»ùÇà ¿äû ¸ñ·Ï¿¡ Ãß°¡
¼¼°èÀÇ ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀåÀº ÷´Ü ¼ÒÀç »ê¾÷ÀÇ ÁÖ¿ä ºÎ¹®À¸·Î, ´Ù¾çÇÑ ±â¼ú ¿ëµµ¿¡¼ ¿À» ¹ß»ý½ÃŰ´Â ºÎǰ°ú ¿ °ü¸® ½Ã½ºÅÛ »çÀÌÀÇ Áß¿äÇÑ °¡±³ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ Æ¯¼ö ¼ÒÀçµéÀº Ç¥¸é »çÀÌÀÇ ¹Ì¼¼ÇÑ °ø±ØÀ» ¸Þ¿ì¸é¼ ¿ÀüµµÀ²À» ³ôÀ̵µ·Ï ¼³°èµÇ¾î ¼ÒÇüÈ, °í¼º´ÉȰ¡ ÁøÇàµÇ´Â ÀüÀÚ±â±â¿¡¼ ÃÖÀûÀÇ ¿Àü´ÞÀ» ½ÇÇöÇÕ´Ï´Ù. ÀüÀÚ ½Ã½ºÅÛÀÇ ¼ÒÇüÈ ¹× Àü·Â ¹Ðµµ Çâ»ó¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â ¼ö¿ä·Î ÀÎÇØ ½ÃÀåÀº Å« ÆøÀÇ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ´Â °¡ÀüÁ¦Ç°, Àü±âÀÚµ¿Â÷, µ¥ÀÌÅͼ¾ÅÍ, ÷´Ü ¹ÝµµÃ¼ ÆÐŰ¡, ADAS ¼¾¼, 5G ÀÎÇÁ¶ó, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, »ê¾÷¿ë ÀüÀÚ±â±â, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, ÀÇ·á¿ë ÀüÀÚ±â±â µîÀÔ´Ï´Ù. °¢ ºÎ¹®¸¶´Ù °íÀ¯ÇÑ ¿ °ü¸® °úÁ¦°¡ ÀÖÀ¸¸ç, ƯÁ¤ ¼º´É Ư¼ºÀ» °¡Áø ¸ÂÃãÇü TIM ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.
°¡ÀüÁ¦Ç°Àº ¿©ÀüÈ÷ °¡Àå Å« ½ÃÀå ºÎ¹®À̸ç, ½º¸¶Æ®Æù, ÅÂºí¸´, ¿þ¾î·¯ºí ±â±â´Â °è¼ÓÇØ¼ Á¤±³ÇÑ ¿ °ü¸® ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. 5G ±â¼ú·ÎÀÇ ÀüȯÀº ¿ ¹®Á¦¸¦ ½ÉȽÃ۰í, ¾×ü ±Ý¼Ó, »óº¯È¹°Áú, ź¼Ò ±â¹Ý TIM°ú °°Àº ÷´Ü Àç·á°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. AI Áö¿ø ÀåÄ¡¿Í ¿§Áö ÄÄÇ»ÆÃÀÇ º¸±ÞÀº °í¼º´É ¿ ÀÎÅÍÆäÀ̽º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ Çõ¸íÀº ½ÃÀåÀ» º¯È½ÃŰ´Â ¿äÀÎÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¹èÅ͸®ÀÇ ¿ °ü¸®´Â ¾ÈÀü, ¼º´É, ¼ö¸íÀ» À§ÇØ ÇʼöÀûÀÎ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. EV ¿ëµµ¿¡´Â Àü±âÀû Àý¿¬°ú ±â°èÀû ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ¸é¼ ³ÐÀº ¿Âµµ ¹üÀ§¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â TIMÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¿-Åõ-ÆÑ ¹× ¼¿-Åõ-¼¨½Ã ¹èÅ͸® ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº °¸ ÇÊ·¯, ¿ ÆÐµå, Ư¼ö Á¢Âø ½Ã½ºÅÛ¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.
µ¥ÀÌÅͼ¾ÅÍ¿Í AI ¼¹ö´Â ¿ °ü¸®°¡ ÄÄÇ»ÆÃ ¼º´É°ú ¿¡³ÊÁö È¿À²¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡´Â ¶Ç ´Ù¸¥ °í¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. °í±Þ ÇÁ·Î¼¼¼, GPU, AI °¡¼Ó±â Ãâ½Ã·Î ÀÎÇØ ±ØÇÑÀÇ ¿À¯¼ÓÀ» °¨´çÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë TIM¿¡ ´ëÇÑ ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ¼ö³Ã ½Ã½ºÅÛ ¹× ¾×ħ³Ã°¢ ±â¼úÀº ÇØ´ç ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾óÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àç·áÀÇ ±â¼ú Çõ½ÅÀÌ ½ÃÀå »óȲÀ» °è¼Ó Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ½Ç¸®ÄÜ ±â¹Ý ¿ ±×¸®½º¿Í ÆÐµå´Â ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ °È Àç·á, ±Ý¼Ó ±â¹Ý TIM, »óº¯È¹°Áú, ¸ÞŸ Àç·á µîÀÇ Ã·´Ü ¼Ö·ç¼ÇÀ¸·Î º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù. °¢ Àç·á Ŭ·¡½º´Â ¿ÀüµµÀ², Àü±âÀû Ư¼º, ±â°èÀû Ư¼º, ¿ëµµ¿¡ Æ¯ÈµÈ ¼º´É Ãø¸é¿¡¼ ¶Ñ·ÇÇÑ ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.
