Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Ç³·Â Åͺó ºÎǰ ½ÃÀåÀº 2025³â¿¡ 1,462¾ï 9,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 2,515¾ï 4,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 8.05%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.
dz·Â Åͺó ºÎǰÀº dz·Â ÅͺóÀ» ±¸¼ºÇÏ´Â Áß¿äÇÑ ºÎǰÀ¸·Î dz·Â¿¡³ÊÁö¸¦ Àü·ÂÀ¸·Î º¯È¯ÇÕ´Ï´Ù. ÁÖ¿ä ºÎǰ¿¡´Â ·ÎÅÍ ºí·¹À̵å, ±â¾î ¹Ú½º, ¹ßÀü±â, ³ª¼¿, Ÿ¿ö, Á¦¾î ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. ·ÎÅÍ ºí·¹À̵å´Â dz·Â¿¡³ÊÁö¸¦ ĸóÇÏ°í ±â¾î ¹Ú½º¸¦ ÅëÇØ ¹ßÀü±â·Î º¸³»Áö°í ±×°÷¿¡¼ Àü·ÂÀ¸·Î º¯È¯µË´Ï´Ù. ÀÌ ºÎǰµéÀº ½ÅÀç»ý¿¡³ÊÁö ¹ßÀü½Ã ÃÖÀûÀÇ ¼º´É°ú È¿À²À» º¸ÀåÇϱâ À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù.
Àκ£½ºÆ® Àεð¾ÆÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2024³â 3¿ù ±âÁØ ¼ö·Â ¹ßÀüÀ» Æ÷ÇÔÇÑ Àç»ý¿¡³ÊÁöÀÇ ¼³ºñ ¿ë·®Àº ÃÑ 190.57GW¿´½À´Ï´Ù.
½ÅÀç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
°¢±¹ Á¤ºÎ´Â dz·Â¿¡³ÊÁö ±â¼úÀÇ µµÀÔÀ» ÃËÁøÇϱâ À§ÇØ À¯¸®ÇÑ Á¤Ã¥°ú Àμ¾Æ¼ºê¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. dz·Â ÅͺóÀº ±¹°¡¿Í ±¹Á¦±â±¸°¡ Á¤ÇÑ Àç»ý¿¡³ÊÁö ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Á¡Á¡ ´õ µµÀԵǰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¾Èº¸°¡ ¿ì¼±µÇ´Â °¡¿îµ¥, dz·Â¿¡³ÊÁö´Â ȼ®¿¬·á¸¦ ´ëüÇÏ´Â ½Å·Ú¼ºÀÌ ³ô°í Áö¼Ó°¡´ÉÇÑ ´ëü¿¡³ÊÁö·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. Åͺó ºÎǰÀÇ ±â¼úÀû Áøº¸·Î ¼º´ÉÀÌ Çâ»óµÇ°í Àå±â ¿î¿µ ºñ¿ëÀÌ Àý°¨µË´Ï´Ù. ÀÌ·¯ÇÑ ½ÅÀç»ý¿¡³ÊÁö ¼ö¿äÀÇ ±ÞÁõÀÌ Ç³·Â Åͺó ºÎǰ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÀÚº» ÅõÀÚ
È¿À²ÀûÀÎ ÅͺóÀ» »ý»êÇÏ·Á¸é Á¤¹Ð Á¦Á¶ ºÎǰ, Ư¼ö Àç·á ¹× °í±Þ Á¦¾î ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¶´Þºñ, ¿î¼Ûºñ, °Ç¼³ºñ°¡ ÇÁ·ÎÁ§Æ® ºñ¿ëÀ» »ó½Â½Ã۰í ÀÚ±Ý Á¶´ÞÀÌ º¹ÀâÇØÁö´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¼Ò±Ô¸ð °³¹ßÀÚ¿Í ½ÅÈï±¹ ½ÃÀå¿¡¼´Â ÃæºÐÇÑ ÀÚ±ÝÀ» È®º¸Çϱâ À§ÇØ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ ¿îÀü ºñ¿ë Àý°¨ È¿°ú´Â ÀÖ´Â °Í, Ãʱâ ÅõÀÚ°¡ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû Á¦¾àÀº dz·Â ¹ßÀü ½Ã½ºÅÛÀÇ º¸±ÞÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
´ë±Ô¸ð ÇØ»ódz·Â ÇÁ·ÎÁ§Æ®
