Àû´ëÀû »ý¼º ½Å°æ¸Á(GAN) ½ÃÀå : ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ - ±â¼úº°, À¯Çüº°, Àü°³º°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2025-2030³â)
Generative Adversarial Networks Market Size, Share & Trends Analysis Report By Technology (Conditional GANs, Cycle GANs), By Type, By Deployment, By Application, By Industry Vertical, By Region, And Segment Forecasts, 2025 - 2030
»óǰÄÚµå : 1679490
¸®¼­Ä¡»ç : Grand View Research, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 100 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,989,000
Unprintable PDF & Excel (Single User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» 1Àθ¸ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,950 £Ü 8,401,000
Printable PDF & Excel (5-User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ ºÎ¼­¿¡¼­ ÃÖ´ë 5¸í±îÁö »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 7,950 £Ü 11,225,000
Printable PDF & Excel (Enterprise License) help
º¸°í¼­ ±¸¸Å ±â¾÷ ¹× ±× ÀÚȸ»ç, °ü°è»ç°¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀ̸ç, PDF ¹× ¿¢¼¿ ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

½ÃÀå ±Ô¸ð ¹× µ¿Çâ

¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á(GAN) ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 55¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025-2030³â CAGR 37.7%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GANÀº ¹ßÀü±â¿Í µð½ºÅ©¸®¹Ì³×ÀÌÅͶó´Â µÎ °³ÀÇ ½Å°æ¸ÁÀ¸·Î ±¸¼ºµÇ¾î °íǰÁú À̹ÌÁö, µ¿¿µ»ó, ÅØ½ºÆ®, À½¼ºÀ» ¸¸µå´Â µ¥ »óÃæµÇ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ¹Ìµð¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÀÇ·á, ±ÝÀ¶, ¼Ò¸Å µîÀÇ »ê¾÷¿¡¼­ Å« ÁöÁö¸¦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº À̹ÌÁö °­Á¶, µöÆäÀÌÅ© °¨Áö, 3D °´Ã¼ »ý¼º, ÇÕ¼º µ¥ÀÌÅÍ »ý¼º, °³ÀÎÈ­µÈ ÄÁÅÙÃ÷ »ý¼º µî¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. AI ¹× ¸Ó½Å·¯´×ÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó GANÀº È¿À²¼º Çâ»ó, Å©¸®¿¡ÀÌÆ¼ºê ÇÁ·Î¼¼½º ÀÚµ¿È­, AI ¸ðµ¨ ±³À°¿ë ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀ» ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ »ê¾÷¿¡¼­´Â ±â¼ú ´ë±â¾÷, ¿¬±¸±â°ü, ½ÅÈï±â¾÷À¸·ÎºÎÅÍ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, Çõ½Å°ú µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÄÄÇ»ÆÃ ´É·Â°ú AI ¾Ë°í¸®ÁòÀÇ ¹ßÀüÀ¸·Î GANs »ê¾÷Àº ÇâÈÄ ¸î ³âµ¿¾È Å©°Ô È®´ëµÉ ż¼¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

ÀÌ »ê¾÷Àº ÁÖ·Î »ê¾÷ Àüü¿¡¼­ AI »ý¼º ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®Àº ºñµð¿À °ÔÀÓ °³¹ß, AI »ý¼º ¾ÆÆ®, µöÆäÀÌÅ© °¨Áö¸¦ À§ÇØ GAN¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ¶ÇÇÑ ÀÇ·á »ê¾÷¿¡¼­´Â ÀÇ·á¿ë ¿µ»óó¸®, â¾à, AI ¸ðµ¨ÀÇ ±³À°À» °­È­Çϱâ À§ÇÑ ÇÕ¼º µ¥ÀÌÅÍ ÀÛ¼º¿¡ GANÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý AI ¼­ºñ½ºÀÇ »ó½Â ¹× AI ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ È®´ë´Â ½ÃÀå È®´ë¸¦ ´õ¿í °­È­ÇÒ °ÍÀÔ´Ï´Ù. ±×·¯³ª µöÆäÀÌÅ© ±â¼ú¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á, ¿ÀÁ¤º¸¿¡ ´ëÇÑ ¾Ç¿ë °¡´É¼º, ±ÔÁ¦ ´ç±¹ÀÇ ¸ð´ÏÅ͸µ µîÀÇ °úÁ¦°¡ Å« Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °è»ê ºñ¿ëÀÌ ³ô°í ¾öû³­ ÇнÀ µ¥ÀÌÅÍ ¼¼Æ®°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Áß¼Ò±â¾÷¿¡ À־´Â »ç¿ëÇÏ±â ¾î·Æ½À´Ï´Ù. °Ô´Ù°¡ GANÀº Á¾Á¾ ÇнÀ Áß ¸ðµå ºØ±« ¹× ºÒ¾ÈÁ¤¼º°ú °°Àº °úÁ¦·Î °íÅë ¹Þ°í ±¸ÇöÀ» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡µµ ºÒ±¸Çϰí Áö¼ÓÀûÀÎ ¿¬±¸ ¹× AI °Å¹ö³Í½ºÀÇ ¹ßÀüÀÌ À§ÇèÀ» ¿ÏÈ­Çϸç GAN ±â¼úÀÇ Ãß°¡ äÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

