¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : ±â¼úº°, ¿ëµµº°, Àü°³º°, À¯Çüº°, ¾÷°èº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global Generative Adversarial Networks Market Size, Share & Trends Analysis Report By Technology, By Application, By Deployment, By Type, By Industry Vertical, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1682870
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 376 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,085,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,102,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,542,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 36.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2031³â±îÁö 478¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrix¿¡ Á¦½ÃµÈ ºÐ¼®¿¡ µû¸£¸é, Google, Inc., Microsoft Corporation, Amazon Web Services, Inc.°¡ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. 2024³â 5¿ù Google LLC´Â ÄÁÅÙÃ÷¸¦ º¯°æÇÏÁö ¾Ê°í ÅØ½ºÆ®¸¦ AI »ý¼ºÀ¸·Î ű×ÇÏ´Â »õ·Î¿î ¹æ¹ýÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ±â´ÉÀº ÀÌÀü¿¡ AI »ý¼º À̹ÌÁö¿Í À½¼ºÀ» °¨ÁöÇϵµ·Ï ¼³°èµÈ Google DeepMindÀÇ SynthID µµ±¸¿¡ Ãß°¡µÇ¾úÀ¸¸ç, NVIDIA Corporation, IBM Corporation, OpenAI, LLC¿Í °°Àº ±â¾÷µéÀº Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡µé Áß ÀϺÎÀÔ´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

GANÀº °ÔÀÓ°ú VRÀ» ³Ñ¾î Áõ°­Çö½Ç(AR)°ú È¥ÇÕÇö½Ç(MR)·Î È®ÀåµÇ¾î ±³À°, ºÎµ¿»ê, ÇコÄÉ¾î ºÐ¾ßÀÇ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AR °ÔÀÓ¿¡¼­ GANÀº °¡»ó ¿ä¼Ò¸¦ Çö½Ç ¼¼°è¿Í ¸Å²ô·´°Ô À¶ÇÕÇÏ´Â »ç½ÇÀûÀÎ ¿À¹ö·¹À̸¦ »ý¼ºÇÒ ¼ö ÀÖ¾î »ç¿ëÀÚ ¸ôÀÔµµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀûÀÀÇü ¾Æ¹ÙŸ, °³ÀÎÈ­µÈ °ÔÀÓ ¿¡¼Â, »ç½ÇÀûÀΠȯ°æÀ» »ý¼ºÇÒ ¼ö ÀÖ´Â GANÀÇ ´É·ÂÀº ÀÎÅÍ·¢Æ¼ºê ¿£ÅÍÅ×ÀÎ¸ÕÆ®ÀÇ ÇѰ踦 ¶Ù¾î³Ñ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ GAN ±â¼úÀÌ °è¼Ó ¹ßÀüÇÏ¸é °ÔÀÓ°ú VR¿¡ ´õ ¸¹Àº Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í, Àü ¼¼°è »ç¿ëÀڵ鿡°Ô ´õ¿í dzºÎÇÏ°í ¸ôÀÔ°¨ ÀÖ´Â °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

GANÀº »ç¿ëÀÚÀÇ ÀÎÅÍ·¢¼Ç¿¡ µû¶ó ±¤°í Å©¸®¿¡ÀÌÆ¼ºê°¡ ½Ç½Ã°£À¸·Î Á¶Á¤µÇ´Â µ¿Àû ±¤°í °³ÀÎÈ­¸¦ °­È­ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, E-Commerce Ç÷§ÆûÀº GANÀ» »ç¿ëÇÏ¿© °¢ »ç¿ëÀÚÀÇ °Ë»ö ±â·Ï°ú ¼±È£µµ¿¡ µû¶ó °¢ »ç¿ëÀÚ¿¡°Ô Ç¥½ÃµÇ´Â Á¦Ç° Ãßõ, ¹è³Ê ¶Ç´Â ÇÁ·Î¸ð¼Ç À̹ÌÁö¸¦ µ¿ÀûÀ¸·Î º¯°æÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ °³ÀÎÈ­´Â »ç¿ëÀÚ Âü¿©µµ¸¦ Å©°Ô Çâ»ó½Ã۰í Àüȯ °¡´É¼ºÀ» ³ôÀ̸ç, »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ°í ºê·£µå¿Í ´õ °­ÇÑ Á¤¼­Àû À¯´ë°¨À» Çü¼ºÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. µû¶ó¼­ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó °³ÀÎÈ­ ¸¶ÄÉÆÃ¿¡¼­ GANÀÇ ¿ªÇÒÀº ´õ¿í È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