ÇØ»ó dz·Â¿¡³ÊÁö´Â ³ôÀº ¹ßÀü ¿ë·®°ú ¾ÈÁ¤µÈ ¹Ù¶÷ÀÇ °¡¿ë¼ºÀ¸·Î ÀÎÇØ ±â¼¼°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä dz·Â Ç÷§Æû°ú ÇØÁß ÄÉÀ̺íÀÇ Áøº¸·Î ½ÉÇØ¿¡¼ÀÇ ÇÁ·ÎÁ§Æ®°¡ ´õ¿í Çö½Çȵǰí ÀÖ½À´Ï´Ù. ¸¹Àº ÇØ¾È ±¹°¡µéÀº ¿¡³ÊÁö ¹Í½º¸¦ ´Ù¾çÈÇϱâ À§ÇØ ´ë±Ô¸ð ÇØ»ó dz·Â ¹ßÀü¼Ò¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·ÎÁ§Æ®´Â ³»½Ä¼ºÀÌ Çâ»óµÈ °ß°íÇÑ ºÎǰÀÌ ÇÊ¿äÇϸç Åͺó ºÎǰ ºÎ¹®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ±â¼úÀÌ Çâ»óµÊ¿¡ µû¶ó ÇØ»ó ½Ã½ºÅÛÀÇ ºñ¿ë °æÀï·ÂÀº »ó½ÂÀÇ ±æÀ» µû¸¨´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÇØ¿Ü È®´ë´Â ½ÃÀå ¼ºÀå°ú Çõ½ÅÀÇ Å« ±âȸ¸¦ °¡Á®¿É´Ï´Ù.
°ø±Þ¸Á°ú ¿øÀç·á ºÎÁ·
dz·Â Åͺó ºÎǰÀÇ Á¦Á¶´Â Áß´ÜÀÇ ¿µÇâÀ» ¹Þ±â ½¬¿î ¼¼°èÀûÀÎ °ø±Þ¸Á¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ÈñÅä·ù ¿ø¼Ò ¹× º¹ÇÕÀç·á¿Í °°Àº Áß¿äÇÑ Àç·áÀÇ °¡¿ë¼ºÀÌ Á¦ÇѵǾî ÀÖ´Ù´Â °ÍÀº »ý»ê ÀÏÁ¤¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¿î¼Û¡¤¹°·ù ºñ¿ëÀÇ »ó½ÂÀº Á¦Á¶¾÷ü³ª ÇÁ·ÎÁ§Æ® °³¹ßÀÚ¿¡°Ô ÇÑÃþ ´õ ºÎ´ãÀ» ÁÝ´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ¹«¿ª Á¦ÇÑÀº ¶ÇÇÑ Àç·á Á¶´Þ¿¡ ¿¹Ãø ºÒ°¡´É¼ºÀ» °¡Á®¿É´Ï´Ù. °ø±Þ¸ÁÀÇ º´¸ñ Çö»óÀº ÁøÇà ÁßÀΠdz·Â ¹ßÀü ÇÁ·ÎÁ§Æ®¿Í ¹Ì·¡ dz·Â ¹ßÀü ÇÁ·ÎÁ§Æ®ÀÇ Áö¿¬°ú °æÁ¦Àû ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº dz·Â Åͺó ºÎǰ ½ÃÀå ÀüüÀÇ Á¦Á¶¿Í ¹°·ù¸¦ È¥¶õ½ÃÄ×½À´Ï´Ù. Àá±Ý ¹× Á¦ÇÑÀ¸·Î ÀÎÇØ ¼¼°è¿¡¼ ÇÁ·ÎÁ§Æ® ±¸Çö ¹× Á¶´Þ Ȱµ¿ÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ³ëµ¿·Â ºÎÁ·°ú ¾ÈÀü À§»ý ÇÁ·ÎÅäÄÝÀº »ý»ê°ú ¼³Ä¡ ¼Óµµ¸¦ ´õ¿í ´ÊÃß¾ú½À´Ï´Ù. ±×·¯³ª ÆÒ´ë¹Í ÀÌÈÄÀÇ È¸º¹Àº Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ÅõÀÚ¿¡ ´ëÇÑ °ü½ÉÀ» ´Ù½Ã ³ô¿´½À´Ï´Ù. ¿ø°Ý °¨½Ã¿Í µðÁöÅÐÈÀÇ µ¿Çâµµ °ßÀοªÀÌ µÇ¾î, Àå·¡ÀÇ Ç³·Â¹ßÀü »ç¾÷ÀÇ °ÀμºÀÌ °ÈµÇ¾ú½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¹ßÀü±â ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
½ÅÀç»ý¿¡³ÊÁö ¹ßÀü¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ°í ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ¿¹Ãø±â°£ µ¿¾È ¹ßÀü±â ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. dz·Â ¹ßÀü¼Ò°¡ È®´ëµÊ¿¡ µû¶ó ¹ßÀü±âÀÇ È¿À²Àº ¿¡³ÊÁö Ãâ·ÂÀ» ±Ø´ëÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ûÁ¤¿¡³ÊÁö¿¡ ´ëÇÑ Á¤ºÎÀÇ ¿ì´ëÁ¶Ä¡µµ dz·Â¹ßÀü ºñ¿ëÀÇ ÀúÇÏ¿Í ÇÔ²² ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÅͺóÀÇ ´ëÇüÈ¿Í ÇØ»ó ¼³Ä¡·ÎÀÇ À̵¿Àº dz·Â ¹ßÀü ½Ã½ºÅÛ¿¡¼ °í¼º´É ¹ßÀü±â ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ Áß À°»ódz·Â¿¡³ÊÁö ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á
