AI 하드웨어 시장(-2035년) : AI 하드웨어, 전개, 제품 유형, 디바이스, 소비전력, 프로세스, 지역별 산업 동향과 세계 예측
AI Hardware Market Till 2035; Distribution by Type of AI Hardware, by Type of Deployment, by Type of Product, by Type of Device, by Type of Power Consumption, by Type of Process and Key Geographical Regions : Industry Trends and Global Forecasts
상품코드:1721382
리서치사:Roots Analysis
발행일:On Demand Report
페이지 정보:영문 179 Pages
라이선스 & 가격 (부가세 별도)
한글목차
세계 AI 하드웨어 시장 규모는 현재 314억 달러에서 예측 기간 동안 CAGR 31.23% 성장하여 2035년에는 6,244억 달러로 성장할 것으로 예측됩니다.
세계 다양한 이해관계자들의 투자와 관심 증가에 힘입어 AI 하드웨어 시장은 예측 기간 동안 건전한 속도로 성장할 것으로 예측됩니다.
AI 하드웨어 시장 기회: 부문별
AI 하드웨어별
임베디드 사운드 프로세서
임베디드 비전 프로세서
독립형 비전 프로세서
독립형 사운드 프로세서
전개별
클라우드
On-Premise
제품 유형별
메모리
DRAM
NVM
SRAM
프로세서
CPU
FPGA
GPU
TPU
네트워킹
스토리지
기기별
오토모티브
카메라
로봇
스마트폰
스마트 미러
스마트 스피커
웨어러블
소비전력별
1W 미만
1-3W
3-5W
5-10W
10W 이상
프로세스 유형별
추론
트레이닝
최종 사용자별
항공우주 및 방위 산업
자동차 및 교통
은행, 금융서비스 및 보험(BFSI)
CE 제품
전자상거래
교육
에너지 및 유틸리티
정부 및 공공 서비스
네비게이션
부동산
스마트홈
통신 및 IT
기타
기업 규모별
대기업
중소기업
비즈니스 모델별
B2B
B2C
B2B2C
지역별
북미
미국
캐나다
멕시코
기타 북미 국가
유럽
오스트리아
벨기에
덴마크
프랑스
독일
아일랜드
이탈리아
네덜란드
노르웨이
러시아
스페인
스웨덴
스위스
영국
기타 유럽 국가
아시아
중국
인도
일본
싱가포르
한국
기타 아시아 국가
라틴아메리카
브라질
칠레
콜롬비아
베네수엘라
기타 라틴아메리카 국가
중동 및 북아프리카
이집트
이란
이라크
이스라엘
쿠웨이트
사우디아라비아
아랍에미리트(UAE)
기타 중동 및 북아프리카 국가
세계 기타 지역
호주
뉴질랜드
기타 국가
AI 하드웨어 시장 : 성장과 동향
AI 워크로드가 점점 더 복잡해지고 대량의 데이터를 처리하게 되면서 고성능, 에너지 절약, 확장성을 갖춘 전용 하드웨어에 대한 수요가 급증하고 있으며, 이는 AI의 혁신과 발전을 촉진하고 있습니다. 이러한 수요 증가로 인해 전용 AI 하드웨어 개발에 대한 막대한 투자가 이루어지고 있으며, 이는 시장의 큰 성장으로 이어지고 있습니다.
세계적으로 산업이 발전함에 따라 AI 알고리즘을 보다 효과적으로 처리하고 관리하기 위한 고성능 연산 능력에 대한 요구가 증가하고 있으며, 이에 대응하여 AI 하드웨어 제조업체들은 신제품 개발을 위해 자원을 투입하고 있습니다. 엣지 AI의 보급, 산업 전반의 AI 모델 및 제품 활용, 반도체 산업의 기술 혁신과 트렌드 발전 등으로 AI 하드웨어 제조업체들이 혁신적인 제품을 시장에 출시할 수 있는 새로운 기회가 생겨나고 있습니다.
또한, 많은 기업들은 맞춤형 AI 칩셋과 에너지 절약형 AI 하드웨어의 개발이 주요 초점이 될 것으로 예측됩니다. 또한, 주요 기업들은 증가하는 수요에 대응하기 위해 스토리지 가속기 생산을 강화하기 위해 노력하고 있습니다. 진화하는 스토리지 솔루션의 요구에 부응하기 위해 인공지능은 비휘발성 메모리의 개발에도 기여하고 있습니다.