ÀÌ ¹®Á¦¿¡ ´ëÇÑ ÀáÀçÀûÀÎ ÇØ°áÃ¥À¸·Î È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÌ µîÀåÇÏ¿© ±â¾÷µéÀº ¸·´ëÇÑ Ãʱâ ÅõÀÚ ¾øÀ̵µ °­·ÂÇÑ Çϵå¿þ¾î¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¼­ºñ½º´Â ƯÈ÷ Àå±â°£ÀÇ ±³À° ¼¼¼ÇÀ̳ª ´ë±Ô¸ð ½ÇÇèÀÌ ÇÊ¿äÇÑ ÇÁ·ÎÁ§Æ®ÀÇ °æ¿ì ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ³ôÀº ÄÄÇ»ÆÃ ºñ¿ëÀº ¿©ÀüÈ÷ ½ÃÀå¿¡¼­ Áß¿äÇÑ µµÀü °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù.

±â¼ú Àü¸Á

±â¼úÀ» ±â¹ÝÀ¸·Î ½ÃÀåÀº Á¶°ÇºÎ GAN, ±âÁ¸ GAN, »çÀÌŬ GANÀ¸·Î ºÐ·ùµË´Ï´Ù. Á¶°ÇºÎ GAN ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 42%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Á¶°ÇºÎ GAN ºÎ¹®ÀÇ ¼ºÀåÀº ÁַΠƯÁ¤ ÀÔ·Â Á¶°Ç ¶Ç´Â ¶óº§¿¡ µû¶ó Á¦¾îµÈ ¸ñÇ¥ Ãâ·ÂÀ» »ý¼ºÇÏ´Â ±â´É¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ¸·Î ÀÎÇØ Á¶°ÇºÎ GANÀº ÇコÄɾî, ¼Ò¸Å, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî Á¤È®ÇÑ µ¥ÀÌÅÍ »ý¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ³ôÀº °¡Ä¡¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­´Â cGANÀÌ Æ¯Á¤ Áúº´¿¡ ´ëÇÑ ÇÕ¼º ÀÇ·á À̹ÌÁö¸¦ »ý¼ºÇÏ¿© Áø´Ü°ú ¿¬±¸¸¦ µ½½À´Ï´Ù. ÆÐ¼Ç ¹× E-Commerce ºÐ¾ß¿¡¼­´Â °³ÀÎÈ­µÈ Á¦Ç° Ãßõ°ú °¡»ó ½ÃÂøÀ» ÅëÇØ °í°´ Âü¿©¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ëµµ Àü¸Á

¿ëµµ¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº À̹ÌÁö »ý¼º, ÅØ½ºÆ® »ý¼º, ºñµð¿À »ý¼º, ¿Àµð¿À ¹× À½¼º »ý¼º, 3D °´Ã¼ »ý¼ºÀ¸·Î ³ª´¹´Ï´Ù. ºñµð¿À »ý¼º ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 21%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ºñµð¿À »ý¼º ºÎ¹®Àº °ÔÀÓ, ¿µÈ­ Á¦ÀÛ, °¡»óÇö½Ç(VR), Áõ°­Çö½Ç(AR) ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ÇÕ¼º ºñµð¿À ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, GANÀº »ç½ÇÀûÀÎ ºñµð¿À ½ÃÄö½º, Ư¼ö È¿°ú, µöÆäÀÌÅ© ÄÁÅÙÃ÷ Á¦ÀÛÀ» °¡´ÉÇÏ°Ô Çϰí, ¿µÈ­ Á¦ÀÛÀÚ, ¿µÈ­ Á¦ÀÛÀÚ, °ÔÀÓ °³¹ßÀÚ ¿µÈ­ Á¦ÀÛÀÚ, °ÔÀÓ °³¹ßÀÚ, ÄÁÅÙÃ÷ Á¦ÀÛÀÚ¿¡°Ô Çõ½ÅÀûÀÎ µµ±¸¸¦ Á¦°øÇÕ´Ï´Ù. °ÔÀÓ ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÐ¾ß¿¡¼­ ¸ôÀÔÇü °æÇèÀÇ ÀαⰡ ³ô¾ÆÁö°í, ºñµð¿À ÆíÁý ¹× È®Àå µµ±¸ÀÇ ¹ßÀü°ú ÇÔ²² ºñµð¿À »ý¼º¿¡ GANÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

