¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, ¹Ìµð¾î À¯Çüº°, ¹èÆ÷ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Deepfake Forensic Market Forecasts to 2032 - Global Analysis By Component, Media Type, Deployment Mode, Technology, Application, End User and By Geography
»óǰÄÚµå : 1802974
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,824,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,367,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,911,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,525,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀåÀº 2025³â¿¡ 1¾ï 6,590¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 45.2%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 22¾ï 5,820¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µöÆäÀÌÅ© Æ÷·»½ÄÀ̶õ À̹ÌÁö, µ¿¿µ»ó, À½¼º, ÅØ½ºÆ® µî Á¶ÀÛµÈ µðÁöÅÐ ÄÁÅÙÃ÷¸¦ °¨Áö, ºÐ¼®, ÀÎÁõÇÏ´Â µ¥ »ç¿ëµÇ´Â Àü¹® Åø, ¾Ë°í¸®Áò, ¼­ºñ½º¸¦ ¸»ÇÕ´Ï´Ù. AI ±â¹Ý °¨Áö ¸ðµ¨À» Ȱ¿ëÇÏ´Â Æ÷·»½Ä ¼Ö·ç¼ÇÀº ¸ÞŸµ¥ÀÌÅÍ, Çȼ¿È­, À½¼º ÆÐÅÏÀÇ ºÒÀÏÄ¡¸¦ ½Äº°ÇÕ´Ï´Ù. °ËÁõ, ¸®½ºÅ© °ü¸®, ±ÔÁ¦ Áؼö¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á µöÆäÀÌÅ© Æ÷·»½ÄÀº ƯÈ÷ ¹Ìµð¾î, ±ÝÀ¶, ±ÝÀ¶, Á¤ºÎ, º¸¾È ºÐ¾ß¿¡¼­ µðÁöÅÐ »ýŰèÀÇ ½Å·Ú¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

µöÆäÀÌÅ© °¨Áö °úÁ¦¿¡ ´ëÇÑ WiredÀÇ º¸µµ¿¡ µû¸£¸é »óÀ§ ¸ðµ¨Àº ¾Ë·ÁÁø µöÆäÀÌÅ©ÀÇ 82%¸¦ °¨ÁöÇßÀ¸³ª, ¾Ë·ÁÁöÁö ¾ÊÀº µöÆäÀÌÅ©´Â 65%¸¸ °¨ÁöÇØ ±âÁ¸ Æ÷·»½Ä ÅøÀÇ ÇѰ踦 µå·¯³Â´Ù°í ÇÕ´Ï´Ù.

µðÁöÅÐ ID °ËÁõ ¹× ÀÎÁõ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Á¤±³ÇÑ µöÆäÀÌÅ©ÀÇ ±ÞÁõÀº »ýüÀÎ½Ä º¸¾È ½Ã½ºÅÛ, ±ÝÀ¶±â°ü, °³ÀÎ ½Å¿ø È®ÀÎ ÇÁ·Î¼¼½º¿¡ ½É°¢ÇÑ À§ÇùÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ½ºÇªÇÎ, »ç±â, º¸¾È Ä§ÇØ¸¦ ¹æÁöÇϱâ À§ÇØ AI°¡ »ý¼ºÇÑ ÇÕ¼º ¹Ìµð¾î¸¦ °¨ÁöÇÒ ¼ö ÀÖ´Â °í±Þ Æ÷·»½Ä Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ÔÁ¦ ¾Ð·Â°ú ±ÔÁ¤ Áؼö Àǹ«È­·Î ÀÎÇØ Á¶Á÷Àº µðÁöÅÐ »óÈ£ ÀÛ¿ëÀ» º¸È£ÇÏ°í ¾ÈÀüÇÑ ÀÎÁõ ÇÁ·ÎÅäÄÝÀ» À¯ÁöÇϱâ À§ÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇØ¾ß Çϸç, ÀÌ´Â ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.

