¼¼°èÀÇ ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀå(2026-2036³â)
The Global Thermal Interface Materials Market 2026-2036
»óǰÄÚµå : 1789657
¸®¼­Ä¡»ç : Future Markets, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 372 Pages, 116 Tables, 89 Figures
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¡Ì 1,000 £Ü 1,898,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
¡Ì 1,400 £Ü 2,658,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ÇÑ ±¹°¡³» ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
¡Ì 1,750 £Ü 3,322,000
PDF (Global Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ±¹³»¿Ü ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
¡Ì 2,000 £Ü 3,797,000
PDF (Global Enterprise and Subsidiaries License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷(ÀÚȸ»çÆ÷ÇÔ)ÀÇ ±¹³»¿Ü ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀåÀº ÷´Ü ¼ÒÀç »ê¾÷ÀÇ ÁÖ¿ä ºÎ¹®À¸·Î, ´Ù¾çÇÑ ±â¼ú ¿ëµµ¿¡¼­ ¿­À» ¹ß»ý½ÃŰ´Â ºÎǰ°ú ¿­ °ü¸® ½Ã½ºÅÛ »çÀÌÀÇ Áß¿äÇÑ °¡±³ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ Æ¯¼ö ¼ÒÀçµéÀº Ç¥¸é »çÀÌÀÇ ¹Ì¼¼ÇÑ °ø±ØÀ» ¸Þ¿ì¸é¼­ ¿­ÀüµµÀ²À» ³ôÀ̵µ·Ï ¼³°èµÇ¾î ¼ÒÇüÈ­, °í¼º´ÉÈ­°¡ ÁøÇàµÇ´Â ÀüÀÚ±â±â¿¡¼­ ÃÖÀûÀÇ ¿­Àü´ÞÀ» ½ÇÇöÇÕ´Ï´Ù. ÀüÀÚ ½Ã½ºÅÛÀÇ ¼ÒÇüÈ­ ¹× Àü·Â ¹Ðµµ Çâ»ó¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â ¼ö¿ä·Î ÀÎÇØ ½ÃÀåÀº Å« ÆøÀÇ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ´Â °¡ÀüÁ¦Ç°, Àü±âÀÚµ¿Â÷, µ¥ÀÌÅͼ¾ÅÍ, ÷´Ü ¹ÝµµÃ¼ ÆÐŰ¡, ADAS ¼¾¼­, 5G ÀÎÇÁ¶ó, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, »ê¾÷¿ë ÀüÀÚ±â±â, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, ÀÇ·á¿ë ÀüÀÚ±â±â µîÀÔ´Ï´Ù. °¢ ºÎ¹®¸¶´Ù °íÀ¯ÇÑ ¿­ °ü¸® °úÁ¦°¡ ÀÖÀ¸¸ç, ƯÁ¤ ¼º´É Ư¼ºÀ» °¡Áø ¸ÂÃãÇü TIM ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù.

°¡ÀüÁ¦Ç°Àº ¿©ÀüÈ÷ °¡Àå Å« ½ÃÀå ºÎ¹®À̸ç, ½º¸¶Æ®Æù, ÅÂºí¸´, ¿þ¾î·¯ºí ±â±â´Â °è¼ÓÇØ¼­ Á¤±³ÇÑ ¿­ °ü¸® ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. 5G ±â¼ú·ÎÀÇ ÀüȯÀº ¿­ ¹®Á¦¸¦ ½ÉÈ­½Ã۰í, ¾×ü ±Ý¼Ó, »óº¯È­¹°Áú, ź¼Ò ±â¹Ý TIM°ú °°Àº ÷´Ü Àç·á°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. AI Áö¿ø ÀåÄ¡¿Í ¿§Áö ÄÄÇ»ÆÃÀÇ º¸±ÞÀº °í¼º´É ¿­ ÀÎÅÍÆäÀ̽º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ Çõ¸íÀº ½ÃÀåÀ» º¯È­½ÃŰ´Â ¿äÀÎÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¹èÅ͸®ÀÇ ¿­ °ü¸®´Â ¾ÈÀü, ¼º´É, ¼ö¸íÀ» À§ÇØ ÇʼöÀûÀÎ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. EV ¿ëµµ¿¡´Â Àü±âÀû Àý¿¬°ú ±â°èÀû ¾ÈÁ¤¼ºÀ» À¯ÁöÇϸ鼭 ³ÐÀº ¿Âµµ ¹üÀ§¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â TIMÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¿-Åõ-ÆÑ ¹× ¼¿-Åõ-¼¨½Ã ¹èÅ͸® ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº °¸ ÇÊ·¯, ¿­ ÆÐµå, Ư¼ö Á¢Âø ½Ã½ºÅÛ¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ¿Í AI ¼­¹ö´Â ¿­ °ü¸®°¡ ÄÄÇ»ÆÃ ¼º´É°ú ¿¡³ÊÁö È¿À²¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡´Â ¶Ç ´Ù¸¥ °í¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. °í±Þ ÇÁ·Î¼¼¼­, GPU, AI °¡¼Ó±â Ãâ½Ã·Î ÀÎÇØ ±ØÇÑÀÇ ¿­À¯¼ÓÀ» °¨´çÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë TIM¿¡ ´ëÇÑ ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ¼ö³Ã ½Ã½ºÅÛ ¹× ¾×ħ³Ã°¢ ±â¼úÀº ÇØ´ç ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾óÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àç·áÀÇ ±â¼ú Çõ½ÅÀÌ ½ÃÀå »óȲÀ» °è¼Ó Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ½Ç¸®ÄÜ ±â¹Ý ¿­ ±×¸®½º¿Í ÆÐµå´Â ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ °­È­ Àç·á, ±Ý¼Ó ±â¹Ý TIM, »óº¯È­¹°Áú, ¸ÞŸ Àç·á µîÀÇ Ã·´Ü ¼Ö·ç¼ÇÀ¸·Î º¸¿ÏµÇ°í ÀÖ½À´Ï´Ù. °¢ Àç·á Ŭ·¡½º´Â ¿­ÀüµµÀ², Àü±âÀû Ư¼º, ±â°èÀû Ư¼º, ¿ëµµ¿¡ ƯȭµÈ ¼º´É Ãø¸é¿¡¼­ ¶Ñ·ÇÇÑ ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.