±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, Èæ¿¬À¯µµÃ¼ µî ź¼Ò°è TIMÀº ¶Ù¾î³ ¿Àû Ư¼º°ú ´Ù±â´ÉÀÇ °¡´É¼ºÀ¸·Î Å« ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¾×ü ±Ý¼Ó ¹× ¼Ò°á Àç·á¸¦ Æ÷ÇÔÇÑ ±Ý¼Ó ±â¹Ý ¼Ö·ç¼ÇÀº ÃÖ°íÀÇ ¿ ¼º´ÉÀÌ ¿ä±¸µÇ´Â °í¼º´É ÄÄÇ»ÆÃ ¹× ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ ½ÃÀåÀº ±âÁ¸ ÈÇбâ¾÷, Ư¼ö¼ÒÀç °ø±Þ¾÷ü, ½Å±â¼ú ±â¾÷ °£ÀÇ Ä¡¿ÇÑ °æÀïÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÁÖ¿ä ±â¾÷Àº Â÷¼¼´ë ¼ÒÀç °³¹ßÀ» À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ´Â ÇÑÆí, ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê ´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¿ °ü¸®°¡ Á¦Ç° ¼³°è¿¡ ÅëÇյʿ¡ µû¶ó TIM °ø±Þ¾÷ü¿Í OEMÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ Á¡Á¡ ´õ º¸Æíȵǰí ÀÖ½À´Ï´Ù. Áö¿ª ¿ªÇÐÀº ÀüÀÚ Á¦Á¶ÀÇ ÁýÁß°ú EVÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ °·ÂÇÑ ¼ºÀåÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â Ç×°ø¿ìÁÖ, ±¹¹æ, °í¼º´É ÄÄÇ»ÆÃ µî ÷´Ü ºÐ¾ß¿¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. À¯·´Àº ƯÈ÷ ÀÚµ¿Â÷ ¿ëµµ°ú »ê¾÷¿ë ÀüÀÚ±â±â¿¡¼ °¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °í·Á´Â Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖÀ¸¸ç, °¢ Á¦Á¶¾÷üµéÀº ¹ÙÀÌ¿À¼ÒÀçÀÇ °³¹ß, ÀçȰ¿ë¼º Çâ»ó, Á¦Ç°¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÄ£ ȯ°æ ºÎÇϸ¦ ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼´Â ¹ý±Ô Áؼö°¡ Àç·á ÀÎÁõ ¹× ½ÃÇè ¿ä°ÇÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
¾ÕÀ¸·Î ½ÃÀåÀº ±âȸ¿Í ¹®Á¦¿¡ Á÷¸éÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. °íÁýÀûÈ, »õ·Î¿î Æ÷Àå ±â¼ú, ¾çÀÚ ÄÄÇ»ÆÃ ¹× ÷´Ü AI ½Ã½ºÅÛÀÇ »õ·Î¿î ¿ëµµ·ÎÀÇ Áö¼ÓÀûÀÎ ÁøÈ´Â Çõ½ÅÀûÀÎ TIM ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ º¹À⼺, ¿øÀÚÀç °¡°ÝÀÇ º¯µ¿, Á¡Á¡ ´õ °íµµÈµÇ´Â ¼º´É Ư¼º¿¡ ´ëÇÑ ¿ä±¸´Â ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô Áö¼ÓÀûÀÎ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¼¼°èÀÇ ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀå¿¡ ´ëÇØ Á¶»çºÐ¼®ÇßÀ¸¸ç, 2026-2036³â ½ÃÀå ±Ô¸ð ¿¹Ãø, ½ÃÀå ÃËÁø¿äÀΰú °úÁ¦, Â÷¼¼´ë ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó ±â¼ú ·Îµå¸ÊµîÀÇ Á¤º¸¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ¼·Ð
¿°ü¸® - ¾×Ƽºê¿Í ÆÐ½Ãºê
¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM)À̶õ?