¿¹Ãø±â°£ Áß À°»ódz·Â¿¡³ÊÁö ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµÇÁö¸¸, ÀÌ´Â ÇØ»ó ÇÁ·ÎÁ§Æ®¿¡ ºñÇØ ¼³Ä¡ºñ¿ëÀÌ ³·°í, ¸¹Àº Áö¿ª¿¡¼ ÅäÁö°¡ ÀÌ¿ë °¡´ÉÇϰí, º¸Á¶±ÝÀ̳ª Àμ¾Æ¼ºê¿¡ ÀÇÇÑ Á¤ºÎÁö¿øÀÌ Áõ°¡Çϰí ÀÖ´Â °Í µîÀÌ ¿äÀÎÀÔ´Ï´Ù. À°»ódz·Â¹ßÀü¼Ò´Â º¸¼ö ¹× ±Ô¸ð È®´ë°¡ ¿ëÀÌÇϱ⠶§¹®¿¡ »ó¾÷¿ë°ú À¯Æ¿¸®Æ¼¿ëÀÇ ÅõÀÚ¸¦ ¸ðµÎ ²ø°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ûÁ¤¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Åͺó ºñ¿ëÀÇ ÀúÇϰ¡ À°»ódz·Â¹ßÀüÀÇ È®´ë¸¦ ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ±Þ¼ÓÇÑ »ê¾÷È¿Í ¿¡³ÊÁö ¼Òºñ Áõ°¡·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µîÀÇ ±¹°¡µéÀº Áõ°¡ÇÏ´Â Àü·Â ¼ö¿ä¿¡ Áö¼ÓÀûÀ¸·Î ´ëÀÀÇϱâ À§ÇØ Ç³·Â¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ Áö¿ø Á¤Ã¥, ÅäÁö °¡¿ë¼º, °ü¹Î ÆÄÆ®³Ê½ÊÀÌ ÇÁ·ÎÁ§Æ®ÀÇ Àü°³¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Åº¼Ò ¹èÃâ °¨Ãà ³ë·ÂÀº ½ÃÀåÀÇ Áö¼ÓÀûÀÎ È®´ë¸¦ Áö¿øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ´Â °·ÂÇÑ ±âÈÄ Á¤Ã¥°ú ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ȼ®¿¬·á·ÎºÎÅÍÀÇ Å»°¢À» ¸ñÇ¥·Î dz·Â¿¡³ÊÁö ¿ë·®À» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¼ÛÀü¸ÁÀÇ Çö´ëÈ¿Í ÇØ»ó dz·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ ºÎǰ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. °æ·® ¼ÒÀç¿Í ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¿¬±¸ °³¹ß ³ë·ÂÀº ÅͺóÀÇ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ±× °á°ú, ÀÌ Áö¿ªÀº dz·Â Åͺó ºÎǰ ½ÃÀå Àüü¿¡¼ °¡Àå ºü¸¥ ¼ºÀåÀ» ÀÌ·ê °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Wind Turbine Components Market is accounted for $146.29 billion in 2025 and is expected to reach $251.54 billion by 2032 growing at a CAGR of 8.05% during the forecast period. Wind turbine components are the essential parts that make up a wind turbine, converting wind energy into electrical power. Key components include the rotor blades, gearbox, generator, nacelle, tower, and control systems. The rotor blades capture wind energy, which is then transmitted through the gearbox to the generator, where it is converted into electricity. These components work together to ensure optimal performance and efficiency in generating renewable energy.
According to the data from Invest India, as of March 2024, renewable energy sources, including hydropower, have a combined installed capacity of 190.57 GW.