³ôÀº °è»ê ºñ¿ë°ú µ¥ÀÌÅÍ ¿ä±¸ »çÇ×

°í±Þ µöÆäÀÌÅ© Æ÷·»½Ä ¼Ö·ç¼Ç°ú °ü·ÃµÈ ³ôÀº °è»ê ºñ¿ë°ú ¹æ´ëÇÑ µ¥ÀÌÅÍ ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ ½ÃÀå µµÀÔ¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ µö·¯´× ±â¹ÝÀÇ °í±Þ °¨Áö ¾Ë°í¸®ÁòÀ» °³¹ßÇϰí ÈÆ·ÃÇϱâ À§Çؼ­´Â ¹æ´ëÇÑ ¿¬»ê ´É·Â°ú ÁøÇ° ¹Ìµð¾î¿Í ÇÕ¼º ¹Ìµð¾î ¸ðµÎ¿¡¼­ Á¤È®ÇÏ°Ô ¶óº§¸µµÈ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ´Â °ü·Ã ÀÎÇÁ¶ó ÅõÀÚ·Î ÀÎÇØ ¼Ò±Ô¸ð ±â¾÷ ¹× ¿¬±¸±â°ü¿¡ ½ÇÁúÀûÀÎ ÁøÀÔÀ庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁøÈ­ÇÏ´Â »ý¼ºÇü AI ±â¼ú¿¡ ´ëÀÀÇϱâ À§ÇØ ¸ðµ¨À» Áö¼ÓÀûÀ¸·Î ÀçÇнÀÇØ¾ß ÇÏ´Â °ÍÀº ÀÌ·¯ÇÑ ¿î¿µ ºñ¿ëÀ» ´õ¿í ¾ÇÈ­½ÃÄÑ ½ÃÀå ħÅõ¸¦ Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

»çÀ̹ö º¸¾È ¹× µðÁöÅÐ Æ÷·»½Ä ¼Ö·ç¼Ç°úÀÇ ÅëÇÕ

µöÆäÀÌÅ©°¡ »çÀ̹ö °ø°Ý, ¿Àº¸ Ä·ÆäÀÎ, ±â¾÷ ½ºÆÄÀÌÀÇ ¸Å°³Ã¼°¡ µÇ¸é¼­ µöÆäÀÌÅ© ºÐ¼®Àº Àüü º¸¾È ż¼ÀÇ Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ±âÁ¸ º¸¾È Á¤º¸ ¹× À̺¥Æ® °ü¸®(SIEM) ½Ã½ºÅÛ, Ä§ÇØ °¨Áö Ç÷§Æû, »ç°í ´ëÀÀ ¿öÅ©Ç÷ο쿡 Æ÷·»½Ä ÅøÀ» ÅëÇÕÇÏ¿© ½Ã³ÊÁö È¿°ú¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ º¸´Ù Á¾ÇÕÀûÀÎ À§Çù ÀÎÅÚ¸®Àü½º ÇÁ·¹ÀÓ¿öÅ©°¡ °¡´ÉÇØÁ® »õ·Î¿î ¼öÀÔ¿øÀ» âÃâÇÏ°í Æ÷·»½Ä º¥´õ°¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ½ÃÀåÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

