¼¼°èÀÇ Ç³·Â ÅÍºó º¹ÇÕÀç·á ½ÃÀå
Wind Turbine Composite Materials
»óǰÄÚµå : 1761133
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 340 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,124,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,373,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

dz·Â ÅÍºó º¹ÇÕÀç·á ¼¼°è ½ÃÀåÀº 2030³â±îÁö 229¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 155¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â dz·Â ÅÍºó º¹ÇÕÀç·á ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 229¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ À¯¸®¼¶À¯ º¹ÇÕÀç·á´Â CAGR 6.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 127¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ź¼Ò¼¶À¯ º¹ÇÕÀç·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 7.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç³·Â ÅÍºó º¹ÇÕÀç·á ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 8.1%·Î 2030³â±îÁö 54¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 5.4%¿Í 6.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç³·Â ÅÍºó º¹ÇÕÀç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÃֽŠdz·Â ÅÍºó¿¡ º¹ÇÕÀç·á°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â?

Ãֱ٠dz·Â¿¡³ÊÁö ºÐ¾ß´Â dz·Â Åͺó ºÎǰÀÇ °íÈ¿À², °æ·®È­, °í³»±¸¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 º¯ÇõÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ±× Áß¿¡¼­µµ º¹ÇÕÀç·á´Â dz·Â ÅͺóÀÇ ±â¼ú Çõ½ÅÀ» µÞ¹ÞħÇÏ´Â ÇÙ½É Àç·á·Î µîÀåÇÏ¿© ´õ Å©°í, ´õ °­Çϰí, ´õ ź·ÂÀûÀÎ Åͺó ºí·¹À̵带 Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ö°­À̳ª ¾Ë·ç¹Ì´½°ú °°Àº ÀüÅëÀûÀÎ Àç·á´Â ´õ ÀÌ»ó Çö´ë dz·Â¹ßÀü ÀÎÇÁ¶óÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏÁö ¸øÇϸç, ƯÈ÷ ·ÎÅÍÀÇ Á÷°æÀÌ Ä¿Áö°í ÇØ»ó dz·Â¹ßÀüÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ´õ¿í ±×·¯ÇÕ´Ï´Ù. º¹ÇÕÀç·á´Â ³ôÀº °­µµ ´ë Áß·®ºñ, ¿ì¼öÇÑ ÇÇ·Î ÀúÇ×¼º ¹× ³»½Ä¼ºÀ» Á¦°ø ÇÒ ¼ö Àֱ⠶§¹®¿¡ dz·Â Åͺó Á¦Á¶¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯¸®¼¶À¯ °­È­ ÇÃ¶ó½ºÆ½(GFRP), ź¼Ò¼¶À¯º¹ÇÕÀç, ÇÏÀ̺긮µå º¹ÇÕÀç µî ¼¶À¯°­È­º¹ÇÕÀçÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î dz·Â ÅͺóÀÇ È¿À²°ú ½Å·Ú¼ºÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. À°»ó ¹× ÇØ»ó dz·Â¹ßÀü ÇÁ·ÎÁ§Æ®°¡ °è¼Ó È®´ëµÊ¿¡ µû¶ó º¹ÇÕÀç·á´Â ÃֽŠdz·Â ÅͺóÀÇ ¿î¿µ ¿ä±¸ »çÇ×°ú ¼ö¸íÁֱ⠱â´ëÄ¡¸¦ ÃæÁ·½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Àç·á °úÇÐÀÇ ¹ßÀüÀº dz·Â¿¡³ÊÁö ºÐ¾ß¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

