¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, ÄÄÆ÷³ÍÆ®, ¿ë·®, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®
Silicon Carbide Battery Market Forecasts to 2032 - Global Analysis By Type, Component, Capacity, Application, End User and By Geography
»óǰÄÚµå : 1716443
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,797,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,333,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,870,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,476,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ¹èÅ͸® ¼¼°è ½ÃÀåÀº 2025³â 54¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 30.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 355¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸®´Â È¿À², ³»±¸¼º ¹× ¿­ ¾ÈÁ¤¼ºÀ» ³ôÀ̱â À§ÇØ ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ¼ÒÀ縦 Ȱ¿ëÇÑ Çõ½ÅÀûÀÎ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÔ´Ï´Ù. ¶Ù¾î³­ Àü±â Àüµµ¼º°ú °í¿ÂÀ» °ßµô ¼ö ÀÖ´Â ´É·ÂÀ¸·Î À¯¸íÇÑ SiC ±â¼úÀº ±î´Ù·Î¿î ¿ëµµ¸¦ À§ÇØ ¼³°èµÈ ÷´Ü ¹èÅ͸®¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ ¹èÅ͸®´Â ¿¡³ÊÁö È¿À²°ú Àå±âÀûÀÎ ½Å·Ú¼ºÀ» ±Ø´ëÈ­ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÎ Àü±âÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ½Ã½ºÅÛ, »ê¾÷¿ë Àü·Â ¼Ö·ç¼Ç¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ »ó¹«ºÎ º¸°í¼­¿¡ µû¸£¸é, ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ±â¹Ý ÀåÄ¡ÀÇ Á¦Á¶ ºñ¿ëÀº ¿©ÀüÈ÷ À庮À¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ±âÁ¸ ½Ç¸®ÄÜ ÀåÄ¡ÀÇ ºñ¿ëº¸´Ù ÃÖ´ë 30%±îÁö ³ôÀº °æ¿ì°¡ ¸¹½À´Ï´Ù.

Ãʰí¼Ó ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸®´Â ¿ì¼öÇÑ È¿À²°ú ³ôÀº ³»¿­¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ÃæÀü ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ±â¾÷µéÀº EVÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ» Áö¿øÇϱâ À§ÇØ Ã·´Ü ÃæÀü ³×Æ®¿öÅ©¿¡ ÅõÀÚÇÏ¿© °íÃâ·Â ¹Ðµµ ¹èÅ͸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖÀ¸¸ç, SiC ±â¼úÀº Àü±â Àüµµµµ¸¦ Çâ»ó½Ã۰í Àü·Â ¼Õ½ÇÀ» °¨¼Ò½Ã۱⠶§¹®¿¡ Á¦Á¶¾÷üµéÀº Â÷¼¼´ë ¹èÅ͸®¿¡ ÀÌ ¼ÒÀ縦 ÅëÇÕÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀ縦 Â÷¼¼´ë ¹èÅ͸®¿¡ ÅëÇÕÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç°ú ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ Àü±âÈ­ ÃßÁøÀÌ °­È­µÊ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀº ´õ¿í °¡¼ÓÈ­µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ º¹ÀâÇÑ ÅëÇÕ

¸¹Àº »ê¾÷¿¡¼­ ±âÁ¸ ¸®Æ¬ À̿ ±â¼ú¿¡ ÃÖÀûÈ­µÈ ·¹°Å½Ã ¹èÅ͸® ½Ã½ºÅÛÀ» »ç¿ëÇϰí Àֱ⠶§¹®¿¡ SiC ±â¹Ý ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ º¹ÀâÇØÁ³½À´Ï´Ù. Á¦Á¶¾÷ü´Â ȣȯ¼º ¹®Á¦¸¦ ±Øº¹ÇØ¾ß Çϸç, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ¹× Àü±â ¾ÆÅ°ÅØÃ³ÀÇ ´ë´ëÀûÀÎ Àç¼³°è°¡ ÇÊ¿äÇÕ´Ï´Ù. ±âÁ¸ Àåºñ¸¦ SiC ¹èÅ͸®¿Í ȣȯµÇµµ·Ï °³Á¶ÇÏ´Â µ¥´Â ¸¹Àº ºñ¿ë°ú ½Ã°£ÀÌ ¼Ò¿äµÇ¸ç, ÀÌ´Â º¸±ÞÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ø±Þ¸Á °¡¿ë¼º ¹× »ý»ê È®À强¿¡ ´ëÇÑ ¿ì·Á´Â SiC ¹èÅ͸® äÅÃÀÇ »ó¾÷Àû Ÿ´ç¼ºÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