Increasing demand for renewable energy
Governments are introducing favorable policies and incentives to promote the adoption of wind energy technologies. Wind turbines are increasingly being deployed to meet renewable energy targets set by national and international bodies. As energy security becomes a priority, wind energy is seen as a reliable and sustainable alternative to fossil fuels. Technological advancements in turbine components are improving performance and reducing long-term operational costs. This surge in renewable energy demand is a primary driver of the wind turbine components market.
High initial capital investment
Building efficient turbines requires precision-manufactured components, specialized materials, and advanced control systems. Procurement, transportation, and construction expenses elevate project costs, often making financing complex. Smaller developers and emerging markets may struggle to secure adequate funding. Although long-term operational savings exist, the initial investment continues to act as a barrier. These financial constraints hinder the widespread adoption of wind energy systems.
Large-scale offshore wind projects
Offshore wind energy is gaining momentum due to its higher capacity factors and consistent wind availability. Advances in floating wind platforms and underwater cabling are making deep-sea projects more viable. Many coastal nations are investing in large-scale offshore wind farms to diversify their energy mix. These projects demand robust components with enhanced corrosion resistance, boosting demand in the turbine component segment. As technology improves, the cost competitiveness of offshore systems continues to rise. Overall, offshore expansion presents significant opportunities for market growth and innovation.
Supply chain and raw material shortages
Wind turbine component manufacturing depends heavily on a global supply chain that is vulnerable to disruption. Limited availability of critical materials like rare earth elements and composites affects production timelines. Rising transportation and logistics costs further strain manufacturers and project developers. Geopolitical tensions and trade restrictions also add unpredictability to material sourcing. Supply chain bottlenecks can lead to delays and financial losses for ongoing and future wind energy projects.
The COVID-19 pandemic disrupted manufacturing and logistics across the wind turbine components market. Lockdowns and restrictions delayed project implementation and procurement activities worldwide. Labor shortages and health safety protocols further slowed production and installation rates. However, the post-pandemic recovery saw renewed interest in sustainable energy investments. Remote monitoring and digitalization trends also gained traction, strengthening the resilience of future wind energy operations.
The generator segment is expected to be the largest during the forecast period
The generator segment is expected to account for the largest market share during the forecast period, due to the increasing need for renewable energy and technological advancements. As wind farms expand, the efficiency of generators becomes crucial for maximizing energy output. Government incentives for clean energy, along with falling wind power costs, also boost the market. Moreover, the shift towards larger turbines and offshore installations further accelerates the demand for high-performance generators in wind energy systems.
The onshore wind energy segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the onshore wind energy segment is predicted to witness the highest growth rate, fuelled by its lower installation costs compared to offshore projects, availability of land in many regions, and increasing governmental support through subsidies and incentives. As onshore wind farms are easier to maintain and scale, they attract both commercial and utility investments. Additionally, the rising demand for clean energy and declining turbine costs further support the expansion of onshore wind energy.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rapid industrialization and increasing energy consumption. Countries like China, India, and South Korea are heavily investing in wind energy to meet growing electricity demand sustainably. Supportive government policies, land availability, and public-private partnerships accelerate project deployment. The region's commitment to reducing carbon emissions supports continued market expansion.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong climate policies and technological advancements. The United States and Canada are scaling up wind energy capacity to transition away from fossil fuels. Investment in grid modernization and offshore wind infrastructure is driving component demand. R&D efforts in lightweight materials and power electronics enhance turbine performance. As a result, the region will experience the fastest growth across the wind turbine components market.
Key players in the market
Some of the key players in Wind Turbine Components Market include Vestas Wind Systems A/S, Ming Yang Smart Energy, Siemens Gamesa Renewable Energy, Sinovel Wind Group Co., Ltd., General Electric, Senvion S.A., Nordex SE, Guodian United Power Technology, Suzlon Energy Ltd., United Power Inc., Goldwind, Emerson GmbH, Enercon GmbH, LM Wind Power, and Xinjiang Goldwind Science & Technology Co., Ltd.
In January 2024, GE Hitachi and SaskPower Sign Agreement to Advance Small Modular Reactor Development. The agreement will enable SaskPower and GEH to collaborate on project planning and facilitate the sharing of expertise related to the design, fuel sourcing and fabrication for the BWRX-300 small modular reactor. It will also support workforce and supply chain planning needed for a Saskatchewan-based SMR deployment.
In May 2023, Siemens Gamesa and Repsol have strengthened their commercial ties with the signing of two new contracts for the supply of 40 SG 5.0-145 onshore turbines for six wind farms in Spain, totaling 200 MW. Following this agreement, Repsol will have eight wind farms employing Siemens Gamesa technology, reaching a total of 324 MW.