÷´Ü Àç·á ±â¼úÀÇ ÅëÇÕÀº dz·Â ÅÍºó º¹ÇÕÀç·á ½ÃÀå¿¡ ȹ±âÀûÀÎ º¯È­¸¦ °¡Á®¿ÔÀ¸¸ç, ´õ °­Çϰí, ´õ °¡º±°í, ´õ ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Çõ½Å Áß Çϳª´Â ź¼Ò¼¶À¯¿Í À¯¸®¼¶À¯¸¦ Àü·«ÀûÀ¸·Î °áÇÕÇÏ¿© ÃÖÀûÀÇ ¼º´É Ư¼ºÀ» ±¸ÇöÇÏ´Â ÇÏÀ̺긮µå º¹ÇÕÀç·áÀÇ Ã¤ÅÃÀÔ´Ï´Ù. ³ôÀº ÀÎÀå °­µµ¿Í °­¼ºÀ¸·Î À¯¸íÇÑ Åº¼Ò¼¶À¯´Â ºí·¹À̵åÀÇ Ã³ÁüÀ» ÃÖ¼ÒÈ­ÇÏ°í ¿¡³ÊÁö Æ÷Áý·®À» Áõ°¡½Ã۱⠶§¹®¿¡ ´ëÇü ÇØ»ó dz·Â ÅÍºó¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ź¼Ò¼¶À¯´Â Á¦Á¶ ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ Á¦Á¶¾÷üµéÀº ºñ¿ë È¿À²¼º°ú ±¸Á¶Àû ¼º´ÉÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ Åº¼Ò¼¶À¯¸¦ ´õ Àú·ÅÇÑ À¯¸®¼¶À¯¿Í È¥ÇÕÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Àç·á Çõ½ÅÀÇ ¶Ç ´Ù¸¥ ȹ±âÀûÀÎ Æ®·»µå´Â Àڱ⺹¿ø º¹ÇÕÀç·áÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ º¹ÇÕÀç·á´Â ÇÇ·Î ÀÀ·Â¿¡ ÀÇÇØ ¹ß»ýÇÑ ¹Ì¼¼ ±Õ¿­À» ÀÚµ¿À¸·Î º¹±¸ÇÏ´Â Ä¡À¯Á¦·Î ä¿öÁø ¸¶ÀÌÅ©·Î ĸ½¶À» ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, dz·Â Åͺó ºí·¹À̵带 º¸´Ù Áö¼Ó°¡´ÉÇϰí ģȯ°æÀûÀ¸·Î ¸¸µé·Á´Â Á¦Á¶¾÷üµé »çÀÌ¿¡¼­ ÀçȰ¿ë¼º°ú ¼ºÇü¼ºÀÌ ¿ì¼öÇÑ ¿­°¡¼Ò¼º º¹ÇÕÀç·áÀÇ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è dz·Â¹ßÀü ¿ë·®ÀÌ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ÅͺóÀÇ ¼ö¸í, ¼º´É ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖ¾î ÷´Ü º¹ÇÕÀç ±â¼úÀÇ ¿ªÇÒÀÌ ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

º¹ÇÕÀç·á°¡ È®´ëµÇ´Â ÇØ»ó dz·Â ½ÃÀåÀÇ ¼ö¿ä¸¦ µû¶óÀâÀ» ¼ö ÀÖÀ»±î?