TIMÀÇ ºñ±³ Ư¼º
¼¸Ö ÆÐµå¿Í ¼¸Ö ±×¸®½º
TIMÀÇ ÀÌÁ¡°ú °áÁ¡ : À¯Çüº°
¼º´É
°¡°Ý
TIMÀÇ ½Å±â¼ú
TIMÀÇ °ø±Þ¸Á
¿øÀç·á ºÐ¼®°ú °¡°Ý°áÁ¤
ȯ°æ ±ÔÁ¦¿Í Áö¼Ó°¡´É¼º
½Ã½ºÅÛ ·¹º§ ÆÛÆ÷¸Õ½º
¿Àüµµ vs. ¿ÀúÇ×
TIM ÈÇÐ
Á¦2Àå Àç·á
÷´Ü ´Ù±â´É TIM
TIM ÇÊ·¯
¼¸Ö ±×¸®½º¡¤ÆäÀ̽ºÆ®
¼¸Ö °¸ ÆÐµå
¼¸Ö °¸ ÇÊ·¯
Æ÷ÆÃ ÄÄÆÄ¿îµå/ºÀÁöÀç
Á¢Âø Å×ÀÌÇÁ
»óº¯È¹°Áú
±Ý¼Ó ±â¹Ý TIM
ź¼Ò ±â¹Ý TIM
¸ÞŸ¹°Áú
ÀÚ±â Ä¡À¯ ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó
TIM µð½ºÆæ½Ì
Á¦3Àå ¼¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀå
CE(Consumer Electronics)
Àü±âÀÚµ¿Â÷(EV)
µ¥ÀÌÅͼ¾ÅÍ
÷´Ü ¹ÝµµÃ¼ ÆÐŰ¡
ADAS ¼¾¼
EMI Â÷Æó
5G
Ç×°ø¿ìÁÖ¡¤¹æÀ§
»ê¾÷¿ë ÀüÀÚ±â±â
Àç»ý¿¡³ÊÁö
ÀÇ·á¿ë ÀüÀÚ±â±â
Á¦4Àå ±â¾÷ °³¿ä(±â¾÷ 116»ç °³¿ä)
Á¦5Àå Á¶»ç ¹æ¹ý
Á¦6Àå Âü°í ¹®Çå
KSA
The global thermal interface materials (TIMs) market represents a critical segment of the advanced materials industry, serving as the essential bridge between heat-generating components and thermal management systems across diverse technological applications. These specialized materials are designed to enhance thermal conductivity while filling microscopic air gaps between surfaces, ensuring optimal heat transfer in increasingly compact and powerful electronic devices. The market has experienced substantial growth driven by the relentless demand for miniaturization and increased power density in electronic systems. Key application sectors include consumer electronics, electric vehicles, data centers, advanced semiconductor packaging, ADAS sensors, 5G infrastructure, aerospace and defense, industrial electronics, renewable energy systems, and medical electronics. Each sector presents unique thermal management challenges that require tailored TIM solutions with specific performance characteristics.
Consumer electronics remain the largest market segment, with smartphones, tablets, and wearable devices requiring increasingly sophisticated thermal management solutions. The transition to 5G technology has intensified thermal challenges, necessitating advanced materials like liquid metals, phase change materials, and carbon-based TIMs. The proliferation of AI-enabled devices and edge computing has further amplified the demand for high-performance thermal interface materials. The electric vehicle revolution has emerged as a transformative market driver, with battery thermal management becoming critical for safety, performance, and longevity. EV applications require TIMs that can operate across wide temperature ranges while maintaining electrical isolation and mechanical stability. The shift toward cell-to-pack and cell-to-chassis battery architectures has created new opportunities for gap fillers, thermal pads, and specialized adhesive systems.
Data centers and AI servers represent another high-growth segment, where thermal management directly impacts computational performance and energy efficiency. The deployment of advanced processors, GPUs, and AI accelerators has created demand for next-generation TIMs capable of handling extreme heat fluxes. Liquid cooling systems and immersion cooling technologies are driving innovation in compatible thermal interface materials. Material innovation continues to shape the market landscape. Traditional silicone-based thermal greases and pads are being supplemented by advanced solutions including carbon nanotubes, graphene-enhanced materials, metal-based TIMs, phase change materials, and even metamaterials. Each material class offers distinct advantages in terms of thermal conductivity, electrical properties, mechanical characteristics, and application-specific performance.
Carbon-based TIMs, including graphene, carbon nanotubes, and graphite derivatives, are gaining significant traction due to their exceptional thermal properties and potential for multifunctional capabilities. Metal-based solutions, including liquid metals and sintered materials, are finding applications in high-performance computing and power electronics where maximum thermal performance is required.
The market is characterized by intense competition among established chemical companies, specialized materials providers, and emerging technology companies. Key players are investing heavily in R&D to develop next-generation materials while expanding manufacturing capabilities to meet growing demand. Strategic partnerships between TIM suppliers and OEMs are becoming increasingly common as thermal management becomes more integrated into product design. Regional dynamics show strong growth across Asia-Pacific markets, driven by electronics manufacturing concentration and EV adoption. North America leads in advanced applications including aerospace, defense, and high-performance computing. Europe shows particular strength in automotive applications and industrial electronics.
Sustainability considerations are becoming increasingly important, with manufacturers developing bio-based materials, improving recyclability, and reducing environmental impact throughout the product lifecycle. Regulatory compliance, particularly in automotive and aerospace applications, continues to drive material certification and testing requirements.
Looking forward, the market faces both opportunities and challenges. The continued evolution toward higher power densities, new packaging technologies, and emerging applications in quantum computing and advanced AI systems will drive demand for innovative TIM solutions. However, supply chain complexities, raw material price volatility, and the need for increasingly sophisticated performance characteristics present ongoing challenges for market participants.