´ëÇüÂ÷ ¹× Ç×°ø±â Àü±âÈ­

´ëÇü ÀÚµ¿Â÷ ¹× Ç×°ø »ê¾÷Àº °¡È¤ÇÑ Á¶°Ç°ú ±ä ÀÛµ¿ Áֱ⸦ °ßµô ¼ö ÀÖ´Â °í¼º´É, °æ·®, ³»±¸¼ºÀÌ ¶Ù¾î³­ ¹èÅ͸®¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ¼ÒÀç´Â ¿¡³ÊÁö È¿À²À» ³ôÀÌ°í ¿­ ¼Õ½ÇÀ» ÁÙÀÌ¸ç °íÃâ·Â ¿ëµµ¸¦ Áö¿øÇϱ⠶§¹®¿¡ Àü±â Æ®·°, ¹ö½º, Ç×°ø±â ¹× »ê¾÷±â°è¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Ç×°ø±â ¹× »ó¾÷¿ë Â÷·®ÀÇ ¹èÅ͸® ¼ö¸í ¿¬Àå ¹× ½Å¼ÓÇÑ ¿¡³ÊÁö º¸ÃæÀÇ Çʿ伺Àº ¿î¼ÛÀÇ ¹Ì·¡¸¦ À籸¼ºÇÏ´Â SiC ±â¼úÀÇ ¿ªÇÒÀ» ´õ¿í °­È­ÇÕ´Ï´Ù.

½ÅÈï ¼ÒÀç¿ÍÀÇ °æÀï

¿¬±¸ÀÚµé°ú Á¦Á¶¾÷üµéÀº ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ºñ¿ë È¿À²¼º ¹× ¾ÈÀü¼ºÀ» °®Ãá ´ëü ¹èÅ͸® È­ÇÐ ¹°ÁúÀ» Áö¼ÓÀûÀ¸·Î ã°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¹èÅ͸® ±â¼ú Áß ÀϺδ À¯»çÇÑ ¿­ ¾ÈÁ¤¼º°ú Àü·Â ¼º´ÉÀ» Á¦°øÇÏ¿© SiC ±â¹Ý ¼Ö·ç¼ÇÀÇ µ¶Á¡Àû ¿ìÀ§¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. È®Àå °¡´ÉÇÑ Á¦Á¶ °øÁ¤À» °®Ãá ºñ¿ë È¿À²ÀûÀÎ ´ëü ±â¼úÀº ƯÈ÷ °¡°Ý¿¡ ¹Î°¨ÇÑ »ê¾÷¿¡¼­ SiC ½ÃÀå µµÀÔ¿¡ µµÀüÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ:

