¼¼°èÀÇ ÀÚµ¿Â÷¿ë PCB ½ÃÀåÀº 2022³â¿¡ 65¾ï ´Þ·¯·Î Æò°¡µÇ¸ç, ¿¹Ãø ±â°£¿¡´Â CAGR 5.8%·Î °·ÂÇÑ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.
¼¼°è ÀÚµ¿Â÷ PCB(Àμâ ȸ·Î ±âÆÇ) ½ÃÀåÀº ÁÖ·Î PCB¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â Àü±â ¹× ÇÏÀ̺긮µå Â÷·®°ú °°Àº ÷´Ü ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °·ÂÇÑ ¼ºÀåÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ PCB´Â ÀÚµ¿Â÷³» ´Ù¾çÇÑ ÀüÀÚ ºÎǰÀÇ ¿øÈ°ÇÑ ÅëÇÕ°ú ±â´ÉÀ» ÃËÁøÇϰí Çâ»óµÈ ¼º´É, ¾ÈÀü ¹× ¿¬°á¼ºÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
½ÃÀåÀÇ ÁÖ¿ä ¾÷üµéÀº Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·Çϰí ÀÚµ¿Â÷ÀÇ º¹ÀâÇÑ ÀüÀÚ Á¦Ç° °³¹ßÀ» Áö¿øÇϱâ À§ÇØ PCB ±â¼úÀÇ Çõ½Å°ú ¹ßÀü¿¡ Àû±ØÀûÀ¸·Î ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â °í¹Ðµµ »óÈ£ ¿¬°á(HDI) ±â¼ú·Î, PCBÀÇ ÀÛ°í È¿À²ÀûÀÎ ¼³°è¸¦ °¡´ÉÇϰÔÇÏ¿© ´õ ÀÛÀº °ø°£¿¡ ´õ ¸¹Àº ÀüÀÚ ºÎǰÀ» ÅëÇÕ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÷´Ü ÀüÀÚ ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÏ´Â Çö´ë ÀÚµ¿Â÷ °³¹ß¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
Áö¿ªÀûÀ¸·Î´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÀÚµ¿Â÷ PCB ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, Áß±¹, ÀϺ», Çѱ¹ µîÀÌ ÁÖ¿ä ±â¿© ±¹°¡·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â ÀÚµ¿Â÷ »ê¾÷ÀÌ Àß ¹ß´ÞµÇ¾î ÀÖ°í ÷´ÜȵǾî ÀÖÀ¸¸ç, ±¹³» ½ÃÀå¿¡¼ÀÇ PCB ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª¿¡´Â ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í °ø±Þ¾÷ü°¡ Á¸ÀçÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð 2022³â | 65¾ï ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 90¾ï 4,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 5.80% |
±Þ¼ºÀå ºÎ¹® | ³»¿¬±â°ü |
ÃÖ´ë ½ÃÀå | ¾Æ½Ã¾ÆÅÂÆò¾ç |
±×·¯³ª À¯·´°ú ºÏ¹Ìµµ ÀÚµ¿Â÷ PCB ½ÃÀå¿¡¼ Å« ¼ºÀå ÀáÀç·ÂÀ» º¸À̰í ÀÖ½À´Ï´Ù. À̵é Áö¿ª¿¡¼´Â Àü±âÀÚµ¿Â÷¿Í ÀÚÀ²ÁÖÇàÂ÷ µî ÷´Ü ÀÚµ¿Â÷ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ¸é¼ PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À̵é Áö¿ª¿¡¼´Â ÀÚµ¿Â÷ ¾ÈÀü ¹× ¹è±â °¡½º °ü·Ã ±ÔÁ¦¿Í ±âÁØÀÌ ¾ö°ÝÇϱ⠶§¹®¿¡ ÀÚµ¿Â÷ÀÇ Ã·´Ü ÀüÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ PCB ½ÃÀåÀÇ °¡Àå ¿µÇâ·Â ÀÖ´Â ÃËÁø¿äÀÎ Áß Çϳª´Â ÇöÀç ÁøÇà ÁßÀÎ ÀÚµ¿Â÷ÀÇ Àü±âÈÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ´õ¿í ¾ö°ÝÇÑ ¹è±â °¡½º ±ÔÁ¦¿Í ȯ°æ Áö¼Ó°¡´É¼ºÀ» ÃßÁøÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â Àü±âÀÚµ¿Â÷(EV)¿¡ ¸¹Àº ÅõÀÚ¸¦Çϰí ÀÖÀ¸¸ç, EV´Â ¹èÅ͸® ¼º´É, Àü·Â ºÐ¹è ¹× ÃæÀüÀ» °ü¸®ÇÏ´Â º¹ÀâÇÑ ÀüÀÚ ½Ã½ºÅÛ¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, PCB´Â ÀÌ·¯ÇÑ ÀüÀÚ ºÎǰÀ» Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀ̸ç EV Çõ¸íÀÇ ÇÙ½É ÄÄÆ÷³ÍÆ®ÀÔ´Ï´Ù. EV Çõ¸í¿¡¼ Áß¿äÇÑ ÄÄÆ÷³ÍÆ®·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
ÀÚÀ²ÁÖÇà ±â¼úÀÇ ¹ßÀüÀº ÀÚµ¿Â÷¿¡ ÷´Ü PCBÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®Àº ¼ö¸¹Àº ¼¾¼, Ä«¸Þ¶ó, ·¹ÀÌ´õ, ¶óÀÌ´õ ½Ã½ºÅÛÀ» ÅëÇØ ÁÖº¯ »óȲÀ» ÀνÄÇÏ°í ½Ç½Ã°£ ÀÇ»ç °áÁ¤À» ³»¸³´Ï´Ù. ÀÌ ¼¾¼µéÀº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϸç, À̸¦ ó¸®Çϰí ÀÇ»ç°áÁ¤À» À§ÇØ °í±Þ ÀüÀÚÁ¦¾îÀåºñ(ECU)¿Í PCB¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÚÀ²ÁÖÇàÂ÷ÀÇ µ¥ÀÌÅÍ Áý¾àÀû ¿ä±¸»çÇ×À» ó¸®ÇÒ ¼ö ÀÖ´Â °í¼º´É PCB¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