"The Global Thermal Interface Materials Market 2026-2036" provides an in-depth analysis of the global thermal interface materials market, delivering essential insights for manufacturers, suppliers, investors, and technology companies seeking to capitalize on emerging opportunities in this rapidly evolving sector.
Report contents include:
Market Analysis by Material Type:
Thermal Greases and Pastes - Market size, growth projections, application trends, and competitive landscape analysis
Thermal Gap Pads - Comprehensive coverage of silicone-based and advanced polymer pad solutions
Thermal Gap Fillers - Dispensable materials market analysis with focus on automated application systems
Phase Change Materials (PCMs) - Emerging technologies including organic, inorganic, and hybrid PCM solutions
Metal-based TIMs - Liquid metals, solders, sintered materials, and advanced alloy systems
Carbon-based TIMs - Graphene, carbon nanotubes, graphite, and diamond-enhanced thermal solutions
Potting Compounds and Encapsulants - Market analysis for protective thermal management materials
Thermal Adhesive Tapes - Structural bonding solutions with thermal conductivity properties
Advanced Technology Coverage:
Self-healing Thermal Interface Materials - Revolutionary materials with autonomous repair capabilities
Metamaterials for Thermal Management - Next-generation engineered materials with unique properties
Nanomaterial-Enhanced TIMs - Comprehensive analysis of nanotechnology integration
Multi-functional TIMs - Materials combining thermal, electrical, and mechanical properties
Market Segmentation by Application:
Consumer Electronics - Smartphones, tablets, wearables, and emerging devices
Electric Vehicles - Battery thermal management, power electronics, and charging infrastructure
Data Centers - Server cooling, AI accelerators, and immersion cooling systems
Advanced Semiconductor Packaging - TIM1, TIM2, and next-generation packaging solutions
ADAS Sensors - Automotive sensor thermal management and autonomous vehicle applications
5G Infrastructure - Base stations, antennas, and telecommunications equipment
Aerospace & Defense - Satellite systems, avionics, and military electronics
Industrial Electronics - Automation systems, power supplies, and motor drives
Renewable Energy - Solar inverters, wind power electronics, and energy storage
Medical Electronics - Diagnostic equipment and patient monitoring systems
Technical Analysis and Performance Metrics:
Thermal conductivity benchmarking across material categories
Thermal resistance vs. thermal conductivity comparative analysis
System-level performance optimization strategies
Material dispensing technologies and automation trends
Supply chain analysis and raw material pricing dynamics
Environmental regulations and sustainability considerations
Market Forecasts and Projections:
Global market size projections from 2022-2036 by material type and application
Regional market analysis covering North America, Europe, Asia-Pacific, and emerging markets
Technology adoption timelines and market readiness assessments
Price trend analysis and cost optimization opportunities
Emerging application opportunities and disruptive technology impact
Competitive Landscape and Strategic Intelligence:
Comprehensive analysis of market dynamics, drivers, and challenges
Technology roadmaps for next-generation thermal interface materials
Patent landscape analysis and intellectual property trends
Strategic partnership opportunities and M&A activity
Investment trends and funding analysis for TIM innovations
This report features detailed profiles of 119 leading companies in the thermal interface materials ecosystem, including established chemical manufacturers, specialized materials suppliers, emerging technology companies, and innovative start-ups. Companies profiled include 3M, ADA Technologies, Aismalibar S.A., AI Technology Inc., Alpha Assembly, AluChem, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., Bdtronic, BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dowa Electronics Materials Co. Ltd., DuPont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silicones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd., Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Laird, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd., Minoru Co. Ltd. and more....