Äڷγª19´Â Àü ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·Á ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ºÎǰÀ» Æ÷ÇÔÇÑ Áß¿äÇÑ ¹èÅ͸® Àç·áÀÇ »ý»ê°ú À¯ÅëÀ» Áö¿¬½ÃÄ×½À´Ï´Ù. °øÀå °¡µ¿ Áß´Ü, ³ëµ¿·Â ºÎÁ·, ¿øÀÚÀç ºÎÁ·À¸·Î ÀÎÇØ SiC ¹èÅ͸®ÀÇ Ã¤ÅÃÀÌ ÀϽÃÀûÀ¸·Î ¾÷°è Àüü¿¡¼­ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª °æ±â°¡ ȸº¹µÇ¸é¼­ EV, ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç, »ê¾÷¿ë Àü±âÈ­¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 ¹èÅ͸® Á¦Á¶ÀÇ È¸º¹ ³ë·ÂÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ±â¾÷µéÀº Áö¿ª ¹ÐÂøÇü °ø±Þ¸Á¿¡ ÅõÀÚÇϰí, ¹Ì·¡ÀÇ È¥¶õÀ» ¿ÏÈ­Çϱâ À§ÇØ »ý»êÀ» °£¼ÒÈ­ÇÏ¿© ÀûÀÀÇß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í, SiC ±â¹Ý ±â¼úÀ» Æ÷ÇÔÇÑ Ã·´Ü ¹èÅ͸® Çõ½Å¿¡ ´ëÇÑ ½Ã±Þ¼ºÀ» ³ô¿´½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ³ªÆ®·ý À̿ ¹èÅ͸® ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀÌµå ³ªÆ®·ý À̿ ¹èÅ͸® ºÎ¹®Àº ºñ¿ë È¿À²¼º°ú dzºÎÇÑ ¿ø·á °¡¿ë¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ªÆ®·ý À̿ ¹èÅ͸®´Â ƯÈ÷ °æÁ¦¼º°ú ȯ°æÀû Áö¼Ó°¡´É¼ºÀÌ Áß¿äÇÑ ¿ëµµ¿¡¼­ ¸®Æ¬ À̿ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ë¾ÈÀÌ µÉ ¼ö ÀÖÀ¸¸ç, SiC ±â¼úÀº ÃæÀü À¯Áö·Â°ú ¿­ ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃÄÑ ³ªÆ®·ý À̿ ¹èÅ͸®ÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄÑ ´ë±Ô¸ð ÀúÀå ¹× »ê¾÷¿ëµµ¿¡ ¸Å¿ì ÀûÇÕÇÏ°Ô ¸¸µì´Ï´Ù. ÀûÇÕÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Áö´ÉÇü ¿¡³ÊÁö ¸ð´ÏÅ͸µ ¹× ÃÖÀûÈ­¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, BMS ±â¼úÀº SiC ±â¹Ý ¹èÅ͸®ÀÇ È¿À², ¾ÈÀü¼º, ¼ö¸íÀ» °ü¸®ÇÏ°í °íÃâ·Â ¿ëµµ¿¡¼­ ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù. ¹èÅ͸® ¾ÆÅ°ÅØÃ³°¡ º¹ÀâÇØÁü¿¡ µû¶ó ½Ç½Ã°£ Áø´Ü, ¿¹Ãø ºÐ¼®, ¿Âµµ °ü¸®¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â °í±Þ BMS ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °­·ÂÇÑ Á¦Á¶ ´É·Â°ú EV ¹× Àç»ý °¡´É ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ¹èÅ͸® ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, SiC ±â¹Ý ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö µµÀÔ°ú Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼¸¦ ÃËÁøÇϱâ À§ÇÑ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â Àü±âÈ­ ¹× Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö µµÀÔÀ» ÃËÁøÇÏ´Â Á¤ºÎ Á¤Ã¥ Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, »ê¾÷ ºÎ¹®¿¡¼­ °í¼º´É ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó SiC ¹èÅ͸® ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â¼ú ±â¾÷, ¿¬±¸ ±â°ü, ¹èÅ͸® Á¦Á¶¾÷ü °£ÀÇ Àü·«Àû Á¦ÈÞ´Â SiC ¹èÅ͸® ¼Ö·ç¼ÇÀÇ Çõ½Å°ú »ó¿ëÈ­¸¦ °¡¼ÓÈ­ÇÒ °ÍÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦7Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : ¿ë·®º°

Á¦8Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹èÅ͸® ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Silicon Carbide Battery Market is accounted for $5.4 billion in 2025 and is expected to reach $35.5 billion by 2032 growing at a CAGR of 30.6% during the forecast period. Silicon Carbide (SiC) battery is an innovative energy storage system that utilizes silicon carbide materials to enhance efficiency, durability, and thermal stability. Recognized for its exceptional electrical conductivity and ability to withstand high temperatures, SiC technology is increasingly integrated into advanced batteries designed for demanding applications. These batteries are widely employed in electric vehicles, aerospace systems, and industrial power solutions, where maximizing energy efficiency and long-term reliability is essential.

According to a report from the U.S. Department of Commerce, the manufacturing cost of silicon carbide-based devices remains a barrier, with costs often exceeding those of conventional silicon devices by up to 30%.

Market Dynamics:

Driver:

Demand for ultra-fast charging infrastructure

Silicon carbide (SiC) batteries offer superior efficiency and high thermal resistance, enabling faster charge times while maintaining durability. Governments and private entities are investing in advanced charging networks to support the rapid expansion of EVs, further driving demand for high-power-density battery solutions. With SiC technology improving conductivity and reducing power loss, manufacturers are focusing on integrating these materials into next-generation batteries. The increasing push toward sustainable energy solutions and electrification across multiple industries will continue to accelerate the market's growth.

Restraint:

Complex integration into legacy systems

Many industries operate with legacy battery systems that are optimized for traditional lithium-ion technologies, making adoption of SiC-based solutions complex. Manufacturers must overcome compatibility issues, requiring extensive redesigns of battery management systems (BMS) and electrical architectures. Retrofitting older equipment to accommodate SiC batteries can be costly and time-consuming, delaying widespread implementation. Additionally, concerns related to supply chain availability and production scalability may hinder the commercial viability of SiC battery adoption.