Á¦¾îµÈ À̹ÌÁö ¹× ÅØ½ºÆ® »ý¼ºÀ» À§ÇÑ Á¶°ÇºÎ GAN(cGAN)ÀÇ »ç¿ë Áõ°¡ µî ¸î °¡Áö ÁÖ¿ä µ¿ÇâÀÌ GANs ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. GAN°ú °­È­ ÇнÀ ¹× º¯È¯±â¿Í °°Àº ´Ù¸¥ AI ±â¼ú°úÀÇ ÅëÇÕÀº ¸ðµ¨ÀÇ ¼º´É°ú »ç¿ë ÆíÀǼºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÆÐ¼Ç, °ÔÀÓ, ¿µÈ­ Á¦ÀÛ µîÀÇ Å©¸®¿¡ÀÌÆ¼ºê »ê¾÷¿¡¼­ÀÇ GANÀÇ ±Þ¼ÓÇÑ Ã¤¿ëÀº AI ¾î½Ã½ºÆ® µðÀÚÀΰú °¡»ó ¸ðµ¨¸µ¿¡ ´ëÇÑ »õ·Î¿î ¿ëµµ·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ÝÀ¶, »çÀ̹ö º¸¾È µîÀÇ »ê¾÷¿¡¼­´Â ºÎÁ¤ °ËÃâ, ÇÕ¼º µ¥ÀÌÅÍ ÀÛ¼º, AI ÁÖµµÀÇ ¸®½ºÅ© Æò°¡¿¡ GANÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. AIaaS(AI-as-a-Service) Ç÷§ÆûÀÇ ÃâÇöÀ¸·Î GAN ±â¼úÀº ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡ º¸´Ù ½±°Ô Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ À±¸®ÀûÀÎ AI °³¹ßÀÌ ¿ì¼±»çÇ×ÀÌ µÇ¾î GAN ¿ëµµ¸¦ ±ÔÁ¦ÇÏ°í ¾Ç¿ëÀ» ¹æÁöÇÏ´Â ´ëó°¡ Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù. GANÀÇ ¾ÈÁ¤¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â ¿¬±¸°¡ ÁøÇàµÊ¿¡ µû¶ó ÀÌ ±â¼úÀº AI ÁÖµµÀÇ Çõ½Å¿¡ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÉ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

GAN »ê¾÷¿¡¼­´Â ÁÖ¿ä AI ±â¾÷ ¹× ¿¬±¸±â°üÀÇ ÇÕº´, Àμö, Àü·«Àû Á¦ÈÞ°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±¸±Û, ¸ÞŸ, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ¿£ºñµð¾Æ µî ¼±µµÀûÀÎ ±â¼ú ±â¾÷µéÀº GAN °³¹ß¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇÏ°í ½ÅÈï ±â¾÷À» ÀμöÇÏ°í ´ëÇаú Çù·ÂÇÏ¿© ¿¬±¸¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù¿¡´Â GAN ±â¼úÀ» Àü¹®À¸·Î ÇÏ´Â AI ±â¾÷ÀÌ ÀμöµÇ¾î ÇÕ¼º ¹Ìµð¾î, AI¸¦ Ȱ¿ëÇÑ µðÀÚÀÎ, ºÎÁ¤ °ËÁö µîÀÇ ±â´ÉÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü´Â °í°´ ±â¹ÝÀ» È®´ëÇϱâ À§ÇØ GAN ¸ðµ¨À» ÀÚü AI ¼­ºñ½º¿¡ ÅëÇÕÇÕ´Ï´Ù. °Ô´Ù°¡ ¿ÀǼҽº Çù¾÷Àº °³¼±µÈ GAN ¾ÆÅ°ÅØÃ³¸¦ °³¹ßÇÏ¿© Àü ¼¼°èÀÇ ¿¬±¸ÀÚ¿Í °³¹ßÀÚµéÀÌ ÀÌ ±â¼úÀ» º¸´Ù ½±°Ô Ȱ¿ëÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. AI ½ÅÈï ±â¾÷°ú ±â¾÷ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº »ó¿ë ¿ëµµ ºÐ¾ß¿¡¼­ GAN äÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·Â°ü°è¿¡ ÀÇÇØ Çõ½ÅÀÌ ÃËÁøµÇ°í, ´Ù¾çÇÑ »ê¾÷¿¡¼­ GAN ±â¼úÀÇ ½Ç¿ëÀûÀÎ ÀÌ¿ë »ç·Ê°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