±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, Èæ¿¬À¯µµÃ¼ µî ź¼Ò°è TIMÀº ¶Ù¾î³­ ¿­Àû Ư¼º°ú ´Ù±â´ÉÀÇ °¡´É¼ºÀ¸·Î Å« ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¾×ü ±Ý¼Ó ¹× ¼Ò°á Àç·á¸¦ Æ÷ÇÔÇÑ ±Ý¼Ó ±â¹Ý ¼Ö·ç¼ÇÀº ÃÖ°íÀÇ ¿­ ¼º´ÉÀÌ ¿ä±¸µÇ´Â °í¼º´É ÄÄÇ»ÆÃ ¹× ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀåÀº ±âÁ¸ È­Çбâ¾÷, Ư¼ö¼ÒÀç °ø±Þ¾÷ü, ½Å±â¼ú ±â¾÷ °£ÀÇ Ä¡¿­ÇÑ °æÀïÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÁÖ¿ä ±â¾÷Àº Â÷¼¼´ë ¼ÒÀç °³¹ßÀ» À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ´Â ÇÑÆí, ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê ´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¿­ °ü¸®°¡ Á¦Ç° ¼³°è¿¡ ÅëÇյʿ¡ µû¶ó TIM °ø±Þ¾÷ü¿Í OEMÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. Áö¿ª ¿ªÇÐÀº ÀüÀÚ Á¦Á¶ÀÇ ÁýÁß°ú EVÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀÇ °­·ÂÇÑ ¼ºÀåÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â Ç×°ø¿ìÁÖ, ±¹¹æ, °í¼º´É ÄÄÇ»ÆÃ µî ÷´Ü ºÐ¾ß¿¡¼­ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. À¯·´Àº ƯÈ÷ ÀÚµ¿Â÷ ¿ëµµ°ú »ê¾÷¿ë ÀüÀÚ±â±â¿¡¼­ °­¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °í·Á´Â Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖÀ¸¸ç, °¢ Á¦Á¶¾÷üµéÀº ¹ÙÀÌ¿À¼ÒÀçÀÇ °³¹ß, ÀçȰ¿ë¼º Çâ»ó, Á¦Ç°¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÄ£ ȯ°æ ºÎÇϸ¦ ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­´Â ¹ý±Ô Áؼö°¡ Àç·á ÀÎÁõ ¹× ½ÃÇè ¿ä°ÇÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¾ÕÀ¸·Î ½ÃÀåÀº ±âȸ¿Í ¹®Á¦¿¡ Á÷¸éÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. °íÁýÀûÈ­, »õ·Î¿î Æ÷Àå ±â¼ú, ¾çÀÚ ÄÄÇ»ÆÃ ¹× ÷´Ü AI ½Ã½ºÅÛÀÇ »õ·Î¿î ¿ëµµ·ÎÀÇ Áö¼ÓÀûÀÎ ÁøÈ­´Â Çõ½ÅÀûÀÎ TIM ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ º¹À⼺, ¿øÀÚÀç °¡°ÝÀÇ º¯µ¿, Á¡Á¡ ´õ °íµµÈ­µÇ´Â ¼º´É Ư¼º¿¡ ´ëÇÑ ¿ä±¸´Â ½ÃÀå ÁøÃâ±â¾÷¿¡°Ô Áö¼ÓÀûÀÎ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀå¿¡ ´ëÇØ Á¶»çºÐ¼®ÇßÀ¸¸ç, 2026-2036³â ½ÃÀå ±Ô¸ð ¿¹Ãø, ½ÃÀå ÃËÁø¿äÀΰú °úÁ¦, Â÷¼¼´ë ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó ±â¼ú ·Îµå¸ÊµîÀÇ Á¤º¸¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Àç·á