Àü°³ Àü¸Á

Àü°³¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í ¿ÂÇÁ·¹¹Ì½º·Î ±¸ºÐµË´Ï´Ù. Ŭ¶ó¿ìµå ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 58%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. Ŭ¶ó¿ìµå Ç÷§ÆûÀ» ÅëÇØ ±â¾÷Àº ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ¼±Çà ÅõÀÚ ¾øÀ̵µ °í¼º´É ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â »ó´çÇÑ ÄÄÇ»ÆÃ ¼º´É°ú ½ºÅ丮Áö°¡ ÇÊ¿äÇÑ º¹ÀâÇÑ GAN ¸ðµ¨ ÈÆ·Ã¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý GAN ¼Ö·ç¼ÇÀº ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°í, ¿ø°Ý ¾×¼¼½º°¡ °¡´ÉÇϸç, Áö¸®ÀûÀ¸·Î ºÐ»êµÈ ÆÀ °£ÀÇ Çù¾÷ÀÌ °¡´ÉÇÏ´Ù´Â ÀåÁ¡ÀÌ ÀÖ¾î ¹Ìµð¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÇコÄɾî, ¼Ò¸Å¾÷°ú °°Àº »ê¾÷¿¡ ÀûÇÕÇϸç, AWS, Google Cloud, Microsoft Azure¿Í °°Àº Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü¿Í ÇÔ²² »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Microsoft Azure µî Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷üµéÀÇ ÀαⰡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, Àü¹®ÀûÀÎ ¸Ó½Å·¯´× ¹× AI ¼­ºñ½º¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó Ŭ¶ó¿ìµå ±â¹Ý GAN ¹èÆ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

À¯Çü Àü¸Á

À¯Çü¿¡ µû¶ó ½ÃÀåÀº À̹ÌÁö ±â¹Ý GAN, ºñµð¿À ±â¹Ý GAN, ÅØ½ºÆ® ±â¹Ý GAN, ¿Àµð¿À ±â¹Ý GANÀ¸·Î ºÐ·ùµË´Ï´Ù. ºñµð¿À ±â¹Ý GAN ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 27%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ÀÌ·¯ÇÑ GANÀº ¿µÈ­ Á¦ÀÛ, °ÔÀÓ, °¡»óÇö½Ç(VR), Áõ°­Çö½Ç(AR) ¾ÖÇø®ÄÉÀ̼ǿ¡ »ç¿ëµÇ¾î »ç½ÇÀûÀÎ ºñµð¿À ½ÃÄö½º, Ư¼ö È¿°ú, ¸ôÀÔÇü ȯ°æÀ» »ý¼ºÇÕ´Ï´Ù. ºñµð¿À ±â¹Ý GANÀº µöÆäÀÌÅ© Á¦ÀÛ, ÆíÁý ¹× ÄÁÅÙÃ÷ °­È­¿¡ ÇʼöÀûÀ̸ç, VR/AR °æÇèÀÇ Àαâ Áõ°¡¿Í ¿ªµ¿ÀûÀÎ ¼Ò¼È ¹Ìµð¾î ¹× ±¤°í ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀÌ ºÎ¹®ÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¾÷°è Àü¸Á