ÇØ»ó dz·Â¹ßÀü¼ÒÀÇ Áõ°¡´Â dz·Â ÅÍºó º¹ÇÕÀç·áÀÇ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â Å« °è±â°¡ µÇ¾ú½À´Ï´Ù. ÇØ»ó ÅͺóÀº À°»ó ÅÍºó¿¡ ºñÇØ ´õ °­ÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºÎ½Ä¿¡ °­ÇÑ ºÎǰÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ÇØ»ó dz·Â¹ßÀü ÇÁ·ÎÁ§Æ®´Â Á¡Á¡ ´õ ±íÀº ¼ö½ÉÀ¸·Î À̵¿Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ºÎÀ¯½Ä dz·Â¹ßÀü¼ÒÀÇ ¼ºÀåÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ ¿­¾ÇÇÑ ÇØ¾ç ȯ°æ, °­ÇÑ Ç³¼Ó, Áö¼ÓÀûÀÎ ÇØ¼ö ³ëÃâÀ» °ßµô ¼ö ÀÖ´Â °æ·® °í°­µµ º¹ÇÕÀç·áÀÇ »ç¿ëÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÇØ»ó dz·Â ÅÍºó¿¡ ´ëÇÑ ³ôÀº ³»±¸¼º°ú ±ä ¼ö¸íÀÌ ¿ä±¸µÊ¿¡ µû¶ó, Á¦Á¶¾÷üµéÀº ´õ ³ôÀº ³»ÇǷμº, Çâ»óµÈ ¼Ò¼ö¼º, °­È­µÈ Àڿܼ± Â÷´Ü ±â´ÉÀ» Á¦°øÇÏ´Â Â÷¼¼´ë º¹ÇÕÀç·á¸¦ °³¹ßÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ¶ÇÇÑ, º¹ÇÕÀç·á·Î ¸¸µç ¸ðµâ½Ä ºí·¹ÀÌµå ¼³°è°¡ Àα⸦ ²ø°í ÀÖÀ¸¸ç, ÇØ»ó ÅͺóÀÇ ¿î¼Û, Á¶¸³ ¹× À¯Áöº¸¼ö°¡ ¿ëÀÌÇØÁ³½À´Ï´Ù. ÇØ»ó dz·Â »ê¾÷Àº Â÷¼¼´ë Åͺó ±â¼ú °³¹ß¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ¼öÁö ÀÌ¼Û ¼ºÇü(RTM), ÀÚµ¿ ¼¶À¯ ¹èÄ¡(AFP), Áø°ø º¸Á¶ ¼öÁö ÁÖÀÔ ±â¼ú µî ÀÚµ¿È­ Á¦Á¶ °øÁ¤¿¡ ´ëÇÑ ÅõÀÚµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇØ»ó dz·Â¿¡³ÊÁö°¡ Àü ¼¼°è Àç»ý¿¡³ÊÁö È®´ë¿¡ ÀÖ¾î Áö¹èÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â °¡¿îµ¥, Ư¼ö °í¼º´É º¹ÇÕÀç·á¿¡ ´ëÇÑ ¼ö¿ä´Â ¾ÕÀ¸·Îµµ °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