µðÁöÅÐ ¹Ìµð¾î¿¡ ´ëÇÑ »çȸÀû ½Å·Ú Ç϶ô

ÇÕ¼º ¹Ìµð¾î°¡ Àΰ£ÀÇ ´«À¸·Î ±¸ºÐÇÒ ¼ö ¾ø°Ô µÇ°í, ÀÚ¿¬°è¿¡ ¸¸¿¬ÇÏ°Ô µÇ¸é '°ÅÁþ¸»ÀïÀÌ ¹è´ç±Ý'À¸·Î ¾Ë·ÁÁø Çö»óÀÌ ³ªÅ¸³¯ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀνķÐÀû ¾ÈÀü¼ºÀÇ ÀúÇÏ´Â Æ÷·»½Ä ÅøÀÇ ±ä±Þ¼º°ú À¯È¿¼ºÀ» ¶³¾î¶ß¸®°í, ÅõÀÚ ¹× ±â¼ú Çõ½ÅÀ» ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÁøÁ¤¼ºÀÇ À§±â´Â ¹ÎÁÖÀû °úÁ¤°ú »çȸÀû °á¼ÓÀ» À§ÇùÇϸç, ´Ü¼øÇÑ ½ÃÀå ¿ªÇÐÀ» ³Ñ¾î¼± »çȸÀû °úÁ¦¸¦ Á¦½ÃÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í µðÁöÅÐ ±³·ù·ÎÀÇ ±Þ¼ÓÇÑ ÀüȯÀº ¿Â¶óÀÎ ÀÎÁõ ¹× ÀÎÁõ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ°í µ¿½Ã¿¡ ÇÕ¼º ¹Ìµð¾î¸¦ »ç¿ëÇÏ´Â »ç±â²ÛÀÇ °ø°Ý ´ë»ó ¿µ¿ªÀ» È®´ëÇß½À´Ï´Ù. »çÀ̹ö ¹üÁËÀÚµéÀº µöÆäÀÌÅ©¸¦ ÀÌ¿ëÇÑ ÇÇ½Ì °ø°Ý°ú ¼Ò¼È ¿£Áö´Ï¾î¸µ °ø°ÝÀ¸·Î À§±â¸¦ ¾Ç¿ëÇÏ¿© ½É°¢ÇÑ Ãë¾àÁ¡À» µå·¯³Â½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇùÀº µðÁöÅÐ ÄÁÅÙÃ÷ ¼Òºñ Áõ°¡¿Í ÇÔ²² Á¤ºÎ ¹× ±â¾÷ÀÌ À§Çè °¨¼Ò¸¦ À§ÇÑ °¨Áö ±â¼ú¿¡ ¿ì¼±¼øÀ§¸¦ µÎ°í ÅõÀÚÇÏ°Ô ¸¸µé¾ú°í, ±× °á°ú ÀÌ ±â°£ Áß ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß µ¿¿µ»ó ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µ¿¿µ»ó ºÎ¹®Àº ¼ÒºñÀÚ µî±ÞÀÇ µöÆäÀÌÅ© »ý¼º ÅøÀÌ ³Î¸® º¸±ÞµÇ¾î ÀÖ°í, ÷´Ü µ¿¿µ»ó À§Á¶·Î ÀÎÇÑ ÇÇÇØ°¡ ¹ß»ýÇÒ °¡´É¼ºÀÌ ³ô±â ¶§¹®¿¡ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¿¿µ»ó µöÆäÀÌÅ©´Â °¡Àå º¹ÀâÇÏ°í ¼³µæ·Â ÀÖ´Â ÇÕ¼º ¹Ìµð¾îÀÇ ÇÑ ÇüÅÂÀ̸ç, ±ÝÀ¶ »ç±â, Á¤Ä¡Àû ¿Àº¸, ¸í¿¹ÈѼհú °°Àº ¿µÇâ·Â ÀÖ´Â »ç°ÇÀ» ¿¹¹æÇϱâ À§Çؼ­´Â ±× °¨Áö°¡ °¡Àå Áß¿äÇÕ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¿ìÀ§´Â µ¿¿µ»ó ÄÁÅÙÃ÷ ƯÀ¯ÀÇ ½Ã°£Àû ºÒÀÏÄ¡, ¾ó±¼ ¿òÁ÷ÀÓ, ¾ÐÃà ¾ÆÆ¼ÆÑÆ® ºÐ¼®¿¡ ÃÊÁ¡À» ¸ÂÃá ´ë±Ô¸ð R&D ÅõÀÚ¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ¾î °¡Àå ½Ã±ÞÇÑ ½ÃÀå ¿ä±¸¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â »ç±â °¨Áö ¹× ±ÝÀ¶ ¹üÁË ¿¹¹æ ºÐ¾ßÀÔ´Ï´Ù.

