Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ ¿ ÀÎÅÍÆäÀ̽º Àç·á ½ÃÀåÀº 2025³â 46¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ Áß CAGRÀº 12.6%·Î È®´ëµÇ¾î 2032³â±îÁö 105¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¿ ÀÎÅÍÆäÀ̽º Àç·á(TIM)´Â ºÎǰ °£ÀÇ È¿À²ÀûÀÎ ¿Àüµµ¸¦ ÃËÁøÇÏ´Â Àΰø ¹°Áú·Î, ÀϹÝÀûÀ¸·Î ¹ß¿ ÀåÄ¡¿Í ¹æ¿ÆÇÀ» ¿¬°áÇÕ´Ï´Ù. Ç¥¸é ¿äö·Î ÀÎÇÑ ÀÛÀº °ø±â Æ÷ÄÏÀ» ä¿ì°í ¿ ÀúÇ×À» ÃÖ¼ÒÈÇϰí Àüü ½Ã½ºÅÛÀÇ È¿À²À» ³ôÀÔ´Ï´Ù. TIM¿¡´Â ¿ ÆäÀ̽ºÆ®, »óº¯È ÈÇÕ¹°, ¿ ÆÐµå, ±Ý¼Ó ±â¹Ý ¼Ö·ç¼Ç µî ´Ù¾çÇÑ ÇüŰ¡ ÀÖ½À´Ï´Ù. ÀüÀÚ±â±âÀÇ °í¼º´ÉÈ ¹× ¼ÒÇüÈ¿¡ µû¶ó °ú¿À» ¹æÁöÇÏ°í ½Å·Ú¼ºÀ» À¯ÁöÇÏ¸ç µ¿ÀÛ ¼ö¸íÀ» ¿¬ÀåÇϱâ À§Çؼ´Â ¿À» È¿°úÀûÀ¸·Î °ü¸®ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. TIMÀº ÀÏ·ºÆ®·Î´Ð½º, LED ½Ã½ºÅÛ, °í±Þ ÄÄÇ»ÆÃ µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀ̸ç, °í¹Ðµµ·Î ±¸ÇöµÈ ¾î¼Àºí¸® ¹× °í¼º´É ȯ°æ¿¡¼µµ ÃÖÀûÀÇ ¿ ¼º´ÉÀ» º¸ÀåÇÕ´Ï´Ù.
IEEE¿¡ µû¸£¸é IEEE Transactions on Components, Packaging and Manufacturing TechnologyÀÇ µ¥ÀÌÅͷκÎÅÍ ¿ÀüµµÀ²ÀÌ 10W/m*K¸¦ ³Ñ´Â TIMÀº °íÀü·Â ÀÏ·ºÆ®·Î´Ð½º¿¡ ÀÖ¾î¼, ƯÈ÷ GaNÀ̳ª SiC ±â¹Ý µð¹ÙÀ̽ºÀÇ Á¢ÇպΠ¿Âµµ¸¦ ÀÓ°è ÀÓ°èÄ¡ ÀÌÇÏ·Î À¯ÁöÇϱâ À§ÇØ ÇʼöÀûÀÓÀÌ È®Àεǰí ÀÖ½À´Ï´Ù.