dz·Â ÅÍºó º¹ÇÕÀç·á ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

dz·Â ÅÍºó º¹ÇÕÀç ½ÃÀåÀÇ ¼ºÀåÀº ÁÖ·Î ±â¼ú ¹ßÀü, ÃÖÁ¾ »ç¿ë ¿ä±¸ »çÇ×ÀÇ ÁøÈ­, ½ÃÀå ¿ªÇÐÀÇ º¯È­¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Å« ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¼¼°è dz·Â¹ßÀü ¿ë·®ÀÇ Áõ°¡À̸ç, Á¤ºÎ¿Í ¹Î°£ ÅõÀÚÀÚµéÀÌ À°»ó ¹× ÇØ»ó dz·Â¹ßÀü¼Ò È®Àå¿¡ ¸·´ëÇÑ ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. °¢±¹ÀÌ ¾ß½ÉÂù Àç»ý¿¡³ÊÁö ¸ñÇ¥¸¦ ¼³Á¤ÇÔ¿¡ µû¶ó ´õ Å©°í È¿À²ÀûÀΠdz·Â Åͺó, ³ª¾Æ°¡ °í¼º´É º¹ÇÕÀç·á¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Åͺó ºí·¹À̵åÀÇ ±æÀ̰¡ 100¹ÌÅ͸¦ ³Ñ¾î¼­¸é¼­, ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ´Â °æ·®, °í°­µµ º¹ÇÕÀç·áÀÇ »ç¿ëÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, º¹ÇÕÀç ºÎǰÀÇ 3D ÇÁ¸°ÆÃ, AI¿¡ ÀÇÇÑ Ç°Áú °ü¸®, ·Îº¿¿¡ ÀÇÇÑ Á¶¸³ µî ÀÚµ¿È­µÈ º¹ÇÕÀç Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀ¸·Î »ý»ê È¿À²¼º°ú ºñ¿ë Àý°¨À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä ÇØ»ó dz·Â ±â¼úÀÇ ÃâÇöµµ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ¿ì¼öÇÑ À¯¿¬¼º, ³»Ãæ°Ý¼º, ºÎ·Â Ư¼ºÀ» °¡Áø º¹ÇÕÀç·á°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º°ú ÀçȰ¿ë¼º¿¡ ´ëÇÑ ¾÷°èÀÇ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¹ÙÀÌ¿À ±â¹Ý ¹× ÀçȰ¿ë °¡´ÉÇÑ ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½ º¹ÇÕÀç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ¿¡³ÊÁö °ø±Þ¾÷ü¿Í Åͺó Á¦Á¶¾÷üµéÀÌ º¸´Ù ºñ¿ë È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã°í ÀÖ´Â °¡¿îµ¥, dz·Â¿¡³ÊÁö ºÐ¾ß¿¡¼­ Â÷¼¼´ë º¹ÇÕÀç·á¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¸î ³â µ¿¾È ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Àç·á(À¯¸®¼¶À¯ º¹ÇÕÀç·á, ź¼Ò¼¶À¯ º¹ÇÕÀç·á, ±âŸ Àç·á), ¿ëµµ(ºí·¹ÀÌµå ¿ëµµ, ³ª¼¿ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 31°³»ç)

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Wind Turbine Composite Materials Market to Reach US$22.9 Billion by 2030

The global market for Wind Turbine Composite Materials estimated at US$15.5 Billion in the year 2024, is expected to reach US$22.9 Billion by 2030, growing at a CAGR of 6.8% over the analysis period 2024-2030. Glass Fiber Composite Material, one of the segments analyzed in the report, is expected to record a 6.6% CAGR and reach US$12.7 Billion by the end of the analysis period. Growth in the Carbon Fiber Composite Material segment is estimated at 7.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 8.1% CAGR

The Wind Turbine Composite Materials market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$5.4 Billion by the year 2030 trailing a CAGR of 8.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.4% and 6.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.0% CAGR.

Global Wind Turbine Composite Materials Market - Key Trends & Drivers Summarized

What Makes Composite Materials Essential for Modern Wind Turbines?

The wind energy sector has witnessed a transformational shift in recent years, with the demand for high-efficiency, lightweight, and durable materials for wind turbine components growing exponentially. Among these, composite materials have emerged as the backbone of wind turbine innovation, allowing for the construction of larger, stronger, and more resilient turbine blades. Traditional materials such as steel and aluminum no longer meet the requirements for modern wind energy infrastructure, especially with the increasing push towards larger rotor diameters and offshore wind installations. The ability of composite materials to provide higher strength-to-weight ratios, superior fatigue resistance, and corrosion resistance has positioned them as an indispensable component in wind turbine manufacturing. Additionally, the rapid advancements in fiber-reinforced composites, including glass fiber-reinforced plastics (GFRP), carbon fiber composites, and hybrid composites, have further enhanced the efficiency and reliability of wind turbines. As wind energy projects continue to expand across onshore and offshore locations, composite materials play a critical role in meeting the operational demands and lifecycle expectations of modern wind turbines.

How Are Advancements in Material Science Shaping the Wind Energy Sector?