Opportunity:

Electrification of heavy-duty vehicles and aviation

Heavy-duty vehicles and aviation industries demand high-performance, lightweight, and durable batteries capable of sustaining extreme conditions and long operational cycles. Silicon carbide materials enhance energy efficiency, reduce thermal losses, and support high-power applications, making them ideal for electric trucks, buses, aircraft, and industrial machinery. The need for extended battery life and rapid energy replenishment in aviation and commercial fleets further solidifies the role of SiC technology in reshaping the future of transportation.

Threat:

Competition from emerging materials

Researchers and manufacturers continuously seek alternative battery chemistries with higher energy densities, cost-efficiency, and enhanced safety. Some next-generation battery technologies offer similar thermal stability and power performance, potentially limiting the exclusive dominance of SiC-based solutions. Cost-effective alternatives with scalable manufacturing processes may challenge SiC's market adoption, particularly in price-sensitive industries.

Covid-19 Impact:

The COVID-19 pandemic disrupted global supply chains delaying production and distribution of critical battery materials, including silicon carbide components. Factory shutdowns, labor shortages, and raw material scarcity resulted in a temporary decline in SiC battery adoption across industries. However, as economies rebounded, the demand for EVs, energy storage solutions, and industrial electrification surged, accelerating recovery efforts in battery manufacturing. Companies adapted by investing in localized supply chains and streamlining production to mitigate future disruptions. The pandemic also heightened awareness of sustainable energy solutions, increasing the urgency for advanced battery innovations, including SiC-based technologies.

The silicon carbide sodium-ion battery segment is expected to be the largest during the forecast period

The silicon carbide sodium-ion battery segment is expected to account for the largest market share during the forecast period due to its cost-efficiency and abundant raw material availability. Sodium-ion batteries provide a viable alternative to lithium-ion solutions, especially in applications where affordability and environmental sustainability are critical. SiC technology enhances sodium-ion battery performance by improving charge retention and thermal stability, making them highly suitable for large-scale storage and industrial applications.

The battery management system (BMS) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the battery management system (BMS) segment is predicted to witness the highest growth rate driven by the increasing need for intelligent energy monitoring and optimization. BMS technology is critical in managing the efficiency, safety, and lifespan of SiC-based batteries, ensuring optimal performance in high-power applications. The rising complexity of battery architectures necessitates advanced BMS solutions capable of supporting real-time diagnostics, predictive analytics, and thermal management.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to strong manufacturing capabilities and high demand for EVs and renewable energy storage systems. Countries like China, Japan, and South Korea are at the forefront of battery technology innovations, with extensive investments in SiC-based energy solutions. Government initiatives promoting clean energy adoption and sustainable mobility further bolster market expansion.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR driven by increasing government policies promoting electrification and sustainable energy adoption. The rise in demand for high-performance energy storage solutions across automotive, aerospace, and industrial sectors fuels investment in SiC battery technologies. Strategic collaborations between technology firms, research institutions, and battery manufacturers accelerate innovation and commercialization of SiC battery solutions.

Key players in the market

Some of the key players in Silicon Carbide Battery Market include Alpha Power Solutions (APS), Amprius Technologies, AvnetInc, Bosch, California Lithium Battery, Coherent Corp, Enevate, Enovix, Hitachi Energy Ltd, Huawei Technologies, Infineon, Kallex Company Ltd, LeydenJar Technologies, NanoGraf, Nanotek Instruments, Panasonic, Sila Nanotechnologies and XG Sciences.

Key Developments:

In September 2024, RIR Power Electronics Ltd announced the establishment of India's first Silicon Carbide manufacturing facility in Bhubaneswar, with an investment of approximately Rs 620 crore. This facility is expected to create over 500 jobs and marks a significant step in India's semiconductor power electronics industry.

In August 2024, Coherent Corp. announced the completion of $1 billion in investments from DENSO Corporation and Mitsubishi Electric Corporation into its Silicon Carbide semiconductor business. This significant investment is expected to advance the development and production of SiC semiconductors, crucial for various applications including electric vehicles and renewable energy systems.

In April 2023, onsemi and ZEEKR Sign Long-Term Supply Agreement for Silicon Carbide Power Devices its EliteSiC silicon carbide power devices to enhance the powertrain efficiency of ZEEKR's electric vehicles, aiming for improved performance faster charging speeds, and extended driving range.

Types Covered:

Components Covered:

Capacities Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Silicon Carbide Battery Market, By Type

6 Global Silicon Carbide Battery Market, By Component

7 Global Silicon Carbide Battery Market, By Capacity

8 Global Silicon Carbide Battery Market, By Application

9 Global Silicon Carbide Battery Market, By End User

10 Global Silicon Carbide Battery Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â