¼¼°èÀÇ ÅºÈ­±Ô¼Ò(SiC) MOSFET Ĩ ¹× ¸ðµâ ½ÃÀå
Silicon Carbide (SiC) MOSFET Chips and Modules
»óǰÄÚµå : 1799192
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 142 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÅºÈ­±Ô¼Ò(SiC) MOSFET Ĩ ¹× ¸ðµâ ½ÃÀåÀº 2030³â±îÁö 21¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 6¾ï 9,860¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â źȭ±Ô¼Ò(SiC) MOSFET Ĩ ¹× ¸ðµâ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 20.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 21¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ SiC MOSFET Ĩ£¦µð¹ÙÀ̽º´Â CAGR 18.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 12¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. SiC MOSFET ¸ðµâ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 23.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 8,360¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 19.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÅºÈ­±Ô¼Ò(SiC) MOSFET Ĩ ¹× ¸ðµâ ½ÃÀåÀº 2024³â¿¡ 1¾ï 8,360¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 19.2%·Î 2030³â±îÁö 3¾ï 2,480¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 18.1%¿Í 17.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.0%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÅºÈ­±Ô¼Ò(SiC) MOSFET Ĩ ¹× ¸ðµâ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

SiC MOSFET Ĩ°ú ¸ðµâÀÌ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Â÷¼¼´ë ÇÁ·ÐƼ¾î·Î ºÎ»óÇϰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) MOSFET Ĩ°ú ¸ðµâÀº ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ºÎǰº¸´Ù ´õ ³ôÀº Àü¾Ð, ¿Âµµ, Á֯ļö¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ Â÷¼¼´ë ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ÇÙ½ÉÀ¸·Î ºü¸£°Ô ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ µð¹ÙÀ̽º´Â °ß°íÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ ¿ëµµ¿¡¼­ È¿À²¼º°ú ¼ÒÇüÈ­¸¦ Å©°Ô Çâ»ó½ÃÄÑ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ¿¡³ÊÁö °ü¸® ¹× º¯È¯ ¹æ½ÄÀ» Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ ½Ç¸®ÄÜ MOSFET°ú ´Þ¸® SiC MOSFETÀº ³·Àº ¿Â ÀúÇ×, ºü¸¥ ½ºÀ§Äª ¼Óµµ, ³ôÀº Ç׺¹ Àü¾Ð µî ¿ì¼öÇÑ Æ¯¼ºÀ» ³ªÅ¸³»¾î °íÀü·Â, °í¿Â ȯ°æ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, »ê¾÷¿ë ¸ðÅÍ µå¶óÀ̺ê, Ç×°ø¿ìÁÖ, Àü·Â¸Á µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ¾î ¿¡³ÊÁö ¼Õ½Ç °¨¼Ò, ¼º´É Çâ»ó, ½Ã½ºÅÛ ¼ö¸í ¿¬Àå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷¿¡¼­ SiC MOSFETÀº ¹èÅ͸® »ç¿ë·ü Çâ»ó, ÁÖÇà°Å¸® ¿¬Àå, ÄÄÆÑÆ®ÇÑ ÀιöÅÍ ¼³°è¸¦ Áö¿øÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. žçÀüÁö ¹× dz·Â ¹ßÀü ¼³ºñ¿¡¼­´Â Àü·Â º¯È¯ È¿À² Çâ»ó°ú ¿­ ¼Õ½Ç °¨¼Ò¿¡ ±â¿©ÇÕ´Ï´Ù. ¿¡³ÊÁö Àý¾à°ú Żź¼Ò¿¡ ´ëÇÑ Àü ¼¼°èÀÇ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ SiC ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. SiC MOSFET Ĩ°ú ¸ðµâÀº °íÀ¯ÇÑ Àç·á Ư¼º°ú ±âÁ¸ ±â¼úÀ» ´É°¡ÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ º¸´Ù ½º¸¶Æ®Çϰí È¿À²ÀûÀ̸ç Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ Àüȯ¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº SiC MOSFETÀÇ ¼º´É°ú È®À强À» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