AI ¿¬±¸ÀÇ Áøº¸·Î ¸ðµ¨ÀÇ Á¤È®¼º, È¿À²¼º, È®À强ÀÌ °è¼Ó Çâ»óµÇ°í Àֱ⠶§¹®¿¡ GAN »ê¾÷ÀÇ ¹Ì·¡´Â Çì¾Æ¸± ¼ö ¾ø´Â °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á ¾øÀÌ AI ¸ðµ¨À» ÈÆ·ÃÇϱâ À§ÇÑ ÇÕ¼º µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Å« ¼ºÀå ±âȸ¸¦ °¡Á®¿É´Ï´Ù. ÀÇ·á¿¡¼­´Â GANÀÌ ÀÇ·á À̹ÌÁö, ÀǾàǰ ¹× °³ÀÎÈ­ Ä¡·á ¼Ö·ç¼Ç¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ½À´Ï´Ù. ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ºÎ¹®¿¡¼­´Â AI°¡ »ý¼ºÇÏ´Â »óǰ Ãßõ, °¡»ó ½ÃÂø ¹× °í°´ °æÇè °­È­¿¡ GANÀÌ È°¿ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±ÔÁ¦ ü°è°¡ ÁøÈ­ÇÔ¿¡ µû¶ó Ã¥ÀÓÀÖ´Â AI °³¹ßÀº À§ÇèÀ» ÃÖ¼ÒÈ­Çϸ鼭 GANÀÇ À±¸®Àû ÀÌ¿ëÀ» ÃßÁøÇÒ °ÍÀÔ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ Ã¢ÀǼº ÅøÀÇ È®´ë ¹× ¸ÞŸ¹ö½º ¿ëµµ·ÎÀÇ GANÀÇ ÅëÇÕÀº ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ºÐ»êÇü AI ¹× ¿¬ÇÕÇü ÇнÀÀÇ ´ëµÎ´Â µ¥ÀÌÅÍ º¸¾È°ú °øµ¿ AI °³¹ß¿¡¼­ GANÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ Çõ½ÅÀ¸·Î GANs ½ÃÀåÀº AI ÁÖµµ ÀÀ¿ë ºÐ¾ßÀÇ ¹Ì·¡¿¡ º¯ÇõÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý ¹× ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀåÀÇ º¯¼ö, µ¿Çâ ¹× ¹üÀ§

Á¦4Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : ±â¼úº° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦5Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : À¯Çüº° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦6Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : Àü°³º° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦7Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : ¿ëµµº° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦8Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : »ê¾÷º° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦9Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : Áö¿ªº° ÃßÁ¤ ¹× µ¿Ç⠺м®

Á¦10Àå °æÀï ±¸µµ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Market Size & Trends:

The global generative adversarial networks market size was valued at USD 5.52 billion in 2024 and is expected to grow at a CAGR of 37.7% from 2025 to 2030. GANs consist of two neural networks-the generator and the discriminator-working in opposition to create high-quality images, videos, text, and audio. These models have gained significant traction across industries, including media, entertainment, healthcare, finance, and retail. The technology is widely used for image enhancement, deepfake detection, 3D object creation, synthetic data generation, and personalized content creation. As AI and machine learning adoption increase, GANs are becoming an essential tool for businesses looking to improve efficiency, automate creative processes, and generate synthetic data for training AI models. The industry is witnessing substantial investment from technology giants, research institutions, and startups, further accelerating innovation and adoption. With advancements in computational power and AI algorithms, the GANs industry is poised for significant expansion over the coming years.