Çö´ë ÀÚµ¿Â÷¿¡´Â ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡¼ºÎÅÍ ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¹× Ä¿³ØÆ¼ºñƼ ±â´É±îÁö Àü·Ê ¾ø´Â ¼öÁØÀÇ ÀüÀÚ ½Ã½ºÅÛ°ú ±â´ÉÀÌ Å¾ÀçµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺À¸·Î ÀÎÇØ ´Ù¾çÇÑ ±â´ÉÀ» Áö¿øÇϵµ·Ï ¼³°èµÈ PCB°¡ ÇÊ¿äÇÕ´Ï´Ù. °í±Þ ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ´õ ¸¹Àº ÀüÀÚ ºÎǰÀ» ÀÚµ¿Â÷¿¡ ÅëÇÕÇϰí ÀÖÀ¸¸ç, ÀÌ´Â PCB ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿À´Ã³¯ ¼ÒºñÀÚµéÀº ÀÚµ¿Â÷¿¡¼ ¿øÈ°ÇÑ ¿¬°á¼º°ú °í±Þ ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¿É¼ÇÀ» ±â´ëÇϸç, PCB´Â ½º¸¶Æ®Æù ÅëÇÕ, ÅÍÄ¡½ºÅ©¸° µð½ºÇ÷¹ÀÌ, À½¼ºÀνÄ, Â÷·®³» Wi-Fi µî ÀÌ·¯ÇÑ ±â´ÉÀ» Á¦°øÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼ºñƼ ¹× ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ¿ë PCB¿¡ ´ëÇÑ ¼ö¿ä´Â Â÷·®³» °æÇèÀ» Çâ»ó½Ã۰íÀÚ ÇÏ´Â ¿å±¸¿¡¼ ºñ·ÔµÈ °ÍÀ¸·Î, ÀÌ ºÎ¹®¿¡¼ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¼¼°è °¢±¹ Á¤ºÎ´Â ±âÈÄ º¯È ´ëÀÀ°ú ´ë±â¿À¿° °¨¼Ò¸¦ À§ÇØ ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀüÀÚ Á¦¾î ½Ã½ºÅÛÀ» ÅëÇØ ¿¬ºñ¸¦ °³¼±ÇÏ°í ¹è±â°¡½º¸¦ ÁÙÀÌ´Â µ¥ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, PCB´Â ¿£Áø ¼º´É ÃÖÀûÈ, ¿¬·á ºÐ»ç °ü¸® ¹× ¹è±â°¡½º Á¦¾î¿¡ µµ¿òÀ» ÁÖ¾î ¹è±â°¡½º ±ÔÁ¦¸¦ ÁؼöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷¿¡ ÷´Ü ¿îÀü º¸Á¶ ½Ã½ºÅÛ(ADAS)ÀÇ ÅëÇÕÀº ÀÚµ¿Â÷ PCB ½ÃÀåÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö Áö¿ø ¹× Ãæµ¹ ¹æÁö¿Í °°Àº ADAS ±â´ÉÀº ¼¾¼ µ¥ÀÌÅÍ ºÐ¼® ¹× ÀÇ»ç °áÁ¤À» À§ÇØ PCB¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ¼ÒºñÀڵ鿡°Ô ¾ÈÀüÀÌ Á¡Á¡ ´õ Áß¿äÇØÁü¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ´õ ¸¹Àº ADAS ºÎǰÀ» ÀÚµ¿Â÷¿¡ ÅëÇÕÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ·¯ÇÑ ±â´É¿¡ ¸Â´Â PCB¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â °ø±Þ¸Á È¿À²¼ºÀ» ³ôÀ̰í Á¦Á¶ ºñ¿ëÀ» ÁÙÀÌ´Â ¹æ¹ýÀ» Áö¼ÓÀûÀ¸·Î ¸ð»öÇϰí ÀÖÀ¸¸ç, PCB Á¦Á¶ °øÁ¤Àº ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ °íǰÁúÀÇ ºñ¿ë È¿À²ÀûÀÎ PCB¸¦ ´ë·®À¸·Î »ý»êÇÏ´Â µ¥ ÁßÁ¡À» µÎ¸é¼ ¹ßÀüÇØ ¿Ô½À´Ï´Ù. °£¼ÒÈµÈ »ý»ê°ú È¿À²ÀûÀÎ °ø±Þ¸ÁÀº Â÷·®¿ë PCB ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁøÁ¦À̸ç, Áõ°¡ÇÏ´Â ÀÚµ¿Â÷ ÀüÀÚ ÄÁÅÙÃ÷¸¦ Áö¿øÇϱâ À§ÇØ PCB¸¦ Áï½Ã »ç¿ëÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.
Àç·á °úÇаú ¼ÒÇüÈ ±â¼úÀÇ ¹ßÀüÀº PCB ¼³°è¿Í Á¦Á¶¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ƯÈ÷ °ø°£°ú ¹«°Ô¸¦ °í·ÁÇÏ´Â °ÍÀÌ Áß¿äÇÑ Àü±âÀÚµ¿Â÷ ¹× ÀÚÀ²ÁÖÇà Â÷·®¿¡¼ ¹æ¿ Ư¼ºÀÌ °³¼±µÈ ¼ÒÇü ¹× °æ·® PCBÀÇ Á߿伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº º¸´Ù È¿À²ÀûÀÎ PCB ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϰí ÀÚµ¿Â÷ ÀüÀÚ ½Ã½ºÅÛÀÇ Àüü ¼³Ä¡ °ø°£À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
Àü±âÈ Ãß¼¼´Â ¹ö½º, Æ®·°, µô¸®¹ö¸® ¹ê°ú °°Àº »ó¿ëÂ÷¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷ÀÌ Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó »ó¾÷¿ë Àü±âÀÚµ¿Â÷¿¡ ÀûÇÕÇÑ PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ PCB´Â È¿À²¼º ÃÖÀûÈ, ÁÖÇà°Å¸® ¿¬Àå, ´õ Å©°í ¹«°Å¿î Â÷·®ÀÇ º¹ÀâÇÑ ¿¡³ÊÁö ¿ä±¸ »çÇ×À» °ü¸®ÇÏ´Â µ¥ ÁßÁ¡À» µÎ¾î ½ÃÀåÀ» ´õ¿í È®´ëÇϰí ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´É¼ºÀº ÀÚµ¿Â÷ »ê¾÷¿¡¼ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖÀ¸¸ç PCB ¼³°è ¹× Á¦Á¶¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, PCB Á¦Á¶¾÷ü¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ȯ°æ Ä£ÈÀû ÀÎ Àç·á »ç¿ë, ¿¡³ÊÁö È¿À²ÀûÀÎ »ý»ê °øÁ¤ ¹× ÀçȰ¿ë ³ë·Â°ú °°Àº Áö¼Ó°¡´ÉÇÑ °üÇàÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº PCBÀÇ Àüü ¼ö¸íÁֱ⠵¿¾È ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ°í ´õ ±¤¹üÀ§ÇÑ È¯°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
ÀÚµ¿Â÷ÀÇ ±â¼ú ¹ßÀü°ú ¼ÒÇüȰ¡ ÁøÇàµÊ¿¡ µû¶ó ´õ ÀÛÀº Å©±â¿Í ´õ ³ôÀº ±â´ÉÀÇ °í¹Ðµµ PCB¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Å·Ú¼º°ú ¿ °ü¸®¸¦ º¸ÀåÇÏ¸é¼ ¼ÒÇüȸ¦ ½ÇÇöÇÏ´Â °ÍÀº Å« °úÁ¦À̸ç, PCB Á¦Á¶¾÷ü´Â ÃֽŠÀÚµ¿Â÷¿¡ žÀçµÇ´Â ¼ÒÇü ÀüÀÚ ½Ã½ºÅÛÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ ²÷ÀÓ¾øÀÌ Çõ½ÅÇØ¾ß ÇÕ´Ï´Ù.