¿¹Ãø ±â°£ Áß »ç±â °¨Áö ¹× ±ÝÀ¶ ¹üÁË ¹æÁö ºÐ¾ß´Â BFSI ºÐ¾ß¿¡¼­ °í°´ È®ÀÎ(KYC) ¹× »ýü ÀÎÁõ ½Ã½ºÅÛÀ» ȸÇÇÇϱâ À§ÇÑ µöÆäÀÌÅ©(DeepFake)ÀÇ »ç¿ëÀÌ È®´ëµÊ¿¡ µû¶ó °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÕ¼º ID¿Í AI°¡ »ý¼ºÇÑ µ¿¿µ»ó ÇÁ·ÎÆÄÀÏÀº °èÁ¤ Å»Ãë »ç±â³ª ºÎÁ¤°Å·¡¸¦ À§ÇØ ¹«±âÈ­µÇ¾î ¸·´ëÇÑ ±ÝÀüÀû ¼Õ½ÇÀ» ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á÷Á¢ÀûÀÎ ±ÝÀüÀû À§ÇùÀ¸·Î ÀÎÇØ ±ÝÀ¶±â°üµéÀº ÷´Ü Æ÷·»½Ä ¼Ö·ç¼ÇÀ» Àû±ØÀûÀ¸·Î µµÀÔÇÒ ¼ö¹Û¿¡ ¾ø¾ú°í, ÀÌ´Â °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ »ç±â¸¦ ±ÙÀýÇϱâ À§ÇÑ ¾ö°ÝÇÑ ±ÔÁ¦°¡ ÀÌ ºÎ¹®ÀÇ È®Àå¿¡ ´õ¿í °­·ÂÇÑ ÃßÁø·ÂÀ» Á¦°øÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ °°Àº ¿ìÀ§´Â ÷´Ü ±â¼úÀÇ ºü¸¥ µµÀÔ, ÁÖ¿ä µöÆäÀÌÅ© Æ÷·»½Ä ¼Ö·ç¼Ç º¥´õÀÇ Á¸Àç, µ¥ÀÌÅÍ º¸¾È ¹× µðÁöÅÐ ¿Àº¸¿¡ ´ëÇÑ Á¤ºÎÀÇ ¾ö°ÝÇÑ ±ÔÁ¦¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ AI°¡ ¸¸µé¾î³»´Â À§Çù¿¡ ´ëÀÀÇϱâ À§ÇÑ ±â¾÷ °£ ³ôÀº ÀÎ½Ä ¼öÁذú ¹Î°ü ¾çÃøÀÇ ´ë±Ô¸ð R&D ÅõÀÚ°¡ ºÏ¹ÌÀÇ ¼±µµÀû ÁöÀ§¸¦ ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ±ÝÀ¶ »ýŰè´Â µöÆäÀÌÅ©¸¦ ÀÌ¿ëÇÑ »ç±âÀÇ ÁÁÀº Ç¥ÀûÀÌ µÇ¾î Æ÷·»½Ä Åø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ °¡¼ÓÈ­´Â ´ë±Ô¸ð µðÁöÅÐÈ­ °èȹ, ÀÎÅÍ³Ý º¸±Þ·ü È®´ë, ÇÕ¼º ID »ç±â¿¡ Ãë¾àÇÑ BFSI ºÎ¹®ÀÇ ±Þ°ÝÇÑ ¼ºÀå µî¿¡ ±âÀÎÇÕ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç °¢±¹ Á¤ºÎ´Â º¸´Ù ¾ö°ÝÇÑ »çÀ̹ö º¸¾È Á¤Ã¥À» ½ÃÇàÇϰí ÀÖÀ¸¸ç, ½ÃÀå È®´ë¸¦ À§ÇÑ ±ÔÁ¦ ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹æ´ëÇÑ ¾çÀÇ µðÁöÅÐ ÄÁÅÙÃ÷¸¦ »ý¼ºÇÏ´Â ¹æ´ëÇÑ Àα¸ÀÇ Á¸Àç´Â ¾Ç¼º ¿ëµµÀ¸·ÎºÎÅÍ ½Ã¹Î°ú Áß¿ä ÀÎÇÁ¶ó¸¦ º¸È£Çϱâ À§ÇØ µöÆäÀÌÅ© °¨Áö ±â¼ú¿¡ ´ëÇÑ ±ä±ÞÇÑ ÅõÀÚ¸¦ Ã˱¸ÇÏ´Â µ¶Æ¯ÇÑ °úÁ¦¸¦ Á¦½ÃÇϰí ÀÖ½À´Ï´Ù.