ÀüÀÚ±â±â¿¡¼ Àü·Â¹Ðµµ »ó½Â
Çö´ëÀÇ ÀüÀÚ±â±â¿¡¼ Àü·Â¹Ðµµ Áõ°¡´Â °íµµÀÇ ¿ °ü¸®¿¡ ´ëÇÑ ¿ä±¸¸¦ È®´ëÇÏ¿© ¿ ÀÎÅÍÆäÀ̽º Àç·á ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. °í¼º´É ºÎǰÀº Á¦ÇÑµÈ °ø°£¿¡¼ Å« ¿À» ¹ß»ý½Ã۱⠶§¹®¿¡ ÀåÄ¡ÀÇ ±â´É°ú ¼ö¸íÀ» ¼Õ»ó½ÃŰ´Â °úÁ¦°¡ ÀÖ½À´Ï´Ù. TIMÀº ºÎǰ°ú ¹æ¿ÆÇ »çÀÌÀÇ ¹Ì¼¼ÇÑ Æ´À» ä¿ì°í ¿Àüµµ¸¦ ÃËÁøÇÏ°í ¿ÀúÇ×À» ÁÙÀÌ´Â Áß¿äÇÑ ÀÎÅÍÆäÀ̽º ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾÷°è°¡ °í¼º´ÉÀÇ ¼ÒÇü µð¹ÙÀ̽º·Î ÀüȯÇÔ¿¡ µû¶ó È¿°úÀûÀÎ TIM »ç¿ëÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÃÖÀûÀÇ µð¹ÙÀ̽º ¼º´É, ¿¡³ÊÁö È¿À² ¹× ½Å·Ú¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ TIMÀÇ ¿ªÇÒÀ» µ¸º¸ÀÌ°Ô ÇÕ´Ï´Ù. È¿À²ÀûÀÎ TIMÀº ÀÌÁ¦ ÃÖ÷´Ü ÀüÀÚ ½Ã½ºÅÛ¿¡¼ ¿ ºÎÇϸ¦ °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
÷´Ü TIMÀÇ °íºñ¿ë
÷´Ü ¿ ÀÎÅÍÆäÀ̽º Àç·áÀÇ °¡°Ý »ó½ÂÀº ½ÃÀåÀÇ Å« Á¦¾àÀ̵Ǿú½À´Ï´Ù. ±Ý¼Ó ±â¹Ý ¹× »óº¯È À¯ÇüÀ» Æ÷ÇÔÇÑ °í¼º´É TIMÀº ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¿ø·á¿Í º¹ÀâÇÑ Á¦Á¶ ¹æ¹ýÀ» ¼ö¹ÝÇÏ´Â °æ¿ì°¡ ¸¹¾Æ Àüü ºñ¿ëÀÌ ³ô½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº º¸±Þ °¡°Ý´ë³ª Áß°¡°Ý´ëÀÇ ÀüÀÚ±â±â ä¿ëÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ¿¹»êÀÌ Á¦ÇÑµÈ Á¦Á¶¾÷ü¿Í °¡°Ý¿¡ ¹Î°¨ÇÑ ¼ÒºñÀÚ´Â ¿ ¼º´ÉÀ¸·Î ŸÇùÇÏ´õ¶óµµ ´õ Àú·ÅÇÑ ´ë¾ÈÀ» ¼±È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀåÀÇ ¼ºÀåÀº ºñ¿ëÀÇ º®¿¡ ÀÇÇØ ºÎºÐÀûÀ¸·Î ¾ïÁ¦µË´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü TIMÀº ¶Ù¾î³ ¹æ¿ È¿°ú¸¦ ¹ßÈÖÇÏÁö¸¸, ³ôÀº °¡°ÝÀÌ ¿©ÀüÈ÷ Å« °úÁ¦À̸ç, ÀüÀÚÀÇ ´Ù¾çÇÑ ¿ëµµ¿¡¼ÀÇ º¸±ÞÀ» Á¦ÇÑÇÏ°í ½ÃÀåÀÇ È®´ë¸¦ ´ÊÃß°í ÀÖ½À´Ï´Ù.
°í¼º´É ÄÄÇ»ÆÃ(HPC) È®´ë
¼¹ö, AI ÇÁ·Î¼¼¼ ¹× µ¥ÀÌÅͼ¾Å͸¦ Æ÷ÇÔÇÑ °í¼º´É ÄÄÇ»ÆÃÀÇ ±ÞÁõÀº ¿ ÀÎÅÍÆäÀ̽º Àç·á ½ÃÀå¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÄÄÇ»ÆÃ ºÎÇϰ¡ ³ô°í ¼ÒÇü ±¸¼ºÀ¸·Î ÀÎÇØ »ó´çÇÑ ¿À» ¹ß»ý½Ã۰í È¿°úÀûÀÎ ¿ °ü¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. TIMÀº ¹æ¿, °ú¿ ¹æÁö, Çϵå¿þ¾î ¼ö¸í ¿¬Àå¿¡ ÇʼöÀûÀÔ´Ï´Ù. Á¶Á÷ÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, AI, ºò µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ HPC ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÔ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿Àü´Þ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ ÇÏ¿¡¼ TIM Á¦Á¶¾÷ü´Â ±â¼ú Çõ½ÅÀ» ÃßÁøÇØ ¿Àüµµ¼º°ú È¿À²À» ³ôÀÎ Àç·á¸¦ ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â Â÷¼¼´ë ÄÄÇ»ÆÃ ±â¼úÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Áö¿øÇÏ´Â TIMÀÇ Áß¿äÇÑ ¿ªÇÒÀ» µ¸º¸ÀÌ°Ô ÇÕ´Ï´Ù.