ÀÚµ¿Â÷¿¡´Â ÀüÀڱ⠰£¼·À» À¯¹ßÇÏ´Â ¼ö¸¹Àº ÀüÀÚ ºÎǰÀÌ Å¾ÀçµÇ°í ÀÖÀ¸¸ç, EMI´Â ½ÅÈ£ÀÇ ¿È¸¦ ÃÊ·¡ÇÏ°í ¼¶¼¼ÇÑ ÀüÀÚ ½Ã½ºÅÛÀÇ ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ PCB´Â ÃÖÀûÀÇ ¼º´É°ú ÀüÀÚ±â ȣȯ¼º(EMC) Ç¥ÁØ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ EMI Â÷Æó ¹× Àý¿¬À» ¿°µÎ¿¡ µÎ°í ¼³°èÇØ¾ß ÇÕ´Ï´Ù. Àý¿¬À» ¿°µÎ¿¡ µÎ°í ¼³°èÇØ¾ß ÇÕ´Ï´Ù.
ÀÚµ¿Â÷ÀÇ ÀüÀÚ ºÎǰÀº ¿À» ¹ß»ý½ÃÄÑ PCBÀÇ ¼º´É°ú ¼ö¸í¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¡¹Ç·Î, PCBÀÇ ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§Çؼ´Â È¿°úÀûÀÎ ¹æ¿ °ü¸®°¡ ÇʼöÀûÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿Í ÀÚÀ²ÁÖÇàÂ÷¿¡´Â °íÃâ·Â ºÎǰÀÌ Å¾ÀçµÇ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ¿ °ü¸®°¡ ´õ¿í Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù.
Â÷·®¿ë PCB´Â ±ØÇÑÀÇ ¿Âµµ, ½Àµµ, Áøµ¿°ú °°Àº °¡È¤ÇÑ È¯°æ Á¶°Ç¿¡¼µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇØ¾ß Çϸç, ÀÚµ¿Â÷ÀÇ ¼ö¸í ±â°£ Áß PCB°¡ Á¦´ë·Î ÀÛµ¿ÇÏ·Á¸é Àå±âÀûÀÎ ³»±¸¼º°ú ³»¸¶¸ð¼ºÀÌ ÇʼöÀûÀÔ´Ï´Ù.
ÀÚµ¿Â÷¿ë °í±Þ PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ¹Ý¸é, ºñ¿ë Àý°¨¿¡ ´ëÇÑ ¾Ð¹Úµµ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÚµ¿Â÷ »ê¾÷ Ç¥ÁØÀ» ÃæÁ·ÇÏ´Â °íǰÁúÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â PCB°¡ ¿ä±¸µÇ´Â »óȲ¿¡¼ ƯÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ºñ¿ë È¿À²¼º°ú ǰÁú ¹× ¼º´ÉÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº PCB Á¦Á¶¾÷ü¿¡°Ô Ç×»ó ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù.
PCB Á¦Á¶ ºÎ¹®À» Æ÷ÇÔÇÑ ¼¼°è °ø±Þ¸ÁÀº ÀÚ¿¬ÀçÇØ, ÁöÁ¤ÇÐÀû ±äÀå, COVID-19 ÆÒµ¥¹Í°ú °°Àº È¥¶õÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. °ø±Þ¸Á È¥¶õÀº »ý»ê Áö¿¬°ú ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, PCB Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀ̱â À§ÇØ Åº·ÂÀûÀÎ °ø±Þ¸Á Àü·«À» °³¹ßÇØ¾ß ÇÕ´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷Àº ¾ÈÀü, ¹èÃâ°¡½º, ÀüÀÚÆÄ ÀûÇÕ¼º(EMC) ±ÔÁ¦ µî ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â PCB´Â Áö¿ª°ú ½ÃÀ帶´Ù ´Ù¸¥ ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇØ¾ß Çϸç, PCB°¡ ÇÊ¿äÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϵµ·Ï º¸ÀåÇÏ´Â °ÍÀº Áö¼ÓÀûÀÎ Å×½ºÆ®¿Í °ËÁõÀÌ ÇÊ¿äÇÑ º¹ÀâÇÑ °úÁ¦ÀÔ´Ï´Ù.
Â÷·® ÀüÀÚ ÀåºñÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó PCB´Â ¿£Áø Á¦¾î¿¡¼ ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±â´ÉÀ» Áö¿øÇØ¾ß ÇÕ´Ï´Ù. ½Å·Ú¼ºÀ» À¯ÁöÇÏ°í °£¼·À» ÇÇÇÏ¸é¼ ¿©·¯ ±â´ÉÀ» ÇϳªÀÇ PCB¿¡ ÅëÇÕÇÏ´Â °ÍÀº ¼³°è»ó °úÁ¦À̸ç, PCB ¼³°èÀÚ´Â ±â´É¼º°ú °ø°£ Á¦¾à ¹× ¿Àû °í·Á »çÇ×ÀÇ ±ÕÇüÀ» ¸ÂÃß¾î¾ß ÇÕ´Ï´Ù.