The industry is primarily driven by increasing demand for AI-generated content across industries. The media and entertainment sector heavily relies on GANs for video game development, AI-generated art, and deepfake detection. Additionally, the healthcare industry is leveraging GANs for medical imaging, drug discovery, and synthetic data creation to enhance AI model training. The rise of cloud-based AI services and growing investments in AI research further fuel market expansion. However, challenges such as ethical concerns related to deepfake technology, potential misuse for misinformation, and regulatory scrutiny pose significant obstacles. High computational costs and the requirement for extensive training datasets also limit accessibility for smaller enterprises. Moreover, GANs often struggle with issues like mode collapse and instability during training, making their implementation complex. Despite these challenges, continuous research and advancements in AI governance are expected to mitigate risks and drive further adoption of GAN technologies.

Several key trends are shaping the GANs market, including the increasing use of conditional GANs (cGANs) for controlled image and text generation. The integration of GANs with other AI technologies, such as reinforcement learning and transformers, is enhancing model performance and usability. The rapid adoption of GANs in creative industries, such as fashion, gaming, and film production, is leading to new applications in AI-assisted design and virtual modeling. Furthermore, industries such as finance and cybersecurity are utilizing GANs for fraud detection, synthetic data creation, and AI-driven risk assessment. The rise of AI-as-a-service (AIaaS) platforms is making GAN technology more accessible to businesses of all sizes. Additionally, ethical AI development is becoming a priority, with increased efforts to regulate GAN applications and prevent misuse. As research continues to improve GAN stability and efficiency, the technology is expected to become an integral part of AI-driven innovation.

The GANs industry has seen a surge in mergers, acquisitions, and strategic partnerships among leading AI companies and research institutions. Major technology firms such as Google, Meta, Microsoft, and NVIDIA are actively investing in GAN development, acquiring startups, and collaborating with universities to advance research. In recent years, AI firms specializing in GAN technology have been acquired to enhance capabilities in synthetic media, AI-powered design, and fraud detection. Cloud service providers are also integrating GAN models into their AI offerings to expand their customer base. Additionally, open-source collaborations have led to the development of improved GAN architectures, making the technology more accessible to researchers and developers worldwide. Strategic partnerships between AI startups and enterprise businesses are accelerating the adoption of GANs in commercial applications. These collaborations are fostering innovation and expanding the practical use cases of GAN technology across various industries.

The future of the GANs industry holds immense potential as advancements in AI research continue to improve model accuracy, efficiency, and scalability. The increasing demand for synthetic data to train AI models without privacy concerns presents a significant growth opportunity. In healthcare, GANs can revolutionize medical imaging, drug discovery, and personalized treatment solutions. The retail and e-commerce sectors are expected to leverage GANs for AI-generated product recommendations, virtual try-ons, and enhanced customer experiences. As regulatory frameworks evolve, responsible AI development will drive the ethical use of GANs while minimizing risks. The expansion of AI-powered creativity tools and the integration of GANs into metaverse applications will further fuel market growth. Additionally, the rise of decentralized AI and federated learning will create new opportunities for GANs in data security and collaborative AI development. With continuous innovation, the GANs market is set to play a transformative role in the future of AI-driven applications.

Global Generative Adversarial Networks (GANs) Market Report Segmentation

This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global GAN market report based on technology, type, deployment, application, industry vertical, and region

Table of Contents

Chapter 1. Methodology and Scope

Chapter 2. Executive Summary

Chapter 3. Generative Adversarial Networks (GANs) Market Variables, Trends, & Scope

Chapter 4. Generative Adversarial Networks (GANs) Market: Technology Estimates & Trend Analysis

Chapter 5. Generative Adversarial Networks (GANs) Market: Type Estimates & Trend Analysis

Chapter 6. Generative Adversarial Networks (GANs) Market: Deployment Estimates & Trend Analysis

Chapter 7. Generative Adversarial Networks (GANs) Market: Application Estimates & Trend Analysis

Chapter 8. Generative Adversarial Networks (GANs) Market: Industry Vertical Estimates & Trend Analysis

Chapter 9. Generative Adversarial Networks (GANs) Market: Regional Estimates & Trend Analysis

Chapter 10. Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â