sterility Testing Market Outlook

7. Europe Pharmaceutical Sterility Testing Market Outlook

8. North America Pharmaceutical Sterility Testing Market Outlook

9. South America Pharmaceutical Sterility Testing Market Outlook

10. Middle East and Africa Pharmaceutical Sterility Testing Market Outlook

11. Market Dynamics

12. Market Trends & Developments

13. Global Pharmaceutical Sterility Testing Market: SWOT Analysis

14. Porter's Five Forces Analysis

15. PESTLE Analysis

16. Competitive Landscape

17. Strategic Recommendations

18. About Us & Disclaimer

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기