±¸¸® ¹× ´Ù¾çÇÑ ÈÇй°ÁúÀ» Æ÷ÇÔÇÑ PCB Á¦Á¶¿¡ »ç¿ëµÇ´Â Àç·á´Â ȯ°æ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÀ¸¸ç, PCB Á¦Á¶ °øÁ¤ÀÌ Áö¼Ó°¡´ÉÇϰí À¯ÇØ ¹°Áú »ç¿ëÀ» ÃÖ¼ÒÈÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ģȯ°æÀûÀÎ ¹æ¹ý°ú Àç·á¸¦ »ç¿ëÇØ¾ß ÇÕ´Ï´Ù.
¼¼°è ÀüÀÚ »ê¾÷Àº ¹ÝµµÃ¼, ÀúÇ×±â, Ä¿ÆÐ½ÃÅÍ µî ºÎǰ ºÎÁ·¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÁ·Àº PCB »ý»ê¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÚµ¿Â÷ Á¦Á¶ Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ºÎǰ °ø±Þ¸Á ¹®Á¦¿Í ¸®µå ŸÀÓÀ» °ü¸®ÇÏ´Â °ÍÀº »ý»ê ÀÏÁ¤À» ÁöŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
´Ù¾çÇÑ °ø±Þ¾÷üÀÇ ¿©·¯ PCB°¡ ÇϳªÀÇ Â÷·®¿¡ ÅëÇյDZ⠶§¹®¿¡ ȣȯ¼º°ú »óÈ£¿î¿ë¼ºÀ» º¸ÀåÇÏ´Â °ÍÀÌ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¼·Î ´Ù¸¥ ¼Ò½ºÀÇ ºÎǰÀÌ ¿øÈ°ÇÏ°Ô Åë½ÅÇÏÁö ¸øÇϸé ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÏ¿© ¿ÀÀÛµ¿ ¹× ½Ã½ºÅÛ ¼º´É ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ´Â Ç¥ÁØÈ ¹× ȣȯ¼º Å×½ºÆ® ³ë·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù.
ÀÚµ¿Â÷°¡ Á¡Á¡ ´õ ¿¬°áµÉ¼ö·Ï »çÀ̹ö º¸¾È À§Çù¿¡ ³ëÃâµÇ±â ½¬¿öÁö¸ç, PCB¿Í ÀÓº£µðµå ½Ã½ºÅÛÀº ÇØÅ·°ú µ¥ÀÌÅÍ À¯Ãâ·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ °ß°íÇÑ »çÀ̹ö º¸¾È Á¶Ä¡·Î ¼³°èµÇ¾î¾ß ÇÕ´Ï´Ù. »óÈ£ ¿¬°áµÇ´Â ÀÚµ¿Â÷ »ýŰ迡¼ PCBÀÇ º¸¾ÈÀ» È®º¸ÇÏ´Â °ÍÀº Áö¼ÓÀûÀÎ µµÀü °úÁ¦ÀÔ´Ï´Ù.
°í±Þ PCB °³¹ß ¹× Á¤ºñ¿¡´Â ÀüÀÚ, Àç·á °úÇÐ ¹× PCB ¼³°è¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» °®Ãá ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼ À¯´ÉÇÑ ÀÎÀç°¡ ºÎÁ·ÇÏ¿© PCB »ê¾÷ÀÇ ±â¼ú Çõ½Å°ú Á¦Ç° °³¹ßÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ PCB ½ÃÀå¿¡¼ °¡Àå ´«¿¡ ¶ç´Â Æ®·»µå Áß Çϳª´Â ÀÚµ¿Â÷ÀÇ Àü±âȰ¡ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿Í ÇÏÀ̺긮µåÂ÷´Â ¹èÀü, ¹èÅ͸® °ü¸® ¹× ÃæÀü ½Ã½ºÅÛÀ» °ü¸®Çϱâ À§ÇØ °í±Þ PCB°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¼¼°è¿¡¼ EV ±â¼ú¿¡ ÅõÀÚÇÏ°í ¹èÃâ ±âÁذú Áö¼Ó°¡´ÉÇÑ ¿î¼Û¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Àü±â ÆÄ¿öÆ®·¹Àο¡ ¸Â´Â Ư¼ö PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ÀÚÀ²ÁÖÇà ±â¼úÀÇ °³¹ß°ú µµÀÔÀº PCB ¼³°è ¹× Á¦Á¶¿¡ Å« Çõ½ÅÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®Àº º¹ÀâÇÑ ¼¾¼, Ä«¸Þ¶ó, ·¹ÀÌ´õ ¹× ¶óÀÌ´õ ½Ã½ºÅÛÀ» ÅëÇØ ÁÖº¯ »óȲÀ» ÀνÄÇϰí Ž»öÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼´Â ½Ç½Ã°£ ó¸® ¹× ÀÇ»ç °áÁ¤ÀÌ ÇÊ¿äÇÑ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ¿© °í¼º´É PCB¸¦ ¿ä±¸ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ PCB ½ÃÀå¿¡¼´Â ÀÚÀ²ÁÖÇàÂ÷ÀÇ µ¥ÀÌÅÍ Áý¾àÀû ¿ä±¸ »çÇ×À» ó¸®ÇÒ ¼ö ÀÖ´Â PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.
