GAN(Generative Adversarial Networks) 시장(-2035년) : 기술 유형별, 배포 유형별, 데이터 모달리티 유형별, 용도 유형별, 최종사용자 유형별, 지역별, 업계 동향, 예측
Generative Adversarial Networks Market, Till 2035: Distribution by Type of Technology, Type of Deployment, Type of Data Modality, Type of Application, Type of End User, and Geographical Regions: Industry Trends and Global Forecast
상품코드 : 1921891
리서치사 : Roots Analysis
발행일 : On Demand Report
페이지 정보 : 영문 176 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,799 ₩ 6,991,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 6,999 ₩ 10,196,000
PDF (One-Location Site License) help
PDF 보고서를 동일 사업장의 특정 사업 부문에 속한 모든 분들이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 10,599 ₩ 15,441,000
PDF (Department License) help
PDF 보고서를 부서 단위로 12명까지 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 17,999 ₩ 26,222,000
PDF (Enterprise License) help
PDF 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


한글목차

GAN(Generative Adversarial Networks) 시장 개요

세계의 GAN(Generative Adversarial Networks) 시장 규모는 2035년까지 현재 156억 달러에서 1,860억 달러에 달할 것으로 추정되며, 2035년까지의 예측 기간에 CAGR로 28.13%의 성장이 전망됩니다.

Generative Adversarial Networks Market-IMG1

GAN(Generative Adversarial Networks) 시장 : 성장과 동향

AI의 채택이 확대되면서 GAN(Generative Adversarial Networks) 시장은 신경망과 딥러닝 모델에서 큰 진전을 이루며 빠르게 변화하고 있습니다. 적대적 생성 네트워크(GAN, Generative Generative Network)는 생성기와 식별기라는 두 개의 경쟁적인 신경망으로 구성된 딥러닝 프레임워크로, 현실 세계의 입력과 매우 유사한 합성 데이터를 생성하도록 설계되었습니다. 이 혁신적인 기술은 여러 부문에 걸쳐 다양한 응용이 가능하며, 디지털 마케팅은 가장 역동적인 성장 분야 중 하나로 부상하고 있습니다.

GAN 시장의 확대는 주로 광고의 창의성과 개인화 기능을 향상시키는 능력에 의해 촉진되고 있습니다. 특정 타겟을 위한 맞춤형, 사실적인 이미지, 동영상, 텍스트 기반 컨텐츠를 생성함으로써 기업은 더 높은 참여도와 효과적인 캠페인을 달성할 수 있습니다. 마케팅 외에도 GAN은 금융, E-Commerce, 보험 산업에서 부정행위 감지에도 중요한 역할을 하고 있으며, 현실적인 시나리오를 생성하여 이상 징후와 부정행위를 식별할 수 있도록 돕습니다. GAN은 사용자 생성 컨텐츠의 불일치를 감지하여 조직이 디지털 커뮤니케이션 전략에서 신뢰성과 진정성을 유지할 수 있도록 돕습니다.

결과적으로 GAN이 디지털 광고에 미치는 영향은 브랜드가 이러한 기술을 채택하고 타겟층에게 깊은 공감을 불러일으키는 대규모의 개인화된 캠페인을 전개할 수 있는 동기를 부여하고 있습니다. 종합적으로 볼 때, GAN(Generative Adversarial Networks) 시장은 예측 기간 중 상당한 성장을 보일 것으로 예측됩니다.

세계의 GAN(Generative Adversarial Networks) 시장에 대해 조사했으며, 시장 규모 추산과 기회의 분석, 경쟁 구도, 기업 개요 등의 정보를 제공하고 있습니다.