½ÃÀåÀÇ Ä¡¿ÇÑ °æÀï
TIM ½ÃÀåÀº °æÀïÀÌ Ä¡¿ÇÏ°í ¸¹Àº ¼¼°è ±â¾÷°ú Áö¿ª ±â¾÷µéÀÌ ½ÃÀå Á¡À¯À²À» ´ÙÅõ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ±â¾÷µµ ½Å±Ô Âü°¡ ±â¾÷µµ Ç×»ó ÷´Ü Àç·á¸¦ ÅõÀÔÇϰí ÀÖÀ¸¸ç, ±× °á°ú °¡°ÝÀÌ ÀÎÇϵǰí ÀÌÀÍ·üÀÌ ¾Ð¹ÚµÉ ¼öµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÀï ¾Ð·ÂÀº Á¦Á¶¾÷ü¿¡°Ô ½Å¼ÓÇÑ Çõ½Å, ³ôÀº Á¦Ç° ǰÁú È®º¸ ¹× Àú·ÅÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ±Ô¸ð°¡ À۰ųª °æ¿µÀÚ¿øÀÌ ºÎÁ·ÇÑ ±â¾÷Àº ¿¬±¸°³¹ß, À¯Åë, ºê·£µù ¸é¿¡¼ ´ëÇü °æÀï»çµé°ú °æÀïÇϱ⠾î·Á¿ïÁöµµ ¸ð¸¨´Ï´Ù. ºó¹øÇÑ Á¦Ç° ¹ßÇ¥¿Í Àû±ØÀûÀÎ °¡°Ý Àü·«Àº ¶óÀ̹ú °ü°è¸¦ °ÝȽÃŵ´Ï´Ù. ±× °á°ú ½ÃÀå °æÀïÀº ¿©ÀüÈ÷ Å« À§ÇùÀÌ µÇ°í ÀÖÀ¸¸ç, ±â¾÷Àº ÁøÈÇÏ´Â ½ÃÀå »óȲ¿¡¼ ¼öÀͼºÀ» À¯ÁöÇÏ°í °ü·Ã¼ºÀ» À¯ÁöÇϸç Àå±âÀûÀÎ ¼ºÀåÀ» ´Þ¼ºÇØ¾ß ÇÕ´Ï´Ù.
COVID-19ÀÇ ¹ß»ýÀº Á¦Á¶, °ø±Þ¸Á, ±¹Á¦ ¹«¿ªÀÇ È¥¶õÀ» ÀÏÀ¸ÄÑ ¿ ÀÎÅÍÆäÀ̽º Àç·á ½ÃÀå¿¡ ÇöÀúÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ô´Ù¿î°ú ±ÔÁ¦·Î ÀÎÇØ °øÀåÀÇ ÀϽà Æó¼â°¡ °¿äµÇ¾î ¿øÀç·á Á¶´ÞÀÌ Áö¿¬µÇ°í ¹°·ù º´¸ñ Çö»óÀÌ ¹ß»ýÇÏ¿© TIM Á¦Ç°ÀÇ »ý»ê·®ÀÌ °¨¼ÒÇÏ°í ³³±â°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. À¯ÇàÀÇ Ãʱ⿡´Â ÀÚµ¿Â÷, °¡Àü, »ê¾÷±â°è µî ÁÖ¿ä ºÎ¹® ¼ö¿ä°¡ ¶³¾îÁö°í ¼ºÀå¿¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ¹Ý¸é µðÁöÅÐÈ, ¿ø°Ý ±Ù¹« Áõ°¡, ÀüÀÚ ±â±â ¹× µ¥ÀÌÅͼ¾ÅÍ »ç¿ë·® Áõ°¡·Î È¿°úÀûÀÎ ¿ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÆÒµ¥¹ÍÀº TIM ½ÃÀåÀÇ ¹æÇØ¿Í º¯È¸¦ ¸ðµÎ °¡Á®¿À°í »ç¾÷ Àü·«°ú Àå±â µ¿Çâ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
¿ ±×¸®½º ¹× Á¢ÂøÁ¦ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
¿ ±×¸®½º ¹× Á¢ÂøÁ¦ ºÐ¾ß´Â Ź¿ùÇÑ ¿Àüµµ Ư¼º°ú ±¤¹üÀ§ÇÑ »ç¿ë¼ºÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºÎǰ°ú ¹æ¿ÆÇ »çÀÌÀÇ ÀÛÀº Æ´»õ¸¦ È¿°úÀûÀ¸·Î ä¿ì¸é ¿ ÀúÇ×À» ÃÖ¼ÒÈÇÏ°í ½Ã½ºÅÛ È¿À²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀûÀÀ¼º, ÇÕ¸®Àû °¡°Ý, °£´ÜÇÑ µµÆ÷¸¦ ÅëÇØ ÀüÀÚ, ÀÚµ¿Â÷ ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼ ³ôÀº ÁöÁö¸¦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ TIMÀº °í¼º´É ÄÄÇ»ÆÃ ½Ã½ºÅÛ, LED ¸ðµâ ¹× ¼ÒÇü µð¹ÙÀ̽º¿¡ ÇʼöÀûÀ̸ç ÀϰüµÈ ¿ °ü¸®¸¦ º¸ÀåÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ź¼Ò°è ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È, ¿ì¼öÇÑ ¿Àüµµ ´É·Â, °æ·® ¹× ÃֽŠÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ¸·Î ÀÎÇØ ź¼Ò ±â¹Ý ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, ÇÏÀ̺긮µå Ä«º» ¼Ö·ç¼ÇÀº ¼ÒÇü µð¹ÙÀ̽ºÀÇ °íÃâ·Â ºÎǰ¿¡¼ È¿°úÀûÀ¸·Î ¿À» Á¦°ÅÇϰí Àü±âÀÚµ¿Â÷, °í¼º´É ÄÄÇ»ÆÃ ¹× ÷´Ü ÀüÀÚ Á¦Ç°ÀÇ ¿ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù. È¿À²ÀûÀÌ°í °í¼º´ÉÀÇ ¿ °ü¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ´Ù¾çÇÑ »ê¾÷¿¡¼ÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ÁøÈÇÏ´Â ¿ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Åº¼Ò ±â¹Ý Àç·á¸¦ Á¡Á¡ ´õ ¼±È£ÇÕ´Ï´Ù. ±× °á°ú, ÀÌ ºÐ¾ß´Â °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, TIM ½ÃÀå¿¡¼ µ¹ÃâµÈ ÁöÀ§¸¦ È®¸³Çϰí ÃÖÁ¾ ÀÌ¿ë »ê¾÷À¸·ÎºÎÅÍ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ÀüÀÚ±â±â Á¦Á¶¾÷ÀÌ È®¸³µÇ¾î »ê¾÷ °³Ã´ÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ´Â °ÍÀÌ ÁÖµÈ ÀÌÀ¯ÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ÁÖ¿ä ±¹°¡´Â °¡Á¤¿ë ÀüÀÚ±â±â, ÀÚµ¿Â÷ ºÎǰ, »ê¾÷¿ë ±â°èÀÇ »ý»êÀÇ Áß½ÉÁöÀ̸ç, TIM¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ ³º°í ÀÖ½À´Ï´Ù. °í¼º´É ÄÄÇ»ÆÃ, LED Á¶¸í, Àü±âÀÚµ¿Â÷¿Í °°Àº ºÐ¾ßÀÇ ¼ºÀåÀº ÷´Ü ¿ °ü¸® Àç·áÀÇ Çʿ伺À» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. À¯¸®ÇÑ ÀΰǺñ, °·ÂÇÑ °ø±Þ¸Á ¹× Áö¼ÓÀûÀÎ Çõ½ÅÀÌ ÀÌ Áö¿ª ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ±â±âÀÇ »ç¿ë Áõ°¡ ¹× È¿À²ÀûÀÎ ¹æ¿ ¼Ö·ç¼ÇÀÇ Á߽ÿ¡ ÁöÁöµÇ¾î, TIMÀÇ Ã¤¿ëÀ¸·Î ÁÖµµ±ÇÀ» À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÁַΠ÷´Ü ÀÏ·ºÆ®·Î´Ð½º, Àü±âÂ÷, Ç×°ø¿ìÁÖ µîÀÇ ºÐ¾ß¿¡¼ ³ôÀº ¼ö¿ä°¡ Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº ¿¬±¸, ±â¼ú Çõ½Å, ÃÖ÷´Ü ±â¼úÀÇ Ã¤Åÿ¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ È¿°úÀûÀÎ ¿ °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¼¹ö, µ¥ÀÌÅͼ¾ÅÍ, AI ±â¹Ý ÄÄÇ»ÆÃ ÀÎÇÁ¶óÀÇ È®ÀåÀº TIM ÀÌ¿ë·üÀ» ´õ¿í ³ô¿©ÁÝ´Ï´Ù. ¶ÇÇÑ °¡Á¤¿ë ÀüÀÚ±â±â ¹× ÀÚµ¿Â÷ »ê¾÷ÀÇ ¾ö°ÝÇÑ ½Å·Ú¼º°ú ¼º´É ¿ä±¸»çÇ×ÀÌ Á¦Á¶¾÷ü¿¡°Ô °íǰÁúÀÇ ¿ Àç·á¸¦ µµÀÔÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ºÏ¹Ì´Â ±Þ¼ÓÇÑ ½ÃÀå ¼ºÀåÀ» ÀÌ·ç°í ¼¼°èÀûÀ¸·Î Å« ±âȸ¸¦ Àâ°í TIM »ê¾÷ È®´ëÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Thermal Interface Materials Market is accounted for $4.61 billion in 2025 and is expected to reach $10.59 billion by 2032 growing at a CAGR of 12.6% during the forecast period. Thermal Interface Materials (TIMs) are engineered substances that facilitate efficient heat conduction between components, usually connecting a heat-producing device to a heat sink. They occupy tiny air pockets caused by uneven surfaces, minimizing thermal resistance and boosting overall system efficiency. Various forms of TIMs include thermal pastes, phase-change compounds, thermal pads, and metal-based solutions. As electronic devices become more powerful and compact, managing heat effectively is essential to avoid overheating, maintain reliability, and prolong operational life. TIMs are essential in applications such as electronics, LED systems, and advanced computing, ensuring optimal thermal performance even in densely packed assemblies and high-performance environments.
According to IEEE, Data from IEEE Transactions on Components, Packaging and Manufacturing Technology confirms that TIMs with thermal conductivity >10 W/m*K are essential in high-power electronics to maintain junction temperatures below critical thresholds, especially in GaN and SiC-based devices.
Rising power density in electronics
Increasing power density in contemporary electronics has escalated the requirement for advanced thermal management, driving growth in the Thermal Interface Materials market. High-performance components produce substantial heat within limited spaces, posing challenges that can compromise device functionality and longevity. TIMs serve as essential interfaces, filling microscopic gaps between components and heat sinks to enhance heat transfer and lower thermal resistance. With the industry moving toward more powerful, compact devices, the utilization of effective TIMs has surged. This highlights their indispensable role in maintaining optimal device performance, energy efficiency, and reliability. Efficient TIMs are now critical to managing thermal loads in cutting-edge electronic systems.