ADAS(÷´Ü ¿îÀü º¸Á¶ ½Ã½ºÅÛ)ÀÇ º¸±ÞÀº ÀÚµ¿Â÷ PCB ½ÃÀåÀ» Çü¼ºÇÏ´Â Áß¿äÇÑ Ãß¼¼ÀÔ´Ï´Ù. ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö º¸Á¶, Ãæµ¹ ¹æÁö¿Í °°Àº ADAS ±â´ÉÀº ¼¾¼ µ¥ÀÌÅÍ ºÐ¼® ¹× ÀÇ»ç °áÁ¤À» À§ÇØ PCB¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ¾ÈÀü ±â´ÉÀ» Á¡Á¡ ´õ Áß¿ä½ÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ´õ ¸¹Àº ADAS ºÎǰÀ» ÀÚµ¿Â÷¿¡ ÅëÇÕÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ±³Åë¾ÈÀüÀ» Çâ»ó½Ãų»Ó¸¸ ¾Æ´Ï¶ó ADAS ±â´É¿¡ ¸Â´Â PCB¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ÀÇ Ä¿³ØÆ¼ºñƼ, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¹× °í±Þ »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, PCB´Â ½º¸¶Æ®Æù ÅëÇÕ, À½¼ºÀνÄ, °íÈÁú µð½ºÇ÷¹ÀÌ, ¿£ÅÍÅ×ÀÎ¸ÕÆ® ½Ã½ºÅÛ µî ÀÌ·¯ÇÑ ±â´ÉÀ» Á¦°øÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼ºñƼ ¹× ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿ë ¸ÂÃãÇü PCB¿¡ ´ëÇÑ ¼ö¿ä´Â dzºÎÇÑ Â÷·®³» °æÇè¿¡ ´ëÇÑ ¿å±¸¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷°¡ µðÁöÅÐ ¶óÀÌÇÁ½ºÅ¸ÀÏÀÇ ¿¬Àå¼±»ó¿¡ ÀÖ´Â ¸¸Å, ÀÌ·¯ÇÑ Ãß¼¼´Â PCB ¼³°è ¹× Á¦Á¶¿¡ Áö¼ÓÀûÀ¸·Î ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Àç·á °úÇаú ¼ÒÇüÈ ±â¼úÀÇ ¹ßÀüÀ¸·Î PCBÀÇ ¼ÒÇüÈ ¹× °æ·®È°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. °ø°£°ú ¹«°Ô¸¦ °í·ÁÇÏ´Â °ÍÀÌ Áß¿äÇÑ Àü±âÀÚµ¿Â÷¿Í ÀÚÀ²ÁÖÇàÂ÷ ½Ã´ë¿¡ PCBÀÇ ¼ÒÇüÈ´Â È¿À²ÀûÀÎ ÅëÇÕ°ú Â÷·® ¼³°è¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¼º´É°ú ½Å·Ú¼ºÀ» À¯ÁöÇÏ¸é¼ ´õ ÄÄÆÑÆ®ÇÑ ÀüÀÚ ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
°íÁÖÆÄ PCB¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÚµ¿Â÷ÀÇ Ã·´Ü Åë½Å ½Ã½ºÅÛ¿¡ »ç¿ëµÊ¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ PCB´Â Â÷·® ´ë Â÷·®(V2V) ¹× Â÷·® ´ë Â÷·®(V2I) Åë½Å¿¡ ÇʼöÀûÀ̸ç, ½Ç½Ã°£ µ¥ÀÌÅÍ ±³È¯À» °¡´ÉÇÏ°Ô ÇÏ¿© ±³Åë¾ÈÀüÀ» °ÈÇÕ´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿Í IoT ±â¼úÀÇ ¼ºÀåÀº ÀÚµ¿Â÷ ºÐ¾ß¿¡¼ °íÁÖÆÄ PCBÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.
PCB Á¦Á¶¾÷üµéÀº ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Ã·´Ü ¼ÒÀçÀÇ »ç¿ëÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ³»¿¼º, ³»±¸¼º ¹× À¯Àüü Ư¼ºÀÌ ¿ì¼öÇÑ °í¼º´É ¼ÒÀç´Â ƯÈ÷ Àü±âÀÚµ¿Â÷ ¹× ÀÚÀ²ÁÖÇà Â÷·®¿¡ »ç¿ëµÇ´Â PCB¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â PCB°¡ °¡È¤ÇÑ Á¶°ÇÀ» °ßµð°í Àå±âÀûÀÎ ½Å·Ú¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖµµ·Ï ÇØÁÝ´Ï´Ù.
ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº Â÷·® ÀüÀÚÀåºñÀÇ º¹À⼺À» ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ¿©·¯ ±â´ÉÀ» ÇϳªÀÇ PCB¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Â÷·®³» PCB ¼ö¸¦ ÃÖ¼ÒÈÇÏ¿© Á¦Á¶¸¦ °£¼ÒÈÇÏ°í ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ÅëÇÕ PCB´Â ¿£Áø Á¦¾î¿Í º¯¼Ó±â Á¦¾î¸¦ ¸ðµÎ ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, Â÷·® ¾ÆÅ°ÅØÃ³¸¦ ´Ü¼øÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ ¾÷°è¿¡¼ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ PCB Á¦Á¶¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, PCB Á¦Á¶¾÷ü¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ģȯ°æ ¼ÒÀç »ç¿ë, ¿¡³ÊÁö È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤, ÀçȰ¿ë ³ë·Â°ú °°Àº Áö¼Ó°¡´ÉÇÑ °üÇàÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº PCBÀÇ Àüü ¼ö¸íÁֱ⠵¿¾È ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
ÀÚµ¿Â÷¿¡¼ PCBÀÇ º¹À⼺°ú ¿ªÇÒÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Å×½ºÆ® ¹× ǰÁú °ü¸®°¡ ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº PCB°¡ ¾ö°ÝÇÑ Ç°Áú ±âÁØÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇϱâ À§ÇØ ÀÚµ¿ ±¤ÇÐ °Ë»ç(AOI) ¹× X-·¹ÀÌ °Ë»ç µî ÷´Ü °Ë»ç ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ǰÁú °ü¸® Á¶Ä¡´Â ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¸®ÄÝÀ» ÇÇÇϰí ÀüÀÚ ½Ã½ºÅÛÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
´Ù¾çÇÑ Á¦Á¶¾÷üÀÇ ¿©·¯ PCB¸¦ ÇϳªÀÇ Â÷·®¿¡ ÅëÇÕÇÒ ¶§, »óÈ£¿î¿ë¼º°ú Ç¥ÁØÈ¸¦ º¸ÀåÇÏ´Â °ÍÀº Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. ¼·Î ´Ù¸¥ ¼Ò½ºÀÇ ÄÄÆ÷³ÍÆ®°¡ ¿øÈ°ÇÏ°Ô Åë½ÅÇÏÁö ¸øÇϸé ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÏ¿© ¿ÀÀÛµ¿ ¹× ½Ã½ºÅÛ ¼º´É ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí ÅëÇÕÀ» ´Ü¼øÈÇϱâ À§ÇØ Ç¥ÁØÈ ³ë·ÂÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷°¡ Á¡Á¡ ´õ ¿¬°áµÉ¼ö·Ï »çÀ̹ö º¸¾È À§Çù¿¡ ³ëÃâµÇ±â ½¬¿öÁö¸ç, PCB¿Í ÀÓº£µðµå ½Ã½ºÅÛÀº ÇØÅ·°ú µ¥ÀÌÅÍ À¯Ãâ·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ °ß°íÇÑ »çÀ̹ö º¸¾È Á¶Ä¡·Î ¼³°èµÇ¾î¾ß ÇÕ´Ï´Ù. »óÈ£ ¿¬°áµÇ´Â ÀÚµ¿Â÷ »ýŰ迡¼ PCBÀÇ º¸¾ÈÀ» º¸ÀåÇÏ´Â °ÍÀº Áö¼ÓÀûÀÎ µµÀü °úÁ¦ÀÔ´Ï´Ù.