TABLE OF CONTENTS
1. INTRODUCTION
1.1. Thermal Management-active and passive
1.2. What are Thermal Interface Materials (TIMs)?
1.2.1. Types of TIMs
1.2.2. Thermal conductivity
1.3. Comparative properties of TIMs
1.4. Thermal Pads and Thermal Grease
1.5. Advantages and Disadvantages of TIMs, by type
1.6. Performance
1.7. Prices
1.8. Emerging Technologies in TIMs
1.9. Supply Chain for TIMs
1.10. Raw Material Analysis and Pricing
1.11. Environmental Regulations and Sustainability
1.12. System Level Performance
1.13. Thermal Conductivity vs Thermal Resistance
1.14. TIM Chemistry
2. MATERIALS
2.1. Advanced and Multi-Functional TIMs
2.1.1. Carbon-based TIMs
2.1.2. Thermal Conductivity By Filler Type
2.1.3. Thermal Conductivity By Matrix
2.2. TIM fillers
2.2.1. Trends
2.2.2. Pros and Cons
2.2.3. Thermal Conductivity
2.2.4. Spherical Alumina
2.2.5. Alumina Fillers
2.2.6. Boron nitride (BN)
2.2.6.1. Overview
2.2.6.2. Suppliers
2.2.6.3. Nano Boron Nitride
2.2.7. Filler and polymer TIMs
2.2.8. Diamond
2.2.9. Filler Sizes
2.3. Thermal Greases and Pastes
2.3.1. Overview and properties
2.3.2. SWOT analysis
2.4. Thermal Gap Pads
2.4.1. Overview and properties
2.4.2. Application in EV Batteries
2.4.3. Transitioning to Gap fillers from Pads
2.4.4. SWOT analysis
2.5. Thermal Gap Fillers
2.5.1. Overview and properties
2.5.2. Products
2.5.3. SWOT analysis
2.6. Potting Compounds/Encapsulants
2.6.1. Overview and properties
2.6.2. SWOT analysis
2.7. Adhesive Tapes
2.7.1. Overview and properties
2.7.2. Application in EV Batteries
2.7.3. TCA Requirements
2.7.4. SWOT analysis
2.8. Phase Change Materials
2.8.1. Overview
2.8.2. Products
2.8.3. Properties
2.8.4. Types
2.8.4.1. Organic/biobased phase change materials
2.8.4.1.1. Advantages and disadvantages
2.8.4.1.2. Paraffin wax
2.8.4.1.3. Non-Paraffins/Bio-based
2.8.4.2. Inorganic phase change materials
2.8.4.2.1. Salt hydrates
2.8.4.2.1.1. Advantages and disadvantages
2.8.4.2.2. Metal and metal alloy PCMs (High-temperature)
2.8.4.3. Eutectic mixtures
2.8.4.4. Encapsulation of PCMs
2.8.4.4.1. Macroencapsulation
2.8.4.4.2. Micro/nanoencapsulation
2.8.4.5. Nanomaterial phase change materials
2.8.5. Thermal energy storage (TES)
2.8.5.1. Sensible heat storage
2.8.5.2. Latent heat storage
2.8.6. Application in TIMs
2.8.6.1. Thermal pads
2.8.6.2. Low Melting Alloys (LMAs)
2.8.6.3. Thermal storage units
2.8.6.4. Thermal energy storage panels
2.8.6.5. Space systems
2.8.7. SWOT analysis
2.9. Metal-based TIMs
2.9.1. Overview
2.9.1.1. Metal-Based TIM1 and TIM2
2.9.1.2. Metal Filled Polymer TIMs
2.9.2. Solders and low melting temperature alloy TIMs
2.9.2.1. Solder TIM1
2.9.2.2. Sintering
2.9.3. Liquid metals
2.9.3.1. Liquid metal for high-performance GPU
2.9.3.2. Challenges
2.9.4. Solid liquid hybrid (SLH) metals
2.9.4.1. Hybrid liquid metal pastes
2.9.4.2. SLH created during chip assembly (m2TIMs)
2.9.4.3. Die-attach materials
2.9.4.3.1. Solder Alloys and Conductive Adhesives
2.9.4.3.2. Silver-Sintered Paste
2.9.4.3.3. Copper (Cu) sintered TIMs
2.9.4.3.3.1. TIM1 - Sintered Copper
2.9.4.3.3.2. Cu Sinter Materials
2.9.4.3.3.3. Copper Sintering Challenges
2.9.4.3.3.4. Commercial Use
2.9.4.3.4. Sintered Copper Die-Bonding Paste
2.9.4.3.4.1. Commercial activity
2.9.4.3.5. Graphene Enhanced Sintered Copper TIMs
2.9.4.4. Laminar Metal Form With High Softness
2.9.5. SWOT analysis
2.10. Carbon-based TIMs
2.10.1. Carbon nanotube (CNT) TIM Fabrication
2.10.2. Challenges
2.10.3. Market players
2.10.4. Multi-walled nanotubes (MWCNT)
2.10.4.1. Properties
2.10.4.2. Application as thermal interface materials
2.10.5. Single-walled carbon nanotubes (SWCNTs)
2.10.5.1. Properties
2.10.5.2. Application as thermal interface materials
2.10.6. Vertically aligned CNTs (VACNTs)
2.10.6.1. Properties
2.10.6.2. Applications
2.10.6.3. Application as thermal interface materials
2.10.7. BN nanotubes (BNNT) and nanosheets (BNNS)
2.10.7.1. Properties
2.10.7.2. Application as thermal interface materials
2.10.8. Graphene
2.10.8.1. Properties
2.10.8.2. Application as thermal interface materials
2.10.8.2.1. Graphene fillers
2.10.8.2.2. Graphene foam
2.10.8.2.3. Graphene aerogel
2.10.8.2.4. Graphene Heat Spreaders
2.10.8.2.5. Graphene in Thermal Interface Pads
2.10.8.3. Advantages of Graphene
2.10.8.4. Through-Plane Alignment
2.10.9. Nanodiamonds
2.10.9.1. Properties