목차

섹션 1 리포트 개요

제1장 서문

제2장 조사 방법

제3장 시장 역학

제4장 거시경제 지표

섹션 2 정성적 인사이트

제5장 개요

제6장 서론

제7장 규제 시나리오

섹션 3 시장 개요

제8장 주요 기업의 종합적 데이터베이스

제9장 경쟁 구도

제10장 화이트 스페이스 분석

제11장 기업 경쟁력 분석

제12장 GAN(Generative Adversarial Networks) 시장의 스타트업 에코시스템

섹션 4 기업 개요

제13장 기업 개요

섹션 5 시장 동향

제14장 메가트렌드 분석

제15장 미충족 요구 분석

제16장 특허 분석

제17장 최근 발전

섹션 6 시장 기회 분석

제18장 세계의 GAN(Generative Adversarial Networks) 시장

제19장 시장 기회 : 기술 유형별

제20장 시장 기회 : 배포 유형별

제21장 시장 기회 : 데이터 모달리티 유형별

제22장 시장 기회 : 용도 유형별

제23장 시장 기회 : 최종사용자 유형별

제24장 북미의 GAN(Generative Adversarial Networks)의 시장 기회

제25장 유럽의 GAN(Generative Adversarial Networks)의 시장 기회

제26장 아시아의 GAN(Generative Adversarial Networks)의 시장 기회

제27장 중동·북아프리카(MENA) GAN(Generative Adversarial Networks)의 시장 기회

제28장 라틴아메리카의 GAN(Generative Adversarial Networks)의 시장 기회

제29장 인접 시장 분석

섹션 7 전략적 툴

제30장 주요 성공 전략

제31장 Porter's Five Forces 분석

제32장 SWOT 분석

제33장 밸류체인 분석

제34장 Roots의 전략적 제안

섹션 8 기타 독점적 인사이트

제35장 1차 조사로부터의 인사이트

제36장 리포트 결론

섹션 9 부록

KSA
영문 목차

영문목차

Generative Adversarial Networks Market Overview

As per Roots Analysis, the global generative adversarial networks market size is estimated to grow from USD 15.6 billion in the current year USD 186 billion by 2035, at a CAGR of 28.13% during the forecast period, till 2035.

Generative Adversarial Networks Market - IMG1

The opportunity for generative adversarial networks market has been distributed across the following segments:

Type of Technology

Type of Deployment

Type of Data Modality

Type of Application

Type of End-User

Geographical Regions

Generative Adversarial Networks Market: Growth and Trends

With the increasing adoption of artificial intelligence, the generative adversarial networks (GAN) market is undergoing rapid transformation, fueled by significant advancements in neural networks and deep learning models. A generative adversarial network is a deep learning framework composed of two competing neural networks, the generator and the discriminator, designed to create synthetic data that closely resembles real-world inputs. This innovative technology has unlocked diverse applications across multiple sectors, with digital marketing emerging as one of the most dynamic areas of growth.

The expansion of the GANs market is primarily driven by its ability to boost creativity and personalization in advertising. By producing lifelike images, videos, and text-based content customized for specific audiences, businesses can achieve higher engagement and more effective campaigns. Beyond marketing, GANs play a vital role in fraud detection across finance, e-commerce, and insurance sectors by generating realistic scenarios that help identify anomalies and fraudulent activities. By detecting inconsistencies in user-generated content, GANs assist organizations in maintaining authenticity and trust in their digital communication strategies.

As a result, the influence of GANs on digital advertising is motivating brands to adopt these technologies for delivering large-scale, personalized campaigns that deeply resonate with their target audiences. Overall, considering the above mentioned factors the generative adversarial networks market is expected to grow significantly during the forecast period.

Generative Adversarial Networks Market: Key Segments

Market Share by Type of Technology

Based on type of technology, the global generative adversarial networks market is segmented into conditional GANs, cycle GANs, and traditional GANs. According to our estimates, currently, the conditional GAN technology captures the majority of the market share. This can be attributed to the fact that it enables controlled generation by incorporating additional information, such as labels or supporting data, into the model, facilitating applications like image-to-image translation, semantic image synthesis, and text-to-image generation.

However, the cycle GAN technology is expected to grow at a higher CAGR during the forecast period. This increase is driven by the ongoing improvements in data generation methods. Its capacity to perform image translation without paired datasets has made it particularly useful in photo enhancement and artistic style transfer.

Market Share by Type of Deployment

Based on type of deployment, the global generative adversarial networks market is segmented into on-cloud, and on-premises. According to our estimates, currently, the cloud-based segment captures the majority of the market share. This can be attributed to the superior flexibility, scalability, and cost efficiency provided by cloud-based solutions. However, the on premises segment is expected to grow at a higher CAGR during the forecast period.

Market Share by Type of Data Modality

Based on type of data modality, the global generative adversarial networks market is segmented into audio-based GANs, image-based GANs, network security, and text-based GANs. According to our estimates, currently, the text-based GANs captures the majority of the market share. This growth is primarily attributed to their growing use in text generation, enabling the development of advanced chatbots, virtual assistants, and customer service systems.

Market Share by Type of Application

Based on type of application, the global generative adversarial networks market is segmented into 3D object generation, audio and speech generation, image generation, text generation, and video generation. According to our estimates, currently, the image generation applications capture the majority of the market share. This growth is primarily driven by the extensive adoption of GANs in media and entertainment, along with their expanding use in virtual reality for gaming and visual effects.