High cost of advanced TIMs
The elevated prices of advanced Thermal Interface Materials act as a major market constraint. High-performance TIMs, including metal-based and phase-change types, often involve costly raw materials and complex production methods, resulting in higher overall expenses. Such costs restrict their adoption in budget-friendly or mid-range electronic devices. Manufacturers with limited budgets and price-sensitive consumers may prefer less expensive alternatives, even if they compromise on thermal performance. Consequently, market growth is partially restrained due to cost barriers. While these advanced TIMs deliver superior heat dissipation, their high pricing remains a significant challenge, limiting widespread use and slowing market expansion across diverse electronics applications.
Expansion in high-performance computing (HPC)
The surge in high-performance computing, encompassing servers, AI processors, and data centers, presents significant opportunities for the Thermal Interface Materials market. These systems produce substantial heat because of high computational loads and compact configurations, necessitating effective thermal management. TIMs are essential for dissipating heat, preventing overheating, and prolonging hardware lifespan. As organizations invest heavily in HPC infrastructure for cloud computing, AI, and big data analytics, the demand for reliable heat transfer solutions grows. This environment allows TIM manufacturers to innovate, creating materials with enhanced thermal conductivity and efficiency. The trend underscores TIMs' critical role in supporting the performance and reliability of next-generation computing technologies.
Intense competition in the market
The TIM market is highly competitive, with many global and regional companies vying for market share. Both established firms and newcomers constantly introduce advanced materials, which can lead to price reductions and squeezed profit margins. These competitive pressure forces manufacturers to innovate quickly, ensure high product quality, and provide affordable solutions. Smaller or less resourceful companies may find it difficult to match the R&D, distribution, and branding strengths of larger competitors. Frequent product launches and aggressive pricing strategies intensify the rivalry. As a result, market competition remains a significant threat, challenging companies to sustain profitability, maintain relevance, and achieve long-term growth within the evolving Thermal Interface Materials landscape.