ÃßÁø À¯ÇüÀº ¼¼°è ÀÚµ¿Â÷ PCB ½ÃÀåÀÇ ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀº Å©°Ô ³»¿¬±â°üÂ÷(ICE), ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV), Àü±âÀÚµ¿Â÷(EV)·Î ±¸ºÐÇÒ ¼ö ÀÖÀ¸¸ç, ICE ºÎ¹®Àº ¼¼°è¿¡¼ ÀÌ·¯ÇÑ ¿£ÁøÀÌ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¹Ç·Î ÀüÅëÀûÀ¸·Î ½ÃÀåÀ» µ¶Á¡ÇØ ¿Ô½À´Ï´Ù. ±×·¯³ª ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ģȯ°æÀûÀÎ ¼±Åÿ¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó HEV¿Í EV ºÐ¾ß°¡ °·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÀÌ·¯ÇÑ ÀÚµ¿Â÷¸¦ À§ÇØ Æ¯º°È÷ ¼³°èµÈ ÀÚµ¿Â÷ PCB¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°è ÀÚµ¿Â÷ Àμâ ȸ·Î ±âÆÇ(PCB) ½ÃÀå¿¡´Â ¿©·¯ Â÷Á¾ÀÌ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½Â¿ëÂ÷´Â ÷´Ü ¾ÈÀü ±â´É, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ³»ºñ°ÔÀÌ¼Ç ¼ºñ½º ¹× ±âŸ ÀüÀÚ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷·®¿¡´Â ¼ö¸¹Àº PCB°¡ Á¸ÀçÇÏ¿© ÀÌ·¯ÇÑ º¹ÀâÇÑ ±â´ÉÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÇÑÆí, »ó¾÷¿ë Â÷·®Àº ¿¹Ãø ±â°£ Áß ´«¿¡ ¶ç´Â ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ó¿ëÂ÷ÀÇ Â÷·® °ü¸® ¼ºñ½º, ÅÚ·¹¸Åƽ½º ¹× ±âŸ ÀüÀÚ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀº ÀÌ ºÐ¾ßÀÇ ÀÚµ¿Â÷ PCB¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷´Â ÀÌ·¯ÇÑ ÀÚµ¿Â÷¿¡ Æ÷ÇÔµÈ Áß¿äÇÑ ÀüÀÚ ºÎǰÀ» °í·ÁÇÒ ¶§ PCB ½ÃÀå¿¡ Å« ±âȸ¸¦ °¡Á®¿Ã °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°è ÀÚµ¿Â÷ PCB(Àμâ ȸ·Î ±âÆÇ) ½ÃÀåÀº ÀÚµ¿Â÷ÀÇ Àüµ¿È ¹× ÷´Ü ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áö¿ªº°·Î´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ƯÈ÷ Áß±¹ ¹× ÀϺ»°ú °°Àº ±¹°¡µéÀÇ °ß°íÇÑ ÀÚµ¿Â÷ »ê¾÷°ú Àü±âÀÚµ¿Â÷ÀÇ Ã¤Åà Áõ°¡°¡ ±× ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ºÏ¹Ì¿Í À¯·´ÀÌ ±Ù¼ÒÇÑ Â÷ÀÌ·Î ±× µÚ¸¦ µû¸£°í ÀÖÀ¸¸ç, ÀÚµ¿Â÷¿¡ ÷´Ü ÀüÀÚÁ¦Ç°ÀÇ ÅëÇÕ°ú À¯¸í ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Á¸Àç°¡ Å« ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª À̵é Áö¿ª ½ÃÀå ¼ºÀåÀº ÀÚµ¿Â÷ ¹è±â°¡½º ±ÔÁ¦ ±âÁØ ¶§¹®¿¡ ¾î·Á¿òÀ» °ÞÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Automotive PCB Market has valued at USD 6.5 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.8%. The global Automotive PCB (Printed Circuit Board) market is experiencing robust growth, primarily driven by the escalating demand for advanced vehicles, including electric and hybrid cars, that heavily rely on PCBs. These PCBs are crucial for facilitating the seamless integration and functioning of various electronic components within vehicles, enabling enhanced performance, safety, and connectivity.
Key players in the market are actively focusing on innovations and advancements in PCB technology to meet the growing demand and support the development of complex electronics within vehicles. One such innovation is the high-density interconnect (HDI) technology, which enables the compact and efficient design of PCBs, allowing for the integration of more electronic components in a smaller space. This advancement plays a vital role in the development of modern vehicles that require sophisticated electronic systems.
Geographically, the Asia-Pacific region is leading the Automotive PCB market, with countries like China, Japan, and South Korea emerging as key contributors. These countries have well-established and advanced automobile sectors, driving the demand for PCBs in their domestic markets. Additionally, the presence of major automotive manufacturers and suppliers in the region further fuels the growth of the market.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 6.5 Billion |
Market Size 2028 | USD 9.04 Billion |
CAGR 2023-2028 | 5.80% |
Fastest Growing Segment | Internal Combustion Engine |
Largest Market | Asia-Pacific |
However, Europe and North America are also showcasing significant growth potential in the Automotive PCB market. These regions are witnessing an increasing adoption of advanced automotive technologies, including electric and autonomous vehicles, leading to a higher demand for PCBs. The stringent regulations and standards regarding automotive safety and emissions in these regions also drive the need for advanced electronic systems in vehicles.
In conclusion, the Automotive PCB market is experiencing substantial growth worldwide, powered by the demand for advanced vehicles and the continuous innovations in PCB technology. The Asia-Pacific region remains at the forefront of this market, while Europe and North America are also poised for significant growth. The integration of advanced PCBs in vehicles plays a crucial role in shaping the future of automotive technology and driving the industry towards greater efficiency and sustainability.