2.10.9.2. Application as thermal interface materials
2.10.10. Graphite
2.10.10.1. Properties
2.10.10.2. Natural graphite
2.10.10.2.1. Classification
2.10.10.2.2. Processing
2.10.10.2.3. Flake
2.10.10.2.3.1. Grades
2.10.10.2.3.2. Applications
2.10.10.3. Synthetic graphite
2.10.10.3.1. Classification
2.10.10.3.1.1. Primary synthetic graphite
2.10.10.3.1.2. Secondary synthetic graphite
2.10.10.3.1.3. Processing
2.10.10.4. Applications as thermal interface materials
2.10.10.4.1. Graphite Sheets
2.10.10.4.2. Vertical graphite
2.10.10.4.3. Graphite pastes
2.10.10.5. Challenges
2.10.10.5.1. Through-plane thermal conductivity limitations
2.10.10.5.2. Interfacing with Heat Source and Disrupting Alignment
2.10.11. Hexagonal Boron Nitride
2.10.11.1. Properties
2.10.11.2. Application as thermal interface materials
2.10.12. SWOT analysis
2.11. Metamaterials
2.11.1. Types and properties
2.11.1.1. Electromagnetic metamaterials
2.11.1.1.1. Double negative (DNG) metamaterials
2.11.1.1.2. Single negative metamaterials
2.11.1.1.3. Electromagnetic bandgap metamaterials (EBG)
2.11.1.1.4. Bi-isotropic and bianisotropic metamaterials
2.11.1.1.5. Chiral metamaterials
2.11.1.1.6. Electromagnetic "Invisibility" cloak
2.11.1.2. Terahertz metamaterials
2.11.1.3. Photonic metamaterials
2.11.1.4. Tunable metamaterials
2.11.1.5. Frequency selective surface (FSS) based metamaterials
2.11.1.6. Nonlinear metamaterials
2.11.1.7. Acoustic metamaterials
2.11.2. Application as thermal interface materials
2.12. Self-healing thermal interface materials
2.12.1. Extrinsic self-healing
2.12.2. Capsule-based
2.12.3. Vascular self-healing
2.12.4. Intrinsic self-healing
2.12.5. Healing volume
2.12.6. Types of self-healing materials, polymers and coatings
2.12.7. Applications in thermal interface materials
2.13. TIM Dispensing
2.13.1. Low-volume Dispensing Methods
2.13.2. High-volume Dispensing Methods
2.13.3. Meter, Mix, Dispense (MMD) Systems
2.13.4. TIM Dispensing Equipment Suppliers
3. MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)
3.1. Consumer Electronics
3.1.1. Market overview
3.1.1.1. Market drivers
3.1.1.2. Applications
3.1.1.2.1. Smartphones and tablets
3.1.1.2.1.1. Graphitic Heat Spreaders
3.1.1.2.1.2. Liquid metals
3.1.1.2.2. Wearable electronics
3.1.2. Global market 2022-2036, by TIM type
3.2. Electric Vehicles (EV)
3.2.1. Market overview
3.2.1.1. Market drivers
3.2.1.2. Applications
3.2.1.2.1. EV Battery Packs
3.2.1.2.1.1. TIM Pack and Module
3.2.1.2.1.2. TIM Application by Cell Format
3.2.1.2.1.3. Thermal Interface Material Fillers for EV Batteries
3.2.1.2.1.4. TIM Pricing
3.2.1.2.1.5. Companies
3.2.1.2.2. Lithium-ion batteries
3.2.1.2.2.1. Cell-to-pack designs
3.2.1.2.2.2. Cell-to-chassis/body
3.2.1.2.3. Power electronics
3.2.1.2.3.1. Types
3.2.1.2.3.2. Trends
3.2.1.2.3.3. Properties for TIM2 Properties in EV power electronics
3.2.1.2.3.4. TIM1s
3.2.1.2.3.5. TIM2 in SiC MOSFET
3.2.1.2.4. Charging stations
3.2.2. Global market 2022-2036, by TIM type
3.3. Data Centers
3.3.1. Market overview
3.3.1.1. Market drivers
3.3.1.2. Applications
3.3.1.2.1. Router, switches and line cards
3.3.1.2.1.1. Transceivers
3.3.1.2.1.2. Server Boards
3.3.1.2.1.3. Switches and Routers
3.3.1.2.2. AI Servers
3.3.1.2.2.1. Overview
3.3.1.2.2.2. Trends
3.3.1.2.2.3. TRL
3.3.1.2.3. Power supply converters
3.3.1.2.3.1. Overview
3.3.1.2.3.2. Laminar metal form TIMs
3.3.1.2.3.3. TIM Consumption in Data Center Power Supplies
3.3.1.2.3.4. Immersion cooling
3.3.2. Global market 2022-2036, by TIM type
3.4. Advanced Semiconductor Packaging
3.4.1. Market Overview
3.4.2. TIM1
3.4.2.1. Indium foil TIM1
3.4.2.2. Products
3.4.2.2.1. Thermal Gel
3.4.2.2.2. Thermal grease
3.4.2.2.3. Graphene
3.4.2.2.4. Liquid metal
3.4.2.2.5. Diamond thermal interface materials in TIM0 applications
3.4.2.2.6. Integrated silicon micro-cooler systems
3.4.2.2.7. Copper nanowire (CuNWs)
3.4.3. Global market 2022-2036, by TIM type
3.5. ADAS Sensors
3.5.1. Market overview
3.5.1.1. Market drivers
3.5.1.1.1. Sensor Suite for Autonomous Cars
3.5.1.1.2. Thermal Management in ADAS Sensors
3.5.1.2. Applications
3.5.1.2.1. ADAS Cameras
3.5.1.2.1.1. Commercial examples
3.5.1.2.2. ADAS Radar
3.5.1.2.2.1. Radar technology
3.5.1.2.2.2. Radar boards
3.5.1.2.2.3. Commercial examples
3.5.1.2.3. ADAS LiDAR
3.5.1.2.3.1. Role of TIMs