The COVID-19 outbreak had a notable effect on the Thermal Interface Materials market, causing disruptions in manufacturing, supply chains, and international trade. Lockdowns and restrictions forced temporary factory shutdowns, delayed raw material sourcing, and created logistical bottlenecks, leading to decreased production and slower delivery of TIM products. Early in the pandemic, demand fell from major sectors such as automotive, consumer electronics, and industrial machinery, impacting growth. On the other hand, increased digitalization, remote work, and higher usage of electronics and data centers spurred demand for effective thermal management solutions. Overall, the pandemic both hindered and transformed the TIM market, influencing operational strategies and long-term trends.
The thermal greases & adhesives segment is expected to be the largest during the forecast period
The thermal greases & adhesives segment is expected to account for the largest market share during the forecast period due to their superior heat conduction properties and wide-ranging usability. They effectively bridge small gaps between components and heat sinks, minimizing thermal resistance and enhancing system efficiency. Their adaptability, affordability, and straightforward application make them highly favored in electronics, automotive, and industrial applications. These TIMs are essential in high-performance computing systems, LED modules, and compact devices, ensuring consistent thermal management.
The carbon-based segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the carbon-based segment is predicted to witness the highest growth rate due to their excellent heat transfer capabilities, low weight, and suitability for modern electronics. Graphene, carbon nanotube, and hybrid carbon solutions effectively remove heat from high-power components in compact devices, meeting the thermal requirements of electric vehicles, high-performance computing, and advanced electronics. The rising demand for efficient, high-performance thermal management drives their adoption across multiple industries. Manufacturers increasingly prefer carbon-based materials to address evolving thermal challenges. Consequently, this segment is anticipated to grow at the fastest pace, establishing a prominent position in the TIM market and attracting considerable attention from end-use industries.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, largely due to its well-established electronics manufacturing industry and rapid industrial development. Major countries like China, Japan, South Korea, and India are centers for producing consumer electronics, automotive components, and industrial machinery, creating substantial demand for TIMs. Growth in sectors such as high-performance computing, LED lighting, and electric vehicles further drives the need for advanced thermal management materials. Favorable labor costs, strong supply chain networks, and ongoing technological innovation contribute to regional market expansion. As a result, Asia-Pacific maintains its leadership in TIM adoption, supported by increasing electronic device usage and emphasis on efficient heat dissipation solutions.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, primarily due to high demand in sectors such as advanced electronics, electric vehicles, and aerospace. The region's emphasis on research, innovation, and adoption of state-of-the-art technologies drives the need for effective thermal management solutions. Expansion of servers, data centers, and AI-based computing infrastructure further increases TIM utilization. Additionally, strict reliability and performance requirements in consumer electronics and automotive industries encourage manufacturers to deploy high-quality thermal materials. As a result, North America is expected to experience rapid market growth, seizing substantial global opportunities and becoming a key driver of the TIM industry's expansion.
Key players in the market
Some of the key players in Thermal Interface Materials Market include The 3M Company, Dow Chemical Company, DuPont, Honeywell International Inc., Henkel AG & Co. KGaA, Parker Hannifin Corporation, Laird Technologies (part of DuPont), Momentive Performance Materials Inc., Indium Corporation, Bergquist Company, Wakefield-Vette Inc., Zalman Tech Co. Ltd., Jiuju, Electrolube and Fujipoly.
In June 2025, Dow announced that it has signed a sale and purchase agreement to sell its 50% interest in DowAksa Advanced Composites Holdings BV to Aksa Akrilik Kimya Sanayii A.S., has agreed to acquire Dow's 50% interest. Dow's proceeds from the sale are expected to be $125 million, which reflects, after accounting for debt, an enterprise value of approximately 10x the estimated 2025 operating EBITDA.
In June 2025, Honeywell announced a significant expansion of its licensing agreement with AFG Combustion and its subsidiary, Greens Combustion Ltd., to include Callidus flares. This expanded agreement not only doubles the range of greenhouse gas-reducing Callidus Ultra Blue Hydrogen process burners but also enhances global customer support.
In May 2025, 3M has reached an agreement that resolves all legacy claims related to the Chambers Works site in Salem County, New Jersey, currently owned by The Chemours Company and, before that, by DuPont. In addition, the settlement extends to PFAS-related claims that the State of New Jersey and its departments have, or may in the future have, against 3M. This agreement is another important step toward reducing risk and uncertainty on these legacy issues, allowing 3M to focus on its strategic priorities.