±¸¼º ¿ä¼Ò

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ¹Ìµð¾î À¯Çüº°

Á¦7Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ¹èÆ÷ ¸ðµåº°

Á¦8Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ µöÆäÀÌÅ© Æ÷·»½Ä ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä ¹ßÀü

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Deepfake Forensic Market is accounted for $165.9 million in 2025 and is expected to reach $2258.2 million by 2032 growing at a CAGR of 45.2% during the forecast period. Deepfake forensics refers to specialized tools, algorithms, and services used to detect, analyze, and authenticate manipulated digital content, including images, videos, audio, and text. Leveraging AI-driven detection models, forensic solutions identify inconsistencies in metadata, pixelation, and voice patterns. By enabling validation, risk management, and regulatory compliance, deepfake forensics strengthens trust in digital ecosystems, particularly in media, finance, government, and security sectors.

According to Wired coverage of the Deepfake Detection Challenge, the top model detected 82 % of known deepfakes but only 65 % of unseen ones highlighting the limitations of existing forensic tools.

Market Dynamics:

Driver:

Rising need for digital identity verification and authentication

The proliferation of sophisticated deepfakes poses a significant threat to biometric security systems, financial institutions, and personal identity verification processes. This has catalyzed demand for advanced forensic tools capable of detecting AI-generated synthetic media to prevent identity theft, fraud, and security breaches. Moreover, regulatory pressures and compliance mandates are compelling organizations to invest in these solutions to safeguard digital interactions and maintain secure authentication protocols, thereby substantially contributing to market growth.

Restraint:

High computational costs and data requirements

Market adoption is hindered by the high computational cost and extensive data requirements associated with advanced deepfake forensic solutions. Developing and training sophisticated detection algorithms, particularly those based on deep learning, necessitates immense computational power and vast, accurately labeled datasets of both authentic and synthetic media. This creates a substantial barrier to entry for smaller enterprises and research institutions due to the associated infrastructure investment. Additionally, the continuous need for model retraining to counter evolving generative AI techniques further exacerbates these operational expenses, limiting market penetration.

Opportunity:

Integration with cybersecurity and digital forensics solutions

As deepfakes become a vector for cyberattacks, misinformation campaigns, and corporate espionage, their analysis is becoming an essential component of a holistic security posture. Embedding forensic tools into existing security information and event management (SIEM) systems, fraud detection platforms, and incident response workflows offers a synergistic value proposition. This convergence allows for a more comprehensive threat intelligence framework, creating new revenue streams and expanding the addressable market for forensic vendors.

Threat:

Erosion of public trust in digital media

As synthetic media becomes indistinguishable to the human eye and pervasive in nature, a phenomenon known as the "liar's dividend" may emerge, where any genuine content can be dismissed as a deepfake. This erosion of epistemic security diminishes the perceived urgency and effectiveness of forensic tools, potentially stifling investment and innovation. Furthermore, this crisis of authenticity threatens democratic processes and social cohesion, presenting a societal challenge beyond mere market dynamics.

Covid-19 Impact:

The COVID-19 pandemic had a net positive impact on the deepfake forensic market. The rapid shift to remote work and digital interactions accelerated the adoption of online verification and authentication systems, simultaneously expanding the attack surface for fraudsters using synthetic media. Cybercriminals exploited the crisis with deepfake-aided phishing and social engineering attacks, highlighting critical vulnerabilities. This immediate threat landscape, coupled with increased digital content consumption, forced governments and enterprises to prioritize and invest in detection technologies to mitigate risks, thereby stimulating market growth during the period.

The video segment is expected to be the largest during the forecast period

The video segment is expected to account for the largest market share during the forecast period due to the widespread availability of consumer-grade deepfake generation tools and the high potential for damage posed by sophisticated video forgeries. Video deepfakes represent the most complex and convincing form of synthetic media, making their detection paramount for preventing high-impact events like financial fraud, political misinformation, and defamation. The segment's dominance is further fueled by significant investments in R&D focused on analyzing temporal inconsistencies, facial movements, and compression artifacts unique to video content, addressing the most urgent market need.

The fraud detection & financial crime prevention segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the fraud detection & financial crime prevention segment is predicted to witness the highest growth rate, driven by the escalating use of deepfakes to bypass know your customer (KYC) and biometric authentication systems in the BFSI sector. Synthetic identities and AI-generated video profiles are being weaponized for account takeover fraud and unauthorized transactions, resulting in substantial financial losses. This direct monetary threat is compelling financial institutions to aggressively deploy advanced forensic solutions, fostering remarkable growth. Moreover, stringent regulatory mandates aimed at combating digital fraud are providing an additional, powerful impetus for this segment's expansion.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. This dominance is attributable to the early and rapid adoption of advanced technologies, the presence of major deepfake forensic solution vendors, and stringent government regulations concerning data security and digital misinformation. Additionally, high awareness levels among enterprises and substantial R&D investments from both public and private sectors in countering AI-generated threats consolidate North America's leading position. The region's robust financial ecosystem also makes it a prime target for deepfake-enabled fraud, further propelling demand for forensic tools.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This accelerated growth is fueled by massive digitalization initiatives, expanding internet penetration, and a burgeoning BFSI sector that is increasingly vulnerable to synthetic identity fraud. Governments across APAC are implementing stricter cybersecurity policies, creating a conducive regulatory environment for market expansion. Moreover, the presence of a vast population generating immense volumes of digital content presents a unique challenge, driving urgent investments in deepfake detection technologies to protect citizens and critical infrastructure from malicious applications.

Key players in the market

Some of the key players in Deepfake Forensic Market include Adobe, Microsoft, Google, Meta, Sensity AI, Cognitec Systems, Intel, AMD, NVIDIA, Truepic, Reality Defender, Jumio, iProov, Voxist, Onfido, and Fourandsix Technologies.

Key Developments:

In January 2025, McAfee is taking a bold step forward with major enhancements to its AI-powered deepfake detection technology. By partnering with AMD and harnessing the Neural Processing Unit (NPU) within the latest AMD Ryzen(TM) AI 300 Series processors announced at CES, McAfee Deepfake Detector is designed to empower users to discern truth from fiction like never before.

In February 2024, Truepic launched the 2024 U.S. Election Deepfake Monitor, tracking AI-generated content in presidential elections. The company, advised by Dr. Hany Farid, focuses on promoting transparency in synthetic media and developing authentication solutions for preventing misleading media spread.

In February 2024, Meta collaborated with the Misinformation Combat Alliance (MCA) to launch a dedicated fact-checking helpline on WhatsApp in India. The company announced enhanced AI labeling policies for detecting industry-standard indicators of AI-generated content across Facebook, Instagram, and Threads platforms.

Components:

Media Types Covered:

Deployment Modes Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Deepfake Forensic Market, By Component

6 Global Deepfake Forensic Market, By Media Type

7 Global Deepfake Forensic Market, By Deployment Mode

8 Global Deepfake Forensic Market, By Technology

9 Global Deepfake Forensic Market, By Application

10 Global Deepfake Forensic Market, By End User

11 Global Deepfake Forensic Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â