3.5.1.2.3.2. Commercial examples
3.5.1.2.4. Electronic control units (ECUs) and computers
3.5.1.2.4.1. Overview
3.5.1.2.4.2. Commercial examples
3.5.1.2.5. Die attach materials
3.5.1.2.5.1. Overview
3.5.1.2.5.2. Commercial examples
3.5.1.3. Companies
3.5.2. Global market 2022-2036, by TIM type
3.6. EMI shielding
3.6.1. Market overview
3.6.1.1. Market drivers
3.6.1.2. Applications
3.6.1.2.1. Dielectric Constant
3.6.1.2.2. ADAS
3.6.1.2.2.1. Radar
3.6.1.2.2.2. 5G
3.6.1.2.3. Commercial examples
3.7. 5G
3.7.1. Market overview
3.7.1.1. Market drivers
3.7.1.2. Applications
3.7.1.2.1. EMI shielding and EMI gaskets
3.7.1.2.2. Antenna
3.7.1.2.3. Base Band Unit (BBU)
3.7.1.2.4. Liquid TIMs
3.7.1.2.5. Power supplies
3.7.1.2.5.1. Increased power consumption in 5G
3.7.2. Market players
3.7.3. Global market 2022-2036, by TIM type
3.8. Aerospace & Defense
3.8.1. Market overview
3.8.1.1. Market drivers
3.8.1.2. Applications
3.8.1.2.1. Satellite thermal management
3.8.1.2.1.1. Temperature range
3.8.1.2.1.2. Heat Spreaders
3.8.1.2.1.3. Carbon fiber reinforced TIM
3.8.1.2.1.4. Thermal pads
3.8.1.2.1.5. Thermal straps
3.8.1.2.1.6. Graphene
3.8.1.2.1.7. Challenges
3.8.1.2.2. Avionics cooling
3.8.1.2.3. Military electronics
3.8.1.3. Global market 2022-2036, by TIM type
3.9. Industrial Electronics
3.9.1. Market overview
3.9.1.1. Market drivers
3.9.1.2. Applications
3.9.1.2.1. Industrial automation
3.9.1.2.2. Power supplies
3.9.1.2.3. Motor drives
3.9.1.2.4. LED lighting
3.9.2. Global market 2022-2036, by TIM type
3.10. Renewable Energy
3.10.1. Market overview
3.10.1.1. Market drivers
3.10.1.2. Applications
3.10.1.2.1. Solar inverters
3.10.1.2.2. Wind power electronics
3.10.1.2.3. Energy storage systems
3.10.2. Global market 2022-2036, by TIM type
3.11. Medical Electronics
3.11.1. Market overview
3.11.1.1. Market drivers
3.11.1.2. Applications
3.11.1.2.1. Diagnostic equipment
3.11.1.2.2. Medical imaging systems
3.11.1.2.3. Patient monitoring devices
3.11.2. Global market 2022-2036, by TIM type
4. COMPANY PROFILES (116 company profiles)
5. RESEARCH METHODOLOGY
6. REFERENCES
List of tables
Table 1. Thermal conductivities (K) of common metallic, carbon, and ceramic fillers employed in TIMs
Table 2. Commercial TIMs and their properties
Table 3. Advantages and disadvantages of TIMs, by type
Table 4. Key Factors in System Level Performance for TIMs
Table 5. TIM Materials by Thermal, Mechanical, and Application Properties
Table 6. Thermal interface materials prices
Table 7. Comparisons of Price and Thermal Conductivity for TIMs
Table 8. Price Comparison of TIM Fillers
Table 9. Raw Material Analysis and Pricing
Table 10. System Level Performance Comparison
Table 11. Thermal Conductivity vs Thermal Resistance Comparison
Table 12. TIM Chemistry Comparison
Table 13. Characteristics of some typical TIMs
Table 14. Carbon-Based TIM Performance
Table 15. Thermal Conductivity By Filler Type
Table 16. Thermal Conductivity By Matrix
Table 17. Trends on TIM Fillers
Table 18. Pros and Cons of TIM Fillers
Table 19. Thermal Conductivity Comparison ATH and Al2O3
Table 20. BNNT Companies and Prices
Table 21.BNNT Property Variation
Table 22. Diamond fillers with varied sizes for thermal interface materials
Table 23. Commercial thermal paste products
Table 24.Commercial thermal gap pads (thermal interface materials)
Table 25. Commercial thermal gap fillers products
Table 26. Types of Potting Compounds/Encapsulants
Table 27. TIM adhesives tapes
Table 28. Commercial phase change materials (PCM) thermal interface materials (TIMs) products
Table 29. Properties of PCMs
Table 30. PCM Types and properties
Table 31. Advantages and disadvantages of organic PCMs
Table 32. Advantages and disadvantages of organic PCM Fatty Acids
Table 33. Advantages and disadvantages of salt hydrates
Table 34. Advantages and disadvantages of low melting point metals
Table 35. Advantages and disadvantages of eutectics
Table 36. Benefits and drawbacks of PCMs in TIMs
Table 37. PCM Selection Criteria and Considerations for Space Systems
Table 38. PCM selection criteria and considerations for space systems
Table 39. Liquid Metal Challenges
Table 40. Copper Sintering Technical Challenges
Table 41. Technology Readiness Level (TRL) for Carbon Materials in Thermal Management
Table 42. Challenges with CNT-TIMs
Table 43. Market players in CNT-TIMs