¾÷°èº°·Î ½ÃÀåÀº ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÇコÄɾî, ¼Ò¸Å ¹× E-Commerce, ±ÝÀ¶ ¹× ÀºÇà, ÀÚµ¿Â÷, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 21%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®Àº ÁÖ·Î µðÁöÅÐ ¹Ìµð¾î, °ÔÀÓ, ¿µÈ­¿¡¼­ ½Ã°¢ÀûÀ¸·Î ¸Å·ÂÀûÀÎ °íǰÁú ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÁÖµµµÇ°í ÀÖÀ¸¸ç, GANÀº ÃÊÇö½ÇÀûÀÎ ½Ã°¢ È¿°ú, ¾Ö´Ï¸ÞÀ̼Ç, ij¸¯ÅÍ Á¦ÀÛÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Á¦ÀÛ ºñ¿ë°ú ŸÀÓ¶óÀÎÀ» ÁÙÀ̸鼭 âÀǼºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¦ÀÛ ºñ¿ë°ú ½Ã°£À» ÁÙÀ̸鼭 âÀǼºÀ» ³ôÀÔ´Ï´Ù. µöÆäÀÌÅ© ±â¼ú, °¡»ó ÀÎÇ÷ç¾ð¼­, Áõ°­Çö½Ç(AR) ÄÁÅÙÃ÷ÀÇ ºÎ»óÀ¸·Î ÀÌ ºÐ¾ß¿¡¼­ GANÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ºÏ¹Ì ºÎ¹®Àº 2023³â ½ÃÀå¿¡¼­ 39%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¤±³ÇÑ ±â¼ú ÀÎÇÁ¶ó, °­·ÂÇÑ R&D ÅõÀÚ, ÀΰøÁö´ÉÀ» Àü¹®À¸·Î ÇÏ´Â ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷ ¹× ½ºÅ¸Æ®¾÷ÀÇ Á¸Àç´Â ºÏ¹Ì ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ÇコÄɾî, ±ÝÀ¶ µîÀÇ »ê¾÷¿¡¼­ GANÀÌ ³Î¸® äÅõǰí ÀÖ´Â °ÍÀÌ ½ÃÀå È®´ë¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ È°±âÂù ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®Àº ÄÁÅÙÃ÷ Á¦ÀÛ, ½Ã°¢ È¿°ú, °ÔÀÓ¿¡ GANÀ» Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÇコÄÉ¾î »ê¾÷Àº ÀÇ·á ¿µ»ó Áø´Ü¿¡ ÀÌ ±â¼úÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : ±â¼úº°

Á¦6Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : ¿ëµµº°

Á¦7Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : Àü°³º°

Á¦8Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : À¯Çüº°

Á¦9Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : ¾÷°èº°

Á¦10Àå ¼¼°èÀÇ Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå : Áö¿ªº°

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå Àû´ëÀû »ý¼º ½Å°æ¸Á ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Generative Adversarial Networks Market size is expected to reach $47.84 billion by 2031, rising at a market growth of 36.8% CAGR during the forecast period.

The text generation segment is being driven by the increasing demand for automated content creation and the increasing adoption of natural language processing (NLP) technologies. Businesses like marketing, customer service, and publishing use GANs to generate personalized content, automate customer interactions, and streamline content production. Thus, the text generation segment recorded 23% revenue share in the market in 2023. The rise of chatbots, virtual assistants, and AI-driven writing tools has further amplified the need for text generation solutions. Language translation, sentiment analysis, and code generation applications also contribute to the growing adoption of GANs in this segment.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In January, 2025, Microsoft Corporation unveiled the integration of advanced GAN models into its Azure AI platform, enhancing capabilities for synthetic data generation and AI-driven media creation. The new models allow businesses to generate high-quality, AI-powered images, videos, and text while maintaining accuracy and realism. Additionally, In December, 2024, Amazon Web Services, Inc. unveiled new tools to help businesses embrace generative AI, focusing on making it easy to build generative AI applications with security and privacy built in. These tools provide enterprises with scalable, cloud-based AI solutions, enabling them to generate synthetic data, enhance media content, and automate workflows efficiently.

Based on the Analysis presented in the KBV Cardinal matrix; Google, Inc., Microsoft Corporation and Amazon Web Services, Inc. are the forerunners in the Generative Adversarial Networks Market. In May, 2024, Google LLC unveiled a new technique to tag text as AI-generated without modifying its content. This functionality has been added to Google DeepMind's SynthID tool, previously designed to detect AI-generated images and audio. Companies such as NVIDIA Corporation, IBM Corporation and OpenAI, L.L.C. are some of the key innovators in Generative Adversarial Networks Market.

Market Growth Factors

Beyond gaming and VR, GANs also expand into Augmented Reality (AR) and Mixed Reality (MR), enhancing experiences in education, real estate, and healthcare. In AR gaming, for instance, GANs can generate realistic overlays that blend virtual elements seamlessly with the real world, improving user engagement. The ability of GANs to create adaptive avatars, personalized game assets, and lifelike environments is pushing the boundaries of interactive entertainment. Therefore, as GAN technology continues to advance, it is set to further revolutionize gaming and VR, offering richer, more immersive experiences to users across the globe.

GANs enhance dynamic ads personalization, where ad creatives are adjusted in real-time based on user interactions. For instance, an e-commerce platform can use GANs to dynamically alter product recommendations, banners, or promotional images shown to each user, depending on their browsing history and preferences. This level of personalization significantly increases user engagement and improves the chances of conversion. This enhances the user experience and fosters a stronger emotional connection with the brand. Thus, as technology advances, the role of GANs in personalized marketing is expected to expand even further.