One of the most influential drivers of the Automotive PCB Market is the ongoing electrification of vehicles. As governments worldwide push for stricter emissions regulations and environmental sustainability, automakers are investing heavily in electric vehicles (EVs). EVs rely on complex electronic systems to manage battery performance, power distribution, and charging. PCBs are essential for supporting these electronic components, making them a critical component in the EV revolution.
The development of autonomous driving technology is accelerating the adoption of advanced PCBs in vehicles. Autonomous vehicles rely on a multitude of sensors, cameras, radar, and lidar systems to perceive their surroundings and make real-time decisions. These sensors generate massive amounts of data that require sophisticated electronic control units (ECUs) and PCBs for processing and decision-making. As autonomous driving technology evolves, the demand for high-performance PCBs capable of handling the data-intensive requirements of self-driving cars continues to rise.
Modern vehicles are equipped with an unprecedented level of electronic systems and features, ranging from advanced driver-assistance systems (ADAS) to infotainment and connectivity features. This complexity necessitates PCBs designed to support a wide array of functions. As consumer demand for advanced features continues to grow, automakers are integrating more electronic components into their vehicles, further fueling the demand for PCBs.
Today's consumers expect seamless connectivity and advanced infotainment options in their vehicles. PCBs play a pivotal role in delivering these features, including smartphone integration, touchscreen displays, voice recognition, and in-car Wi-Fi. The demand for PCBs tailored for connectivity and infotainment systems is driven by the desire for an enhanced in-car experience, leading to continuous innovation in this segment.
Governments around the world are imposing stringent emissions regulations to combat climate change and reduce air pollution. To meet these regulatory standards, automakers are focusing on improving fuel efficiency and reducing emissions through electronic control systems. PCBs are instrumental in optimizing engine performance, managing fuel injection, and controlling emissions, making them indispensable for compliance with emissions standards.
The integration of advanced driver-assistance systems (ADAS) into vehicles is another significant driver for the Automotive PCB Market. ADAS features like adaptive cruise control, lane-keeping assist, and collision avoidance rely heavily on PCBs for sensor data interpretation and decision-making. As safety becomes an increasingly important consideration for consumers, automakers are incorporating more ADAS components into their vehicles, further boosting the demand for PCBs tailored for these functions.
Automakers are continually seeking ways to enhance supply chain efficiency and reduce manufacturing costs. PCB manufacturing processes have evolved to meet these demands, with a focus on producing high-quality, cost-effective PCBs in large quantities. Streamlined production and efficient supply chains are key drivers for the Automotive PCB Market, ensuring that PCBs are readily available to support the growing electronic content in vehicles.
Advances in materials science and miniaturization techniques are influencing the design and manufacturing of PCBs. Smaller, lightweight PCBs with improved heat dissipation properties are becoming increasingly important, especially in electric and autonomous vehicles where space and weight considerations are critical. These advancements enable more efficient PCB integration and reduce the overall footprint of electronic systems in vehicles.
The trend of electrification extends to commercial vehicles, including buses, trucks, and delivery vans. As governments and businesses prioritize sustainability, the demand for PCBs tailored to commercial EVs is growing. These PCBs focus on optimizing efficiency, extending range, and managing the complex energy requirements of larger and heavier vehicles, further expanding the market.
Sustainability is a growing concern in the automotive industry, influencing the design and manufacturing of PCBs. PCB manufacturers and automakers are adopting sustainable practices, including the use of eco-friendly materials, energy-efficient production processes, and recycling initiatives. These efforts aim to reduce the environmental impact of PCBs throughout their lifecycle, aligning with broader environmental goals.
As vehicles become more technologically advanced and compact, the demand for smaller, denser PCBs with increased functionality is on the rise. Achieving miniaturization while ensuring reliability and thermal management poses a significant challenge. PCB manufacturers must continually innovate to meet the demands of compact electronic systems in modern vehicles.
Vehicles are increasingly equipped with numerous electronic components that can generate electromagnetic interference. EMI can lead to signal degradation, affecting the performance of sensitive electronic systems. PCBs need to be designed with EMI shielding and isolation in mind to ensure optimal performance and compliance with electromagnetic compatibility (EMC) standards.
Electronic components in vehicles generate heat, which can be detrimental to the performance and lifespan of PCBs. Ensuring effective thermal management to dissipate heat is crucial for maintaining the reliability of PCBs. In electric vehicles (EVs) and autonomous vehicles, which often contain high-power components, thermal management becomes an even more critical challenge.
PCBs in automotive applications must operate reliably under harsh environmental conditions, including extreme temperatures, humidity, and vibrations. The long-term durability and resistance to wear and tear are essential to ensure that PCBs continue to function properly throughout a vehicle's lifespan.
While the demand for advanced PCBs in vehicles is increasing, there is also pressure to keep costs down. This is particularly challenging given the need for high-quality, reliable PCBs that meet automotive industry standards. Balancing cost-effectiveness with quality and performance is a constant challenge for PCB manufacturers.
The global supply chain, including the PCB manufacturing sector, is susceptible to disruptions such as natural disasters, geopolitical tensions, and the COVID-19 pandemic. Disruptions in the supply chain can lead to delays in production and increased costs. PCB manufacturers must develop resilient supply chain strategies to mitigate these risks.
The automotive industry is subject to stringent regulatory standards, including safety, emissions, and electromagnetic compatibility (EMC) regulations. PCBs used in vehicles must comply with these standards, which can vary by region and market. Ensuring that PCBs meet the necessary regulatory requirements is a complex challenge that requires ongoing testing and validation.
The increasing complexity of vehicle electronics requires PCBs to support a wide range of functions, from engine control to advanced driver-assistance systems (ADAS). Integrating multiple functions onto a single PCB while maintaining reliability and avoiding interference is a design challenge. PCB designers must balance functionality with space constraints and thermal considerations.
The materials used in PCB manufacturing, including copper and various chemicals, can have environmental impacts. Ensuring that PCB manufacturing processes are sustainable and minimize the use of hazardous materials is a growing concern. PCB manufacturers must adopt eco-friendly practices and materials to align with sustainability goals.
The global electronics industry has faced component shortages, including semiconductors, resistors, and capacitors. These shortages can impact the production of PCBs and lead to delays in vehicle manufacturing. Managing component supply chain challenges and lead times is critical to meet production schedules.