Àç·á °øÁ¤, µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³, ÆÐŰ¡ ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀº ½Ç¸®ÄÜ Ä«¹ÙÀ̵å MOSFETÀÇ ¼º´É, ½Å·Ú¼º, Á¦Á¶¼º Çâ»ó¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº °í¼øµµ SiC ¿þÀÌÆÛ¸¦ »ý»êÇϱâ À§ÇØ Ã·´Ü °áÁ¤ ¼ºÀå ±â¼úÀ» Ȱ¿ëÇÏ¿© °áÇÔÀ» ÁÙÀÌ°í ¼ÒÀÚ ¼öÀ²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. »õ·Î¿î Æ®·»Ä¡ ¹× Ç÷¡³Ê °ÔÀÌÆ® ±¸Á¶´Â ¿Â ÀúÇ×°ú °ÔÀÌÆ® ÀüÇϸ¦ ´õ¿í ³·Ãß°í, °í¼Ó ½ºÀ§Äª°ú Àüµµ ¼Õ½ÇÀ» ÁÙÀ̱â À§ÇØ ±¸ÇöµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °­È­´Â ¿¡³ÊÁö È¿À²À» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ºÎÇǰ¡ Å« ³Ã°¢ ½Ã½ºÅÛ ¹× ¼öµ¿ ºÎǰÀÇ Çʿ伺À» ÁÙ¿© ´õ ÀÛ°í °¡º­¿î ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÆÐŰ¡ ºÐ¾ß¿¡¼­´Â ¾ç¸é ³Ã°¢, ¼Ò°á Á¢ÇÕ, ÀúÀδöÅϽº ·¹À̾ƿô µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î SiC ¸ðµâÀÇ ¿­Àû, ±â°èÀû ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â EV Æ®·¢¼Ç ÀιöÅÍ ¹× À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀå°ú °°Àº °íÀü·ù ¿ëµµ¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. °¡È¤ÇÑ Á¶°Ç¿¡¼­ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÏ°í ½Ã½ºÅÛ ¼³°è¸¦ ´Ü¼øÈ­Çϱâ À§ÇØ ÅëÇÕ °ÔÀÌÆ® µå¶óÀ̹ö ¹× °íÀå º¸È£ ¸ÞÄ¿´ÏÁòÀÌ Ãß°¡µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¿þÀÌÆÛ Å©±â°¡ 4ÀÎÄ¡¿¡¼­ 6ÀÎÄ¡, ±×¸®°í 8ÀÎÄ¡ÀÇ °¡´É¼ºÀ¸·Î °³¼±µÊ¿¡ µû¶ó Á¦Á¶ ºñ¿ëÀÌ ³·¾ÆÁ® SiC ¼Ö·ç¼ÇÀÌ ´ëÁß ½ÃÀå ¿ëµµ¿¡ ´õ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î SiC MOSFETÀº ºñ¿ë È¿À²ÀûÀÌ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¹ÝµµÃ¼ ¼ÒÀÚ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇÏ´Â µ¿½Ã¿¡ ´õ ³ôÀº ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

SiC MOSFET Ĩ ¹× ¸ðµâÀÇ ¼¼°è º¸±ÞÀ» ÁÖµµÇÏ´Â ÃÖÁ¾ »ç¿ë »ê¾÷Àº?

SiC MOSFET Ĩ°ú ¸ðµâÀÇ Ã¤ÅÃÀº °íÈ¿À² Àü·Â º¯È¯°ú ÄÄÆÑÆ®ÇÑ ½Ã½ºÅÛ ¼³°è¸¦ ¿ä±¸ÇÏ´Â ´Ù¾çÇÑ »ê¾÷¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ ºÐ¾ß´Â °¡Àå Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ºÎ°¢µÇ°í ÀÖÀ¸¸ç, ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ºÎǰ °ø±Þ¾÷üµéÀº SiC ±â¹Ý ÀåÄ¡¸¦ Æ®·¢¼Ç ÀιöÅÍ, Â÷·®¿ë ÃæÀü±â, DC-DC ÄÁ¹öÅÍ¿¡ ÅëÇÕÇÏ¿© È¿À²À» ³ôÀÌ°í ¹èÅ͸® Ç׼ӰŸ®¸¦ ¿¬ÀåÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ºÐ¾ßÀ̸ç, ƯÈ÷ ž籤 ÀιöÅÍ ¹× dz·Â Åͺó ½Ã½ºÅÛ¿¡¼­ SiC MOSFETÀº ¿¡³ÊÁö ¼öÈ®À» °³¼±ÇÏ°í ±¸¼º ¿ä¼ÒÀÇ ¿­ ÀÀ·ÂÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­´Â °í¼º´É ¸ðÅÍ µå¶óÀÌºê ¹× ·Îº¿¿¡ SiC ¸ðµâÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ´õ ºü¸¥ ½ºÀ§Äª°ú ¿ì¼öÇÑ ¿­ °ü¸®·Î ÀÎÇØ ÀÀ´ä¼º°ú °¡µ¿ ½Ã°£ÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. öµµ ¹× Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß, ƯÈ÷ ¹èÀü ¹× ÃßÁø ½Ã½ºÅÛ¿¡¼­ SiC ÀåÄ¡ÀÇ °æ·® ¹× °í¿Â ¼º´ÉÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ¿Í Åë½Å ÀÎÇÁ¶ó´Â °í¹Ðµµ, °íÈ¿À², °í½Å·Ú¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â Àü¿øÀåÄ¡¿Í ¹èÅ͸® ¹é¾÷ ½Ã½ºÅÛ¿¡ SiC ÆÄ¿ö ¸ðµâÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±×¸®µå Çö´ëÈ­ ³ë·Â°ú ½º¸¶Æ® ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ SiC ±â¼úÀº ¾ç¹æÇâ ¿¡³ÊÁö È帧°ú È¿À²ÀûÀÎ Àü·Â ÄÁµð¼Å´×À» Áö¿øÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº »ê¾÷ÀÌ Àü±âÈ­µÇ°í µðÁöÅÐÈ­µÈ ½Ã½ºÅÛÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, SiC MOSFETÀº ´Ù¾çÇÑ °í¼ºÀå ºÐ¾ßÀÇ Çõ½ÅÀ» µÞ¹ÞħÇÏ´Â ±â¹Ý ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù.

SiC MOSFET »ê¾÷ÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â ½ÃÀå ¿ªÇÐ ¹× ¼¼°è µ¿ÇâÀº?

¼¼°è ½Ç¸®ÄÜ Ä«¹ÙÀ̵å MOSFET ½ÃÀåÀº Á¤Ã¥ Àüȯ, ±â¼ú ¹ßÀü, »ê¾÷ º¯È­ÀÇ ¼ö·ÅÀ¸·Î ÀÎÇØ °¡¼ÓÈ­µÈ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·® °¨ÃàÀ» À§ÇÑ ±ÔÁ¦ °­È­·Î ÀÎÇØ »ê¾÷°è´Â Àüµ¿È­¸¦ ÃßÁøÇϰí ÀÖÀ¸¸ç, SiC MOSFET°ú °°Àº °íÈ¿À² ÆÄ¿ö ¹ÝµµÃ¼¸¦ Àü·«Àû ¿ì¼±¼øÀ§·Î »ï°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷, ûÁ¤¿¡³ÊÁö µµÀÔ, ½º¸¶Æ®±×¸®µå °³¹ß¿¡ ´ëÇÑ Á¤ºÎÀÇ ¿ì´ëÁ¤Ã¥Àº Àü·ÂÀüÀÚ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶¾÷üµé°ø±Þ¸Á È®Àå ¹× ¼öÁ÷Àû ÅëÇÕÀº »ý»ê ´É·ÂÀÇ Çâ»ó°ú ºñ¿ë À庮À» ³·Ãß°í, ´õ Å« È®À强À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚµ¿Â÷ OEM, ¹ÝµµÃ¼ ±â¾÷, ¿¬±¸±â°ü°úÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ¿ëµµ¿¡ ƯȭµÈ SiC ¼Ö·ç¼ÇÀÇ °øµ¿ °³¹ßÀ» ÃËÁøÇϰí, ¼º´É ¹× ±ÔÁ¦ ¿ä°Ç¿¡ ºÎÇÕÇÏ´Â SiC ¼Ö·ç¼Ç °³¹ßÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÇ »ó½Â°ú ¿¡³ÊÁö ÀÚ¸³ÀÇ ¼¼°è ÃßÁøÀ¸·Î ÀÎÇØ, ¼º´ÉÀÇ ÀúÇÏ ¾øÀÌ ´õ Å« ¿¡³ÊÁö Àý°¨À» ½ÇÇöÇÏ´Â ±â¼ú °³¹ßÀÌ ½Ã±ÞÇÑ »óȲÀÔ´Ï´Ù. ÀÌ¿Í ÇÔ²², ¿ÍÀÌµå ¹êµå°¸ ¹ÝµµÃ¼·ÎÀÇ ÀüȯÀÌ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, SiC´Â °íÀü¾Ð ¹× °íÀü·Â ¿ëµµ¿¡¼­ ÁúÈ­°¥·ý(GaN)À» ´É°¡ÇÏ´Â ±â¼úÀû ¿ìÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù. °æÁ¦°¡ Äڷγª19 ÀÌÈÄ °æ±â µÐÈ­¿¡¼­ ¹þ¾î³ª¸é¼­ ±³Åë, ¿¡³ÊÁö, »ê¾÷ ÀÚµ¿È­¿¡ ´ëÇÑ ÀÎÇÁ¶ó ÅõÀÚ´Â SiC ½ÃÀå ¼ºÀåÀÇ °­·ÂÇÑ ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â SiC MOSFET Ĩ°ú ¸ðµâÀ» ÇÁ¸®¹Ì¾ö ¼Ö·ç¼Ç»Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ ÁöÇâÀûÀÎ ÆÄ¿öÀÏ·ºÆ®·Î´Ð½ºÀÇ ÁÖ·ù Ç¥ÁØÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(SiC MOSFET Ĩ£¦µð¹ÙÀ̽º, SiC MOSFET ¸ðµâ), ¿ëµµ(ÀÚµ¿Â÷ ¿ëµµ, »ê¾÷¿ëµµ, ž籤¹ßÀü ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Silicon Carbide (SiC) MOSFET Chips and Modules Market to Reach US$2.1 Billion by 2030

The global market for Silicon Carbide (SiC) MOSFET Chips and Modules estimated at US$698.6 Million in the year 2024, is expected to reach US$2.1 Billion by 2030, growing at a CAGR of 20.2% over the analysis period 2024-2030. SiC MOSFET Chip & Device, one of the segments analyzed in the report, is expected to record a 18.1% CAGR and reach US$1.2 Billion by the end of the analysis period. Growth in the SiC MOSFET Module segment is estimated at 23.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$183.6 Million While China is Forecast to Grow at 19.2% CAGR

The Silicon Carbide (SiC) MOSFET Chips and Modules market in the U.S. is estimated at US$183.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$324.8 Million by the year 2030 trailing a CAGR of 19.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.1% and 17.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.0% CAGR.

Global Silicon Carbide (SiC) MOSFET Chips and Modules Market - Key Trends & Drivers Summarized

Why Are SiC MOSFET Chips and Modules Emerging as the Next Frontier in Power Electronics?

Silicon carbide (SiC) MOSFET chips and modules are rapidly becoming the cornerstone of next-generation power electronics due to their ability to operate at higher voltages, temperatures, and frequencies than traditional silicon-based components. These devices are revolutionizing how energy is managed and converted across industries, offering significant efficiency gains and size reductions in applications that demand robust and reliable power solutions. Unlike conventional silicon MOSFETs, SiC MOSFETs exhibit superior characteristics such as lower on-resistance, faster switching speeds, and higher breakdown voltage, making them ideal for high-power, high-temperature environments. Their application spans across electric vehicles, renewable energy systems, industrial motor drives, aerospace, and power grids, where they help reduce energy loss, enhance performance, and extend system life. In electric mobility, SiC MOSFETs are instrumental in improving battery usage, increasing driving range, and supporting compact inverter designs. In solar and wind energy installations, these modules contribute to better power conversion efficiency and lower thermal losses. With the growing global focus on energy conservation and decarbonization, the demand for SiC-based solutions is rising sharply. Their unique material properties and ability to outperform legacy technologies are positioning SiC MOSFET chips and modules as essential components in the shift toward smarter, more efficient, and more sustainable energy systems.

How Are Technological Innovations Enhancing the Performance and Scalability of SiC MOSFETs?

Ongoing innovations in material processing, device architecture, and packaging technologies are playing a crucial role in improving the performance, reliability, and manufacturability of silicon carbide MOSFETs. Manufacturers are leveraging advanced crystal growth techniques to produce higher-purity SiC wafers, which reduce defects and improve device yields. New trench and planar gate structures are being implemented to further lower on-resistance and gate charge, enabling faster switching and reduced conduction losses. These enhancements not only increase energy efficiency but also reduce the need for bulky cooling systems and passive components, resulting in more compact and lightweight designs. In the area of packaging, innovations such as double-sided cooling, sintered joints, and low-inductance layouts are extending the thermal and mechanical performance of SiC modules. This is especially important for high-current applications like EV traction inverters or utility-scale energy storage. Integrated gate drivers and fault protection mechanisms are being added to ensure stable operation under harsh conditions and to simplify system design. Moreover, improvements in wafer size from 4-inch to 6-inch and potentially 8-inch are helping drive down production costs, making SiC solutions more accessible to mass-market applications. These technological strides are enabling SiC MOSFETs to deliver greater performance while meeting the growing demand for cost-effective, energy-efficient semiconductor devices.

Which End-Use Industries Are Driving the Global Adoption of SiC MOSFET Chips and Modules?

The adoption of SiC MOSFET chips and modules is being propelled by a broad spectrum of industries that demand high-efficiency power conversion and compact system design. The electric vehicle sector stands out as the most significant driver, with automakers and component suppliers integrating SiC-based devices into traction inverters, onboard chargers, and DC-DC converters to increase efficiency and extend battery range. Renewable energy is another key area, particularly in photovoltaic inverters and wind turbine systems, where SiC MOSFETs improve energy harvesting and reduce thermal stress on components. The industrial automation sector is increasingly adopting SiC modules for high-performance motor drives and robotics, where faster switching and better thermal management enhance responsiveness and uptime. Rail and aerospace applications benefit from the lightweight and high-temperature capabilities of SiC devices, especially in power distribution and propulsion systems. Data centers and telecommunications infrastructure are turning to SiC power modules for power supply units and battery backup systems that require high-density, efficient, and reliable performance. Additionally, grid modernization efforts and smart energy systems are using SiC technology to support bidirectional energy flow and efficient power conditioning. As more industries transition to electrified and digitalized systems, SiC MOSFETs are becoming a foundational technology that supports innovation across a range of high-growth sectors.

What Market Dynamics and Global Trends Are Accelerating SiC MOSFET Industry Growth?

The global silicon carbide MOSFET market is experiencing accelerated growth due to a convergence of policy shifts, technological progress, and industry transformation. Increasing regulations aimed at reducing carbon emissions are pushing industries toward electrification, making high-efficiency power semiconductors like SiC MOSFETs a strategic priority. Government incentives for electric vehicles, clean energy adoption, and smart grid development are driving investment into power electronics infrastructure, further supporting demand. Supply chain expansion and vertical integration by major semiconductor manufacturers are improving capacity and reducing cost barriers, enabling greater scalability. Strategic partnerships between automotive OEMs, semiconductor companies, and research institutions are facilitating co-development of application-specific SiC solutions, ensuring alignment with performance and regulatory requirements. The rising cost of energy and the global push for energy independence are creating urgency for technologies that can deliver greater energy savings without compromising performance. In parallel, the shift to wide bandgap semiconductors is gaining industry-wide momentum, with SiC gaining a technological edge over gallium nitride (GaN) in high-voltage, high-power applications. As economies emerge from post-pandemic slowdowns, infrastructure investments in transportation, energy, and industrial automation are providing a strong foundation for SiC market growth. These converging trends are establishing SiC MOSFET chips and modules not only as a premium solution but increasingly as a mainstream standard for future-proof power electronics.

SCOPE OF STUDY:

The report analyzes the Silicon Carbide (SiC) MOSFET Chips and Modules market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (SiC MOSFET Chip & Device, SiC MOSFET Module); Application (Car Application, Industrial Application, Photovoltaic Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â