Market Restraining Factors

Cloud-based solutions offering scalable computational resources have emerged as a potential remedy to this issue, allowing businesses to access powerful hardware without significant upfront investment. However, these services can become costly, particularly for projects requiring prolonged training sessions or extensive experimentation. As a result, the high computational costs remain a critical challenge for the market.

Technology Outlook

Based on technology, the market is classified into conditional GANs, traditional GANs, and cycle GANs. The conditional GANs segment garnered 42% revenue share in the market in 2023. The growth of the conditional GANs segment is primarily driven by their ability to generate controlled and targeted outputs based on specific input conditions or labels. This flexibility has made conditional GANs highly valuable across industries that require precise data generation, such as healthcare, retail, and entertainment. In healthcare, cGANs create synthetic medical images with specific pathologies, aiding diagnostics and research. In the fashion and e-commerce sectors, they enable personalized product recommendations and virtual try-ons, enhancing customer engagement.

Application Outlook

On the basis of application, the market is divided into image generation, text generation, video generation, audio & speech generation, and 3D object generation. The video generation segment witnessed 21% revenue share in the market in 2023. The video generation segment is experiencing strong growth due to the rising demand for synthetic video content in gaming, film production, virtual reality (VR), and augmented reality (AR) applications. GANs enable the creation of realistic video sequences, special effects, and deepfake content, offering innovative tools for filmmakers, game developers, and content creators. The increasing popularity of immersive experiences in gaming and entertainment, coupled with advancements in video editing and enhancement tools, is driving the adoption of GANs in video generation.

Deployment Outlook

By deployment, the market is bifurcated into cloud and on-premises. The cloud segment garnered 58% revenue share in the market in 2023. Cloud platforms allow businesses to access high-performance computing resources without significant upfront investments in infrastructure. This is particularly valuable for training complex GAN models requiring substantial computational power and storage. Additionally, cloud-based GAN solutions offer the advantage of easy integration, remote accessibility, and collaboration among geographically dispersed teams, making them ideal for industries such as media, entertainment, healthcare, and retail. The growing popularity of cloud service providers like AWS, Google Cloud, and Microsoft Azure, which offer specialized machine learning and AI services, further fuels the demand for cloud-based GAN deployments.

Type Outlook

Based on type, the market is segmented into image-based GANs, video-based GANs, text-based GANs, and audio-based GANs. The video-based GANs segment recorded 27% revenue share in the market in 2023. These GANs are used in film production, gaming, virtual reality (VR), and augmented reality (AR) applications to create lifelike video sequences, special effects, and immersive environments. Video-based GANs are crucial in deepfake creation, editing, and content enhancement. The growing popularity of VR/AR experiences and the demand for dynamic social media and advertising content have significantly contributed to the segment's growth.

Industry Vertical Outlook

On the basis of industry vertical, the market is segmented into media & entertainment, healthcare, retail & e-commerce, finance & banking, automotive, and others. The media & entertainment segment witnessed 21% revenue share in the market in 2023. The media and entertainment sector is predominantly driven by the growing demand for visually appealing, high-quality content in digital media, gaming, and films. GANs enable the creation of hyper-realistic visual effects, animations, and characters, reducing production costs and timelines while enhancing creativity. The rise of deepfake technology, virtual influencers, and augmented reality (AR) content has further boosted GAN adoption in this sector.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment acquired 39% revenue share in the market in 2023. The region's sophisticated technological infrastructure, strong R&D investments, and the presence of major tech giants and startups specializing in artificial intelligence are the primary factors driving market growth in North America. The widespread adoption of GANs across industries such as media & entertainment, healthcare, and finance has fueled market expansion. North America's vibrant entertainment sector leverages GANs for content creation, visual effects, and gaming, while the healthcare industry uses the technology for medical imaging and diagnostics.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Generative Adversarial Networks Market Report Segmentation

By Technology

By Application

By Deployment

By Type

By Industry Vertical

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Generative Adversarial Networks Market by Technology

Chapter 6. Global Generative Adversarial Networks Market by Application

Chapter 7. Global Generative Adversarial Networks Market by Deployment

Chapter 8. Global Generative Adversarial Networks Market by Type

Chapter 9. Global Generative Adversarial Networks Market by Industry Vertical

Chapter 10. Global Generative Adversarial Networks Market by Region

Chapter 11. Company Profiles

Chapter 12. Winning Imperatives of Generative Adversarial Networks Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â