With multiple PCBs from different suppliers integrated into a single vehicle, ensuring compatibility and interoperability is a significant challenge. Compatibility issues can arise when components from different sources don't communicate seamlessly, leading to malfunctions or reduced system performance. Standardization and compatibility testing efforts are essential to address this challenge.
As vehicles become more connected, they are vulnerable to cybersecurity threats. PCBs and their embedded systems must be designed with robust cybersecurity measures to protect against hacking and data breaches. Ensuring the security of PCBs in an increasingly interconnected automotive ecosystem is an ongoing challenge.
The development and maintenance of advanced PCBs require a skilled workforce with expertise in electronics, materials science, and PCB design. There is a shortage of qualified talent in these areas, which can hinder innovation and product development in the PCB industry.
One of the most prominent trends in the Automotive PCB Market is the rapid rise in vehicle electrification. Electric vehicles (EVs) and hybrid vehicles require advanced PCBs to manage power distribution, battery management, and charging systems. As automakers globally invest in EV technology to meet emissions standards and consumer demand for sustainable transportation, the demand for specialized PCBs tailored to electric powertrains is on the rise.
The development and deployment of autonomous driving technology are driving significant innovation in PCB design and manufacturing. Autonomous vehicles rely on a complex array of sensors, cameras, radar, and lidar systems to perceive and navigate their surroundings. These sensors generate vast amounts of data that require real-time processing and decision-making, demanding high-performance PCBs. As autonomous driving technology advances, the Automotive PCB Market is experiencing a surge in demand for PCBs capable of handling the data-intensive requirements of self-driving cars.
The proliferation of advanced driver-assistance systems (ADAS) is a critical trend shaping the Automotive PCB Market. ADAS features such as adaptive cruise control, lane-keeping assist, and collision avoidance rely heavily on PCBs for sensor data interpretation and decision-making. Consumers are increasingly valuing safety features, pushing automakers to incorporate more ADAS components into their vehicles. This trend not only enhances road safety but also drives the demand for PCBs tailored for ADAS functions.
Consumer expectations for connectivity, infotainment, and advanced user interfaces in vehicles are on the rise. PCBs play a pivotal role in delivering these features, including smartphone integration, voice recognition, high-definition displays, and entertainment systems. The demand for PCBs customized for connectivity and infotainment is fueled by the desire for an enriched in-car experience. As vehicles become extensions of digital lifestyles, this trend will continue to influence PCB design and production.
Advances in materials science and miniaturization techniques are driving the development of smaller and lighter PCBs. In an era of electric and autonomous vehicles, where space and weight considerations are critical, PCB miniaturization is essential for efficient integration and vehicle design. These advancements enable more compact electronic systems while maintaining performance and reliability.
The demand for high-frequency PCBs is growing due to their use in advanced communication systems in vehicles. These PCBs are essential for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, enabling real-time data exchange and enhancing road safety. The growth of smart cities and IoT technologies is further driving the need for high-frequency PCBs in the automotive sector.
PCB manufacturers are increasingly utilizing advanced materials to improve performance and reliability. High-performance materials with superior heat resistance, durability, and dielectric properties are in demand, especially for PCBs used in EVs and autonomous vehicles. These materials enable PCBs to withstand extreme conditions and ensure long-term reliability.
To reduce complexity and improve efficiency in vehicle electronics, automakers are integrating multiple functions into a single PCB. This trend minimizes the number of PCBs in a vehicle, streamlining manufacturing and reducing costs. For example, integrated PCBs may handle both engine control and transmission control, simplifying vehicle architecture.
Sustainability is a growing concern in the automotive industry, and this trend is affecting PCB manufacturing. PCB manufacturers and automakers are adopting sustainable practices, including the use of eco-friendly materials, energy-efficient production processes, and recycling initiatives. These efforts aim to reduce the environmental impact of PCBs throughout their lifecycle.
With the increasing complexity and critical role of PCBs in vehicles, there is a growing emphasis on testing and quality control. Manufacturers are investing in advanced testing techniques, including automated optical inspection (AOI) and X-ray inspection, to ensure PCBs meet stringent quality standards. Quality control measures are essential to avoid costly recalls and ensure the reliability of electronic systems.
With multiple PCBs from different manufacturers integrated into a single vehicle, ensuring interoperability and standardization is a significant challenge. Compatibility issues can arise when components from different sources don't communicate seamlessly, leading to malfunctions or reduced system performance. Standardization efforts are ongoing to address these issues and simplify integration.
As vehicles become more connected, they are susceptible to cybersecurity threats. PCBs and their embedded systems must be designed with robust cybersecurity measures to protect against hacking and data breaches. Ensuring the security of PCBs in an increasingly interconnected automotive ecosystem is an ongoing challenge.
Propulsion type plays a pivotal role in shaping the dynamics of the global automotive PCB market. The market can be broadly segmented into Internal Combustion Engines (ICE), Hybrid Electric Vehicles (HEV), and Electric Vehicles (EV). The ICE segment has traditionally dominated the market, owing to the widespread use of these engines globally. However, with increasing environmental concerns and the push for greener alternatives, the HEV and EV segments are experiencing robust growth. This trend is expected to escalate demand for automotive PCBs specifically designed for these vehicles, driving market growth.
In the global Automotive Printed Circuit Board (PCB) market, several vehicle types stand as significant contributors. Passenger vehicles, for instance, hold a significant share due to the growing demand for advanced safety features, infotainment systems, navigation services, and other electronic components. The presence of numerous PCBs in these vehicles aids in seamlessly integrating these complex features. Commercial vehicles, on the other hand, are expected to exhibit notable growth over the forecast period. The adoption of fleet management services, telematics, and other electronic systems in commercial vehicles is driving the demand for automotive PCBs in this sector. As technology advances, it's anticipated that hybrid and electric vehicles will also present substantial opportunities for the PCB market, considering the significant electronic content in these vehicles.
The global automotive PCB (Printed Circuit Board) market is witnessing substantial growth, driven by the rise in vehicle electrification and the increased demand for advanced safety features in automobiles. In terms of regional insights, Asia-Pacific is projected to dominate the market, attributed to the robust automotive industry and the growing adoption of electric vehicles, especially in countries like China and Japan. North America and Europe follow closely, with significant growth propelled by the integration of advanced electronics in vehicles and the presence of prominent automobile manufacturers. However, the market growth in these regions is expected to face challenges due to regulatory norms related to vehicle emissions.
In this report, the Global Automotive PCB Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: