Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÇコÄÉ¾î ºÎÁ¤ ºÐ¼® ½ÃÀåÀº 2023³â 23¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 24.7%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â 109¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇコÄÉ¾î ºÎÁ¤ ºÐ¼® ½ÃÀåÀº ºÎÁ¤ÇàÀ§¸¦ ŽÁö, ¿¹¹æ ¹× °¨¼Ò½Ã۱â À§ÇØ ÃÖ÷´Ü ±â¼ú°ú ºÐ¼®À» »ç¿ëÇÏ´Â ÀÇ·á ºñÁö´Ï½ºÀÇ ½ÅÈï ºÎ¹®À» ÀǹÌÇÕ´Ï´Ù. ÀÇ·á ȯ°æÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀüÀÚ ÀÇ·á ±â·Ï, û±¸ ½Ã½ºÅÛ, Ŭ·¹ÀÓ µî ¿©·¯ ¼Ò½º¿¡¼ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °·ÂÇÑ ºÎÁ¤ÇàÀ§ ŽÁö ÀýÂ÷°¡ Á¡Á¡ ´õ ÇÊ¿äÇØÁö°í ÀÖ½À´Ï´Ù.
OIG¿¡ µû¸£¸é, ¸ÞµðÄÉÀ̵åÀÇ µ¥ÀÌÅÍ´Â ºÒ¿ÏÀüÇÏ°í ºÎÁ¤È®ÇÑ °æ¿ì°¡ ¸¹¾Æ ºÎÁ¤ û±¸ ŽÁö °úÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í FWA·Î ÀÎÇØ ¼ö½Ê¾ï ´Þ·¯°¡ ³¶ºñµÇ°í ÀÖ´Ù°í ÇÕ´Ï´Ù.
ÀüÀÚÀǹ«±â·ÏÀÇ È®»ê
ÀÇ·á ½Ã½ºÅÛÀÌ µðÁöÅÐ Ç÷§ÆûÀ¸·Î ÀüȯÇÏ°í ¹æ´ëÇÑ ¾çÀÇ È¯ÀÚ µ¥ÀÌÅ͸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼ °¡´É¼º°ú µµÀü°úÁ¦°¡ µ¿½Ã¿¡ ¹ß»ýÇÕ´Ï´Ù. ÀüÀÚ ÀÇ·á ±â·Ï(EHR)ÀÇ »ç¿ëÀ¸·Î º¸´Ù ±¤¹üÀ§Çϰí Áß¾Ó ÁýÁßÈµÈ ÀÇ·á ±â·Ï µ¥ÀÌÅͺ£À̽º¸¦ ±¸ÃàÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, ÀÌ´Â ºÎÁ¤ÇàÀ§ÀÇ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. À̸¦ ¹æÁöÇϱâ À§ÇØ ÀÇ·á ±â°üÀº ÷´Ü ºÐ¼® µµ±¸¸¦ »ç¿ëÇÏ¿© ÀüÀÚ ÀÇ·á µ¥ÀÌÅ͸¦ ¸é¹ÐÈ÷ Á¶»çÇÏ°í ºÎÁ¤ÇàÀ§¸¦ ³ªÅ¸³¾ ¼ö ÀÖ´Â ºÎÁ¤ÇàÀ§¿Í µ¿ÇâÀ» Ž»öÇϰí ÀÖ½À´Ï´Ù.
ÅëÇÕÀÇ º¹À⼺
°í±Þ ºÎÁ¤ÇàÀ§ ºÐ¼® ½Ã½ºÅÛÀ» ±âÁ¸ ÀÇ·á ÀÎÇÁ¶ó¿¡ ÅëÇÕÇÏ´Â °ÍÀº º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ÀϹÝÀûÀÎ ±¸Çö ÀÛ¾÷ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ¼·Î ´Ù¸¥ Á¤º¸ Çü½Ä, ÀÇ·á ±â°ü °£ÀÇ Àϰü¼º ¾ø´Â Ç¥ÁØ, ±¸½Ä ½Ã½ºÅÛ°úÀÇ È£È¯¼º ¹®Á¦·Î ÀÎÇØ ´õ¿í Ä¿Áý´Ï´Ù. È¿À²ÀûÀÎ µ¥ÀÌÅÍ È帧°ú ½Ç½Ã°£ ºÐ¼®À» º¸ÀåÇØ¾ß Çϱ⠶§¹®¿¡ ´Ù¾çÇÑ IT ½Ã½ºÅÛÀ» º¸À¯ÇÑ ÀÇ·á ±â°üÀ» »ó´ëÇÒ ¶§ ¿øÈ°ÇÑ ÅëÇÕÀ» ´Þ¼ºÇÏ´Â °ÍÀº ½±Áö ¾Ê½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ¿öÅ©Ç÷ο쿡 Àͼ÷ÇÑ ÀÇ·áÁøµéÀÌ ¹Ý¹ßÇÏ¿© ¾÷¹«¿¡ ÁöÀåÀ» ÃÊ·¡ÇÒ ¼öµµ ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀü
ÀÇ·á ºÎ¹®ÀÇ ºÎÁ¤ÇàÀ§ ¹æÁö ´É·ÂÀº ºÐ¼® µµ±¸, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ÀΰøÁö´ÉÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î º¯ÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀº ¹æ´ëÇÑ ¾çÀÇ ÀÇ·á µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ¿© º¸´Ù º¹ÀâÇϰí È¿°úÀûÀÎ ºÎÁ¤ÇàÀ§ ŽÁö ±â¼úÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °í±Þ ºÐ¼®À» ÅëÇØ º¹ÀâÇÑ ÆÐÅÏ, ÀÌ»ó ¹× Àǽɽº·¯¿î ¼ö´ÜÀ» °¨ÁöÇÏ¿© ºÎÁ¤ÇàÀ§ °¨ÁöÀÇ Á¤È®¼º°ú ¼Óµµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÷´Ü ±â¼úÀ» µµÀÔÇÔÀ¸·Î½á ÀÇ·á ±â¾÷Àº ±ÝÀüÀû ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÏ°í ½Ã½ºÅÛÀÇ ¹«°á¼ºÀ» À¯ÁöÇÏ¸é¼ Á¡Á¡ ´õ ±³¹¦ÇØÁö´Â »ç±â Çà°¢¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎ Á¤º¸ º¸È£¿¡ °üÇÑ ¿ì·Á
º¸¾È Ä§ÇØ¿Í ÇÁ¶óÀ̹ö½Ã Ä§ÇØ¿¡ ´ëÇÑ ¿ì·Á´Â ¹æ´ëÇÑ ¾çÀÇ ¹Î°¨ÇÑ È¯ÀÚ µ¥ÀÌÅÍ °ü¸®·Î ÀÎÇØ ¹ß»ýÇÏ´Â °ÍÀ¸·Î, ÀÇ·á ±â¾÷µéÀÌ °í±Þ ºÐ¼®À» ÅëÇØ ºÎÁ¤ÇàÀ§¿¡ ´ëÀÀÇÏ´Â »ç·Ê°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á ±â¾÷µé¿¡°Ôµµ Å« °ü½É»ç·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ÀÇ·á »ê¾÷Àº ±ÔÁ¦°¡ ¾ö°ÝÇϱ⠶§¹®¿¡ ¹«´Ü Á¢±Ù, µ¥ÀÌÅÍ À¯Ãâ, »çÀ̹ö °ø°ÝÀÇ À§ÇèÀÌ Å®´Ï´Ù. º¹ÀâÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ´Â HIPAA(°Ç°º¸Çè »óÈ£¿î¿ë¼º ¹× Ã¥ÀÓ¿¡ °üÇÑ ¹ý·ü)¿Í °°Àº °³ÀÎÁ¤º¸ º¸È£ ±ÔÁ¤À» ¾ö°ÝÇÏ°Ô ÁؼöÇÏ´Â µ¿½Ã¿¡ ȯÀÚ µ¥ÀÌÅÍ¿¡¼ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ °øÁ¤ÇÏ°Ô ¼öÁýÇØ¾ß ÇÕ´Ï´Ù.
ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î ¹èºÐÇÏ°í ºÎÁ¤ÇàÀ§¸¦ ¹æÁöÇÏ´Â °ÍÀÌ Àü ¼¼°è ÀÇ·á ½Ã½ºÅÛ¿¡ ¿ä±¸µÊ¿¡ µû¶ó, ºÎÁ¤ÇàÀ§ ºÐ¼® ¼Ö·ç¼ÇÀÇ Á߿伺ÀÌ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇÑÆí, Àü¿°º´Àº ÀÇ·á ½Ã½ºÅÛ¿¡ È¥¶õÀ» ¾ß±âÇϰí, ÀÚ¿øÀ» ³¶ºñÇϰí, °³¼±Ã¥¿¡ ´ëÇÑ °ü½ÉÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ÀÇ·á ¼ºñ½ºÀÇ ºü¸¥ µµÀÔ°ú COVID-19 °ü·Ã °Å·¡ÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ »ç±â ŽÁö ½Ã½ºÅÛÀÌ ´õ¿í ¾î·Á¿öÁ³½À´Ï´Ù. ¶ÇÇÑ Àü¿°º´ÀÇ °æÁ¦Àû È¿°ú´Â ÇãÀ§ û±¸¸¦ ´õ¿í ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ºÐ¼® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ºÐ¼® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹Ãø ºÐ¼®Àº °í±Þ ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´× ¸ðµ¨À» »ç¿ëÇÏ¿© °ú°Å Á¤º¸¸¦ ºÐ¼®ÇÏ¿© Ãß¼¼¸¦ ÆÄ¾ÇÇÏ°í ¹Ì·¡ÀÇ ºÎÁ¤ÇàÀ§¸¦ ¿¹ÃøÇÕ´Ï´Ù. ÀÇ·á ¼ºñ½º Á¦°øÀÚ´Â »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀ» äÅÃÇÏ°í »õ·Î¿î ºÎÁ¤ÇàÀ§¸¦ ¹Ì¸® ÆÄ¾ÇÇÏ¿© ÀçÁ¤Àû ¼Õ½ÇÀ» ¹æÁöÇϰí ÀÇ·á ½Ã½ºÅÛÀÇ ¹«°á¼ºÀ» º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¹Ãø ºÐ¼®Àº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© Àǽɽº·¯¿î ÇൿÀ» ¹ß°ßÇÏ´Â Á¤È®µµ¸¦ ³ôÀÌ°í ¿ÀŽÀ» ÁÙÀÓÀ¸·Î½á ºÎÁ¤ÇàÀ§ ŽÁö È¿°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¾à±¹ û±¸ ¹®Á¦ ºÎ¹®
¾à±¹ û±¸ ¹®Á¦´Â °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµÇ´Â ºÐ¾ßÀÔ´Ï´Ù. °ú´Ù û±¸, ¾ð¹øµé¸µ, ºÎÁ¤ÇÑ Ã³¹æÀü û±¸ µî ¾à±¹ û±¸ ¹®Á¦´Â ÀÇ·á »ê¾÷¿¡¼ ÁÖ¿ä ºÎÁ¤ÇàÀ§·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÁ¤ÇàÀ§°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾à±¹ û±¸ µ¥ÀÌÅÍÀÇ ÀÌ»ó ¹× ºÒÀÏÄ¡¸¦ ½Äº°Çϱâ À§ÇØ ¼³°èµÈ Àü¹® ºÐ¼® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ¸ðµ¨¸µ ¹× ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú °°Àº ½Ç½Ã°£ ºÎÁ¤ÇàÀ§ ºÐ¼® µµ±¸´Â ¾à±¹ û±¸ °Å·¡¸¦ Á¶»çÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±Þ¼ÓÇÑ Çö´ëÈ¿Í µðÁöÅÐ Çõ½ÅÀ¸·Î ÀÎÇØ ¸¹Àº ±¹°¡µéÀÌ ÀüÀڰǰ±â·Ï(EHR) ¹× ±âŸ µðÁöÅÐ Çコ ±â¼úÀ» µµÀÔÇϰí ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÇ·á ÁöºÒÀÚ¿Í ÀÇ·á ¼ºñ½º Á¦°øÀÚ´Â ÀÇ·áºñ »ó½Â°ú ºÎÁ¤ÇàÀ§ °ü·Ã ó¹ú °È·Î ÀÎÇØ °í±Þ ºÐ¼® ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼´Â ÀÇ·á ½Ã½ºÅÛÀÇ Ã¥ÀÓ¼º°ú Åõ¸í¼ºÀ» ³ôÀ̱â À§ÇÑ ±ÔÁ¦ Á¶Ä¡°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº º¹ÀâÇÑ ÀÇ·á ÀÎÇÁ¶ó¿Í Á¤±³ÇÑ »óȯ ½Ã½ºÅÛÀ¸·Î ÀÎÇØ ¼öÀͼº ³ôÀº È®ÀåÀ» Áö¼ÓÇÒ ¼ö ÀÖ´Â À¯¸®ÇÑ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÎÁ¤ÇàÀ§·Î ÀÎÇÑ ±ÝÀüÀû ¼Õ½ÇÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±ÔÁ¦ ´ç±¹Àº ÀÇ·á »ê¾÷¿¡¼ »ç±â¸¦ ¹æÁöÇϱâ À§ÇØ ¹Ì±¹¿¡¼´Â False Claims Act(False Claims Act), Health Insurance Portability and Accountability Act(HIPAA) µî ±¤¹üÀ§ÇÑ ¹ý·üÀ» Á¦Á¤Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±ÔÁ¦ Á¶Ä¡·Î ÀÎÇØ Åõ¸í¼º, µ¥ÀÌÅÍ º¸È£ ¹× »ç±â ŽÁö ±â´ÉÀÌ ´õ¿í °ÈµÇ¸é¼ °í±Þ ºÐ¼® ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Healthcare Fraud Analytics Market is accounted for $2.3 billion in 2023 and is expected to reach $10.9 billion by 2030 growing at a CAGR of 24.7% during the forecast period. The term "Healthcare Fraud Analytics Market" describes the emerging segment of the healthcare business that uses cutting-edge technology and analytics to detect, prevent, and lessen fraudulent activity. Robust fraud detection procedures are becoming more and more necessary as the healthcare landscape grows more complicated and involves a growing amount of data generated from several sources, such as electronic health records, billing systems, and claims.
According to the OIG, Medicaid data is frequently incomplete and inaccurate, affecting the process of detecting fraudulent claims and resulting in the waste of billions of dollars due to FWA.
Increasing adoption of electronic health records
There are both potential and challenges when healthcare systems move to digital platforms and make enormous volumes of patient data available. The use of electronic health records (EHRs) makes it possible to create a more extensive and centralized database of medical records, which offers an opportunity for fraud. Additionally, in order to prevent this, healthcare institutions are using advanced analytics tools to closely examine electronic health data in order to search for irregularities and trends that may indicate fraud.
Complexity of integration
The integration of advanced fraud analytics systems into pre-existing healthcare infrastructures is a common implementation task that can be complex and time-consuming. The complexity is increased by different information formats, inconsistent standards among healthcare institutions, and compatibility problems with outdated systems. It is difficult to achieve seamless integration when dealing with institutions that have diverse IT systems, as it is necessary to ensure efficient data flow and real-time analysis. However, staff members used to traditional workflows may oppose healthcare providers and cause operational interruptions.
Advancements in technology
The healthcare sector's ability to prevent fraud has been transformed by the ongoing development of analytical tools, machine learning algorithms, and artificial intelligence. These technological advancements process enormous volumes of healthcare data in real time, enabling more complex and effective fraud detection techniques. Advanced analytics improve the accuracy and speed of fraud detection by detecting complex patterns, anomalies, and suspicious measures. Moreover, by incorporating cutting-edge technologies, healthcare companies may minimize financial losses and maintain the integrity of their systems while staying ahead of ever more sophisticated fraud schemes.
Data security and privacy concerns
Concerns regarding security breaches and privacy violations are raised by the management of enormous amounts of sensitive patient data, which is a concern for healthcare companies as they use advanced analytics to combat fraud in increasing numbers. Because the healthcare industry is heavily regulated, there is a significant risk of unauthorized access, data leaks, or cyberattacks. Achieving a complicated problem requires strict compliance with privacy rules such as HIPAA (Health Insurance Portability and Accountability Act) while also collecting important insights from patient data in an equitable manner.
Fraud analytics solutions are more important than ever because of the growing pressure on healthcare systems throughout the world to allocate resources efficiently and prevent fraud. On the other hand, the epidemic has also caused disruptions in the healthcare system, diverting resources and rapid attention to remedies. The quick adoption of new healthcare services and the surge in transactions associated with COVID-19 have made fraud detection systems more challenging. Furthermore, the pandemic's economic effects could promote further false claims.
The predictive analytics segment is expected to be the largest during the forecast period
Predictive analytics segment is expected to be the largest during the forecast period. Predictive analytics analyzes prior information, identifies trends, and projects future fraudulent activity using sophisticated algorithms and machine learning models. Healthcare businesses can prevent financial losses and safeguard the integrity of healthcare systems by adopting a proactive approach and staying ahead of emerging fraud schemes. Furthermore, predictive analytics improves the effectiveness of fraud detection by analyzing large datasets in real time and increasing the accuracy of spotting suspicious behavior while reducing false positives.
The pharmacy billing issue segment is expected to have the highest CAGR during the forecast period
Pharmacy billing issue segment is expected to have the highest CAGR. Pharmacy billing problems, like overbilling, unbundling, or charging for fraudulent prescriptions, have emerged as major avenues for fraud in the healthcare industry. The need for specialist analytics solutions designed to identify anomalies and discrepancies in pharmacy billing data has increased due to the rise in these fraudulent activities. Real-time fraud analytics tools such as predictive modeling and machine learning algorithms are being used to examine pharmacy billing transactions.
Due to the region's rapid modernization and digital transformation, many of its nations have adopted electronic health records (EHRs) and other digital health technologies, the Asia-Pacific area accounted for the largest percentage. Healthcare payers and providers in Asia Pacific are investing in advanced analytics solutions as a result of rising healthcare costs and growing penalties associated with fraud. In addition, there is an apparent rise in regulatory actions in the Asia-Pacific area that are intended to improve accountability and transparency in healthcare systems.
Because of the complex healthcare infrastructure and sophisticated reimbursement system, the North American region is better positioned to continue profitable expansion. Because of the growing financial damage that healthcare fraud causes, regulatory agencies have enacted extensive laws, such as the False Claims Act and the Health Insurance Portability and Accountability Act (HIPAA) in the United States, to prevent fraud in the healthcare industry. Moreover, the adoption of advanced analytics solutions is urged by these regulatory measures, which need more transparency, data protection, and fraud detection capabilities.
Some of the key players in Healthcare Fraud Analytics market include Conduent Inc, Cotiviti Inc, DXC Technology, EXL Service Holdings Inc, HCL Technologies Limited, IBM, Optum Inc., OSP Labs, SAS Institute Inc and Wipro Limited.
In November 2023, IBM launches new sustainability initiatives for global climate action. IBM's operations span a broad spectrum of technological fields, from AI and cloud computing to cybersecurity and data analytics.
In July 2023, HCLTech, the third largest IT services company in India, has acquired a 100 per cent equity stake in German automotive engineering services provider ASAP Group for €251 million ($279.72 million).