The integration of advanced material technologies has been a game-changer for the wind turbine composite materials market, leading to stronger, lighter, and more cost-effective solutions. One of the most significant innovations has been the adoption of hybrid composites, where carbon fiber and glass fiber materials are strategically combined to achieve optimal performance characteristics. Carbon fiber, known for its high tensile strength and rigidity, is increasingly being used in large offshore wind turbines to minimize blade deflection and increase energy capture. However, due to its higher production costs, manufacturers often blend carbon fibers with more affordable glass fibers to balance cost-efficiency and structural performance. Another groundbreaking trend in material innovation is the development of self-healing composites, which integrate microcapsules filled with healing agents to automatically repair microcracks that develop due to fatigue stress. Furthermore, the introduction of thermoplastic composites, which offer superior recyclability and moldability, is gaining traction as manufacturers aim to make wind turbine blades more sustainable and environmentally friendly. As global wind energy capacity continues to rise, the role of advanced composite technologies in enhancing turbine longevity, performance, and sustainability remains more crucial than ever.

Can Composite Materials Keep Up With the Demands of the Expanding Offshore Wind Market?

The rise of offshore wind farms has been a major catalyst in driving demand for wind turbine composite materials, as offshore turbines require stronger, more durable, and corrosion-resistant components compared to their onshore counterparts. Offshore wind projects are increasingly moving towards deeper waters, where fixed-bottom turbines are no longer feasible, leading to the growth of floating wind farms. This shift necessitates the use of lightweight yet high-strength composite materials that can endure harsh marine environments, intense wind speeds, and constant exposure to saltwater. The need for extreme durability and longevity in offshore wind turbines has prompted manufacturers to develop new-generation composite materials that offer higher fatigue resistance, improved hydrophobic properties, and enhanced UV protection. Additionally, modular blade designs made from composite materials are gaining popularity, enabling easier transportation, assembly, and maintenance of offshore turbines. The offshore wind industry’s focus on developing next-generation turbine technologies has also led to increased investments in automated manufacturing processes, such as resin transfer molding (RTM), automated fiber placement (AFP), and vacuum-assisted resin infusion technologies, which ensure higher precision, reduced material waste, and faster production cycles. With offshore wind energy poised to play a dominant role in global renewable energy expansion, the demand for specialized, high-performance composites will continue to rise.

What Are the Key Drivers Fueling the Growth of the Wind Turbine Composite Materials Market?

The growth in the wind turbine composite materials market is driven by several factors, primarily linked to technological advancements, evolving end-use requirements, and shifting market dynamics. One of the biggest growth drivers is the rising global wind energy capacity, with governments and private investors heavily funding the expansion of onshore and offshore wind farms. As countries set ambitious renewable energy targets, the demand for larger, more efficient wind turbines-and, consequently, high-performance composite materials-continues to escalate. The increasing adoption of longer turbine blades, now exceeding 100 meters in length, has made it essential to use lightweight, high-strength composites that can sustain extended operational lifespans without compromising structural integrity. Additionally, the advancement of automated composite manufacturing techniques, such as 3D printing of composite components, AI-driven quality control, and robotic assembly, is driving production efficiency and cost reduction. The emergence of floating offshore wind technology is another critical driver, requiring composites with superior flexibility, impact resistance, and buoyancy properties. Furthermore, the industry’s growing emphasis on sustainability and recyclability has led to increased investment in bio-based and recyclable thermoplastic composites, aligning with global environmental goals. As energy providers and turbine manufacturers seek more cost-effective, durable, and environmentally sustainable solutions, the demand for next-generation composite materials in the wind energy sector is expected to surge in the coming years.

SCOPE OF STUDY:

The report analyzes the Wind Turbine Composite Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Material (Glass Fiber Compposite Material, Carbon Fiber Compposite Material, Other Materials); Application (Blades Application, Nacelles Application, Other Applications)

Geographic Regions/Countries:

World; USA; Canada; Japan; China; Europe; France; Germany; Italy; UK; Spain; Russia; Rest of Europe; Asia-Pacific; Australia; India; South Korea; Rest of Asia-Pacific; Latin America; Argentina; Brazil; Mexico; Rest of Latin America; Middle East; Iran; Israel; Saudi Arabia; UAE; Rest of Middle East; Africa.

Select Competitors (Total 31 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â