However, the video generation segment is expected to grow at a higher CAGR during the forecast period. This growth is primarily fueled by the rising demand for realistic and immersive video content across entertainment, marketing, and emerging technologies such as augmented and virtual reality.

Market Share by Type of End-User

Based on type of end-user, the global generative adversarial networks market is segmented into automotive, finance & banking, healthcare, media & entertainment, retail & e-commerce, and others. According to our estimates, currently, the media & entertainment segment captures the majority of the market share. This can be attributed to the fact that GAN technology is extensively applied to produce high-quality visual content, such as realistic images, animations, and videos, at reduced production time and cost. However, the healthcare segment is expected to grow at a higher CAGR during the forecast period.

Market Share by Geographical Regions

Based on geographical regions, the generative adversarial networks market is segmented into North America, Europe, Asia, Latin America, Middle East and North Africa, and the rest of the world. According to our estimates, currently North America captures the majority share of the market. However, the market in Asia is expected to grow at a higher CAGR during the forecast period. Governments in countries such as China, Japan, and South Korea are prioritizing AI research and development, fostering the emergence of AI-driven startups that are accelerating innovation in GAN-based applications.

Example Players in Generative Adversarial Networks Market

Generative Adversarial Networks Market: Research Coverage

The report on the generative adversarial networks market features insights on various sections, including:

Key Questions Answered in this Report

Reasons to Buy this Report

Additional Benefits

TABLE OF CONTENTS

SECTION I: REPORT OVERVIEW

1. PREFACE

2. RESEARCH METHODOLOGY

3. MARKET DYNAMICS

4. MACRO-ECONOMIC INDICATORS

SECTION II: QUALITATIVE INSIGHTS

5. EXECUTIVE SUMMARY

6. INTRODUCTION

7. REGULATORY SCENARIO

SECTION III: MARKET OVERVIEW

8. COMPREHENSIVE DATABASE OF LEADING PLAYERS

9. COMPETITIVE LANDSCAPE

10. WHITE SPACE ANALYSIS

11. COMPANY COMPETITIVENESS ANALYSIS

12. STARTUP ECOSYSTEM IN THE GENERATIVE ADVERSARIAL NETWORKS MARKET

SECTION IV: COMPANY PROFILES

13. COMPANY PROFILES

SECTION V: MARKET TRENDS

14. MEGA TRENDS ANALYSIS

15. UNMET NEED ANALYSIS

16. PATENT ANALYSIS

17. RECENT DEVELOPMENTS

SECTION VI: MARKET OPPORTUNITY ANALYSIS

18. GLOBAL GENERATIVE ADVERSARIAL NETWORKS MARKET

19. MARKET OPPORTUNITIES BASED ON TYPE OF TECHNOLOGY

20. MARKET OPPORTUNITIES BASED ON TYPE OF DEPLOYMENT

21. MARKET OPPORTUNITIES BASED ON TYPE OF DATA MODALITY

22. MARKET OPPORTUNITIES BASED ON TYPE OF APPLICAITON

23. MARKET OPPORTUNITIES BASED ON TYPE OF END USER

24. MARKET OPPORTUNITIES FOR GENERATIVE ADVERSARIAL NETWORKS IN NORTH AMERICA

25. MARKET OPPORTUNITIES FOR GENERATIVE ADVERSARIAL NETWORKS IN EUROPE

26. MARKET OPPORTUNITIES FOR GENERATIVE ADVERSARIAL NETWORKS IN ASIA

27. MARKET OPPORTUNITIES FOR GENERATIVE ADVERSARIAL NETWORKS IN MIDDLE EAST AND NORTH AFRICA (MENA)

28. MARKET OPPORTUNITIES FOR GENERATIVE ADVERSARIAL NETWORKS IN LATIN AMERICA

29. ADJACENT MARKET ANALYSIS

SECTION VII: STRATEGIC TOOLS

30. KEY WINNING STRATEGIES

31. PORTER'S FIVE FORCES ANALYSIS

32. SWOT ANALYSIS

33. VALUE CHAIN ANALYSIS

34. ROOTS STRATEGIC RECOMMENDATIONS

SECTION VIII: OTHER EXCLUSIVE INSIGHTS

35. INSIGHTS FROM PRIMARY RESEARCH

36. REPORT CONCLUSION

SECTION IX: APPENDIX

37. TABULATED DATA

38. LIST OF COMPANIES AND ORGANIZATIONS

39. CUSTOMIZATION OPPORTUNITIES

40. ROOTS SUBSCRIPTION SERVICES

41. AUTHOR DETAILS

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기