Table 44. Properties of CNTs and comparable materials
Table 45. Typical properties of SWCNT and MWCNT
Table 46. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive
Table 47. Thermal conductivity of CNT-based polymer composites
Table 48. Comparative properties of BNNTs and CNTs
Table 49. Properties of graphene, properties of competing materials, applications thereof
Table 50. Graphene Heat Spreaders Performance
Table 51. Comparison of Conventional and Graphene-Enhanced Thermal Pads
Table 52. Advantages of Graphene in Thermal Interface Materials
Table 53. Properties of nanodiamonds
Table 54. Comparison between Natural and Synthetic Graphite
Table 55. Thermal Conductivity Comparison of Graphite TIMs
Table 56. Classification of natural graphite with its characteristics
Table 57. Characteristics of synthetic graphite
Table 58. Thermal Conductivity Comparison of Graphite TIMs
Table 59. Properties of hexagonal boron nitride (h-BN)
Table 60. Comparison of self-healing systems
Table 61. Types of self-healing coatings and materials
Table 62. Comparative properties of self-healing materials
Table 63. Challenges for Dispensing TIM
Table 64. Thermal Management Application Areas in Consumer Electronics
Table 65. Thermal Management Differences: 4G vs 5G Smartphones
Table 66. Trends in Smartphone Thermal Materials
Table 67. Thermal Management approaches in commercial Smartphones
Table 68. Global market in consumer electronics 2022-2036, by TIM type (millions USD)
Table 69. Material Options and Market Comparison
Table 70. TIM Filler Comparison and Adoption
Table 71. Thermal Conductivity Comparison of Suppliers for EV Batteries
Table 72. TIM Pricing by Supplier
Table 73. Thermal Conductivity Comparison of TIM1s
Table 74. Global market in electric vehicles 2022-2036, by TIM type (millions USD)
Table 75. Types of TIMs in Data Centers
Table 76. Area of TIM per Switch
Table 77. Leaf and Spine Switch TIM Areas
Table 78. Novel TIM Technologies in Data Centers
Table 79. Emerging Trends in TIM Materials for AI Servers
Table 80. Applications of TIM Materials in AI Servers with Technology Readiness Levels (TRL)
Table 81. Companies Utilizing and Providing TIM Materials for AI Servers
Table 82. TIM Trends in Data Centers
Table 83. TIM Area Forecast in Server Boards: 2022-2036 (m2)
Table 84. Global market in data centers 2022-2036, by TIM type (millions USD)
Table 85. Global market in advanced semiconductor packaging 2022-2036, by TIM type (millions USD)
Table 86. Autonomous Vehicle Sensor Suite TIM Requirements
Table 87. TIM Players in ADAS
Table 88. TIM Players in ADAS
Table 89. Die Attach for ADAS Sensors
Table 90. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2036 (m2)
Table 91. TIM Players in ADAS
Table 92. Global market in ADAS sensors 2022-2036, by TIM type (millions USD)
Table 93. Applications of TIMs in EMI Shielding for ADAS Radars
Table 94. TIM Area Forecast for 5G Antennas by Station Size: 2022-2036 (m2)
Table 95. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2036 (m2)
Table 96. TIMS in BBU
Table 97. 5G BBY models
Table 98. TIM Area Forecast for 5G BBU: 2022-2036 (m2)
Table 99. Power Consumption Forecast for 5G: 2022-2036 (GW)
Table 100. TIM Area Forecast for Power Supplies: 2022-2036 (m2)
Table 101. TIM market players in 5G
Table 102. Global market in 5G 2022-2036, by TIM type (millions USD)
Table 103. Market Drivers for TIMS in aerospace and defense
Table 104. Applications for TIMS in aerospace and defense
Table 105. Temperature range of space subsystems and passive cooling approaches
Table 106. TIMs for space satellites - challenges and considerations
Table 107. Global Market for TIMs in aerospace and defense 2022-2036, by TIM Type (Millions USD)
Table 108. Market Drivers for TIMs in industrial electronics
Table 109. Applications for TIMs in industrial electronics
Table 110. Global Market 2022-2036, by TIM Type in Industrial Electronics (Millions USD)
Table 111. Market Drivers for TIMs in renewable energy
Table 112. Applications for TIMs in renewable energy
Table 113. Global Market for TIMs in Renewable Energy 2022-2036 (Millions USD)
Table 114. Market Drivers for TIMs in medical electronics
Table 115. Applications for TIMs in medical electronics
Table 116. Global Market 2022-2036 for TIMs in Medical Electronics (Millions USD)