Á¦3Àå ¼­¸Ö ÀÎÅÍÆäÀ̽º ¸ÅÆ®¸®¾ó(TIM) ½ÃÀå

Á¦4Àå ±â¾÷ °³¿ä(±â¾÷ 116»ç °³¿ä)

Á¦5Àå Á¶»ç ¹æ¹ý

Á¦6Àå Âü°í ¹®Çå

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global thermal interface materials (TIMs) market represents a critical segment of the advanced materials industry, serving as the essential bridge between heat-generating components and thermal management systems across diverse technological applications. These specialized materials are designed to enhance thermal conductivity while filling microscopic air gaps between surfaces, ensuring optimal heat transfer in increasingly compact and powerful electronic devices. The market has experienced substantial growth driven by the relentless demand for miniaturization and increased power density in electronic systems. Key application sectors include consumer electronics, electric vehicles, data centers, advanced semiconductor packaging, ADAS sensors, 5G infrastructure, aerospace and defense, industrial electronics, renewable energy systems, and medical electronics. Each sector presents unique thermal management challenges that require tailored TIM solutions with specific performance characteristics.

Consumer electronics remain the largest market segment, with smartphones, tablets, and wearable devices requiring increasingly sophisticated thermal management solutions. The transition to 5G technology has intensified thermal challenges, necessitating advanced materials like liquid metals, phase change materials, and carbon-based TIMs. The proliferation of AI-enabled devices and edge computing has further amplified the demand for high-performance thermal interface materials. The electric vehicle revolution has emerged as a transformative market driver, with battery thermal management becoming critical for safety, performance, and longevity. EV applications require TIMs that can operate across wide temperature ranges while maintaining electrical isolation and mechanical stability. The shift toward cell-to-pack and cell-to-chassis battery architectures has created new opportunities for gap fillers, thermal pads, and specialized adhesive systems.

Data centers and AI servers represent another high-growth segment, where thermal management directly impacts computational performance and energy efficiency. The deployment of advanced processors, GPUs, and AI accelerators has created demand for next-generation TIMs capable of handling extreme heat fluxes. Liquid cooling systems and immersion cooling technologies are driving innovation in compatible thermal interface materials. Material innovation continues to shape the market landscape. Traditional silicone-based thermal greases and pads are being supplemented by advanced solutions including carbon nanotubes, graphene-enhanced materials, metal-based TIMs, phase change materials, and even metamaterials. Each material class offers distinct advantages in terms of thermal conductivity, electrical properties, mechanical characteristics, and application-specific performance.

Carbon-based TIMs, including graphene, carbon nanotubes, and graphite derivatives, are gaining significant traction due to their exceptional thermal properties and potential for multifunctional capabilities. Metal-based solutions, including liquid metals and sintered materials, are finding applications in high-performance computing and power electronics where maximum thermal performance is required.

The market is characterized by intense competition among established chemical companies, specialized materials providers, and emerging technology companies. Key players are investing heavily in R&D to develop next-generation materials while expanding manufacturing capabilities to meet growing demand. Strategic partnerships between TIM suppliers and OEMs are becoming increasingly common as thermal management becomes more integrated into product design. Regional dynamics show strong growth across Asia-Pacific markets, driven by electronics manufacturing concentration and EV adoption. North America leads in advanced applications including aerospace, defense, and high-performance computing. Europe shows particular strength in automotive applications and industrial electronics.

Sustainability considerations are becoming increasingly important, with manufacturers developing bio-based materials, improving recyclability, and reducing environmental impact throughout the product lifecycle. Regulatory compliance, particularly in automotive and aerospace applications, continues to drive material certification and testing requirements.

Looking forward, the market faces both opportunities and challenges. The continued evolution toward higher power densities, new packaging technologies, and emerging applications in quantum computing and advanced AI systems will drive demand for innovative TIM solutions. However, supply chain complexities, raw material price volatility, and the need for increasingly sophisticated performance characteristics present ongoing challenges for market participants.

"The Global Thermal Interface Materials Market 2026-2036" provides an in-depth analysis of the global thermal interface materials market, delivering essential insights for manufacturers, suppliers, investors, and technology companies seeking to capitalize on emerging opportunities in this rapidly evolving sector.

Report contents include:

This report features detailed profiles of 119 leading companies in the thermal interface materials ecosystem, including established chemical manufacturers, specialized materials suppliers, emerging technology companies, and innovative start-ups. Companies profiled include 3M, ADA Technologies, Aismalibar S.A., AI Technology Inc., Alpha Assembly, AluChem, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., Bdtronic, BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dowa Electronics Materials Co. Ltd., DuPont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silicones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd., Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Laird, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd., Minoru Co. Ltd. and more....

TABLE OF CONTENTS

1. INTRODUCTION

2. MATERIALS

3. MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)

4. COMPANY PROFILES (116 company profiles)

5. RESEARCH METHODOLOGY

6. REFERENCES

List of tables

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â