세계의 AI 하드웨어(AI Hardware) 시장을 조사했으며, 시장 개요와 배경, 시장 영향요인 분석, 시장 규모 추이 및 예측, 각종 부문별/지역별 상세 분석, 경쟁 구도, 주요 기업 개요 등의 정보를 전해드립니다.
목차
제1장 서문
제2장 조사 방법
제3장 경제적 및 기타 프로젝트 특유의 고려사항
제4장 거시경제 지표
제5장 주요 요약
제6장 서론
제7장 경쟁 구도
제8장 AI 하드웨어 시장 스타트업 에코시스템
제9장 기업 개요
본 장의 개요
Advanced Micro Devices
Amazon Web Services
Allied Vision Technologies
Alibaba
Baidu
Cadence Design Systems
Cerebras Design Systems
Cisco
CEVA
Fujitsu
Graphcore
Huawei
IBM
Intel
Micron
Microsoft
Mythic
NXP
NVIDIA
Oracle
Qualcomm Technologies
제10장 밸류체인 분석
제11장 SWOT 분석
제12장 세계의 AI 하드웨어 시장
제13장 AI 하드웨어별 시장 기회
제14장 전개 형태별 시장 기회
제15장 제품별 시장 기회
제16장 디바이스별 시장 기회
제17장 전력 소비별 시장 기회
제18장 프로세스별 시장 기회
제19장 최종사용자별 시장 기회
제20장 북미의 AI 하드웨어 시장 기회
제21장 유럽의 AI 하드웨어 시장 기회
제22장 아시아의 AI 하드웨어 시장 기회
제23장 중동 및 북아프리카의 AI 하드웨어 시장 기회
제24장 라틴아메리카의 AI 하드웨어 시장 기회
제25장 세계 기타 지역의 AI 하드웨어 시장 기회
제26장 표 형식 데이터
제27장 기업 및 단체 리스트
제28장 커스터마이즈 기회
제29장 ROOTS 구독 서비스
제30장 저자 상세
LSH
영문 목차
영문목차
GLOBAL AI HARDWARE MARKET: OVERVIEW
As per Roots Analysis, the global AI hardware market size is estimated to grow from USD 31.40 billion in the current year to USD 624.4 billion by 2035, at a CAGR of 31.23% during the forecast period, till 2035.
Driven by increasing investments and interest from various stakeholders worldwide, the AI hardware market is anticipated to grow at a healthy pace during the forecast period.
The opportunity for AI hardware market has been distributed across the following segments:
Type of AI Hardware
Embedded Sound Processor
Embedded Vision Processor
Stand-alone Vision Processor
Stand-alone Sound Processor
Type of Deployment
Cloud
On-premises
Type of Product
Memory
DRAM
NVM
SRAM
Processors
CPU
FPGA
GPU
TPU
Networking
Storage
Type of Device
Automotive
Cameras
Robots
Smartphones
Smart Mirror
Smart Speaker
Wearable
Type of Power Consumption
Less than 1W
1-3W
3-5W
5-10W
More than 10W
Type of Process
Inference
Training
Type of End-Users
Aerospace & Defense
Automotive & Transportation
BFSI
Consumer Electronics
E-Commerce
Education
Energy & Utilities
Government & Public Services
Navigation
Real Estate
Smart Home
Telecommunication & IT
Others
Company Size
Large Enterprises
Small and Medium Enterprises
Type of Business Model
B2B
B2C
B2B2C
Geographical Regions
North America
US
Canada
Mexico
Other North American countries
Europe
Austria
Belgium
Denmark
France
Germany
Ireland
Italy
Netherlands
Norway
Russia
Spain
Sweden
Switzerland
UK
Other European countries
Asia
China
India
Japan
Singapore
South Korea
Other Asian countries
Latin America
Brazil
Chile
Colombia
Venezuela
Other Latin American countries
Middle East and North Africa
Egypt
Iran
Iraq
Israel
Kuwait
Saudi Arabia
UAE
Other MENA countries
Rest of the World
Australia
New Zealand
Other countries
AI HARDWARE MARKET: GROWTH AND TRENDS
AI hardware refers to equipment specifically engineered and developed for use in artificial intelligence technologies. It encompasses a range of devices and systems optimized to enhance the performance of AI algorithms, deep learning models, and other computational tasks integral to AI applications. As AI workloads become increasingly intricate and data-heavy, the demand for specialized hardware solutions that can provide high performance, energy efficiency, and scalability to foster AI innovation and development has significantly increased. This surge in need has resulted in substantial investments aimed at creating dedicated AI hardware, consequently leading to tremendous market growth.
In the context of global industrial advancement, there is a considerable demand for enhanced processing and computational capabilities to more effectively manage AI algorithms, which in turn encourages manufacturers of AI hardware to channel resources into the development of new products. The growing prevalence of edge AI, as well as AI models and products across various sectors, alongside trends and technological advancements in the semiconductor industry, is opening up new avenues for AI hardware manufacturers to launch innovative offerings. Additionally, the creation of custom AI chipsets and energy-efficient AI hardware is projected to be the primary focus for many companies in the AI hardware space. Moreover, leading market players are also working to boost production of storage accelerators in response to rising demand. To meet the evolving requirements for storage solutions, artificial intelligence is contributing to the development of non-volatile memory.
AI HARDWARE MARKET: KEY SEGMENTS
Market Share by Type of AI Hardware
Based on the type of AI hardware, the global AI hardware market is segmented into embedded sound processors, embedded vision processors, stand-alone vision processors, and stand-alone sound processors. According to our estimates, currently, stand-alone vision processors segment captures the majority share of the market. This can be attributed to the rising adoption of edge AI, increased demand for computer vision applications, and advancements in technology. However, embedded sound processors segment is anticipated to grow at a higher CAGR during the forecast period.
Market Share by Type of Deployment
Based on the type of deployment, the AI hardware market is segmented into cloud, and on-premises. According to our estimates, currently, cloud segment captures the majority share of the market. This can be attributed to the accessibility, flexibility, scalability, and cost-effectiveness that cloud-based AI solutions provide. Additionally, the growing emphasis on accessibility and efficiency by numerous businesses is driving the expansion of this segment. Cloud-based deployment enables organizations of all sizes to utilize advanced AI tools and technologies without the requirement of significant initial investments in hardware and infrastructure.
Market Share by Type of Product
Based on the type of product, the AI hardware market is segmented into memory (DRAM, NVM, SRAM), processors (CPU, FPGA, GPU, TPU), networking and storage. According to our estimates, currently, processors segment captures the majority share of the market. This can be attributed to their high computing speed, which is particularly beneficial for applications in machine learning, including deep learning and machine learning itself. They are also commonly utilized in supervised reinforcement learning. Further, a significant factor driving growth in the processor market is the rising global demand for machine learning devices. This has led major market players to invest in order to deliver innovative and high-speed computing processors.
Market Share by Type of Device
Based on the type of device, the AI hardware market is segmented into automotive, cameras, robots, smartphones, smart mirror, smart speaker and wearable technologies. According to our estimates, currently, automotive segment captures the majority share of the market. This can be attributed to the rise of advanced driver-assistance systems that heavily depend on AI hardware for features related to safety and efficiency, such as collision avoidance and cruise control. However, smart speaker segment is anticipated to grow at a higher CAGR during the forecast period.
Market Share by Type of Power Consumption
Based on the type of application, the AI hardware market is segmented into less than 1W, 1-3W, 3-5W, 5-10W, and more than 10W. According to our estimates, currently, 1-3W power consumption segment captures the majority share of the market. This can be attributed to the prevalent use of AI hardware in consumer electronics, where power consumption in the 1-3W range is common. Additionally, devices that operate within this range can provide adequate performance while also being energy-efficient, making them ideal for power-saving applications. However, less than 1W segment is anticipated to grow at a higher CAGR during the forecast period.
Market Share by Type of Process
Based on the type of process, the AI hardware market is segmented into inference and training. According to our estimates, currently, inference segment captures the majority share of the market. This can be attributed to its essential function in real-time applications that demand quick decision-making, such as autonomous vehicles and smart cameras. The broad adoption of this segment across various industries is another factor contributing to its growth. However, training segment is anticipated to grow at a higher CAGR during the forecast period.
Market Share by Type of End Users
Based on the type of end-users, the AI hardware market is segmented into aerospace & defense, automotive & transportation, BFSI, consumer electronics, e-commerce, education, energy & utilities, government & public services, navigation, real estate, smart home, telecommunication & IT and others. According to our estimates, currently, telecommunication & IT segment captures the majority share of the market. This can be attributed to the application of AI in making efficient decisions within the telecom sector, where significant volumes of big data are processed. The implementation of AI in this field is particularly beneficial for addressing the intricate challenges faced by the telecommunications industry.
Market Share by Type of Enterprise
Based on the type of enterprise, the AI hardware market is segmented into large and small and medium enterprise. According to our estimates, currently, large enterprise segment captures the majority share of the market. However, small and medium enterprise segment is anticipated to grow at a higher CAGR during the forecast period. This growth can be attributed to their agility, innovative capabilities, targeted focus on niche markets, and their ability to respond to shifting customer preferences and changes in market conditions.
Market Share by Geographical Regions
Based on the geographical regions, the AI hardware market is segmented into North America, Europe, Asia, Latin America, Middle East and North Africa, and Rest of the World. According to our estimates, currently, North America captures the majority share of the market. This can be attributed to the growing number of startups dedicated to creating AI hardware, which in turn creates new opportunities for AI hardware firms in this area. However, market share in Asia is anticipated to grow at a higher CAGR during the forecast period.
Example Players in AI Hardware Market
Advanced Micro Devices
Amazon Web Services
Allied Vision Technologies
Alibaba
Baidu
Cadence Design Systems
Cerebras Systems
Cisco
CEVA
Fujitsu
Graphcore
Huawei
IBM
Intel
Micron
Microsoft
Mythic
NXP
NVIDIA
Oracle
Qualcomm Technologies
Samsung
Synopsys
Xilinx
AI HARDWARE MARKET: RESEARCH COVERAGE
The report on the AI hardware market features insights on various sections, including:
Market Sizing and Opportunity Analysis: An in-depth analysis of the AI hardware market, focusing on key market segments, including [A] type of AI hardware, [B] type of deployment, [C] type of product, [D] type of device, [E] type of power consumption, [F] type of process, [G] type of end-users, [H] company size, [I] type of business model and [J] geographical regions.
Competitive Landscape: A comprehensive analysis of the companies engaged in the AI hardware market, based on several relevant parameters, such as [A] year of establishment, [B] company size, [C] location of headquarters, [D] ownership structure.
Company Profiles: Elaborate profiles of prominent players engaged in the AI hardware market, providing details on [A] location of headquarters, [B]company size, [C] company mission, [D] company footprint, [E] management team, [F] contact details, [G] financial information, [H] operating business segments, [I] AI hardware portfolio, [J] moat analysis, [K] recent developments, and an informed future outlook.
SWOT Analysis: An insightful SWOT framework, highlighting the strengths, weaknesses, opportunities and threats in the domain. Additionally, it provides Harvey ball analysis, highlighting the relative impact of each SWOT parameter.
KEY QUESTIONS ANSWERED IN THIS REPORT
How many companies are currently engaged in this market?
What challenges does the AI hardware market face?
What are the emerging trends in the AI hardware market?
What factors are likely to influence the evolution of this market?
What are the future focus areas in AI hardware development?
What is the current and future market size?
What is the CAGR of this market?
How is the current and future market opportunity likely to be distributed across key market segments?
REASONS TO BUY THIS REPORT
The report provides a comprehensive market analysis, offering detailed revenue projections of the overall market and its specific sub-segments. This information is valuable to both established market leaders and emerging entrants.
Stakeholders can leverage the report to gain a deeper understanding of the competitive dynamics within the market. By analyzing the competitive landscape, businesses can make informed decisions to optimize their market positioning and develop effective go-to-market strategies.
The report offers stakeholders a comprehensive overview of the market, including key drivers, barriers, opportunities, and challenges. This information empowers stakeholders to stay abreast of market trends and make data-driven decisions to capitalize on growth prospects.
ADDITIONAL BENEFITS
Complimentary Excel Data Packs for all Analytical Modules in the Report
10% Free Content Customization
Detailed Report Walkthrough Session with Research Team
Free Updated report if the report is 6-12 months old or older
TABLE OF CONTENTS
1. PREFACE
1.1. Introduction
1.2. Market Share Insights
1.3. Key Market Insights
1.4. Report Coverage
1.5. Key Questions Answered
1.6. Chapter Outlines
2. RESEARCH METHODOLOGY
2.1. Chapter Overview
2.2. Research Assumptions
2.3. Database Building
2.3.1. Data Collection
2.3.2. Data Validation
2.3.3. Data Analysis
2.4. Project Methodology
2.4.1. Secondary Research
2.4.1.1. Annual Reports
2.4.1.2. Academic Research Papers
2.4.1.3. Company Websites
2.4.1.4. Investor Presentations
2.4.1.5. Regulatory Filings
2.4.1.6. White Papers
2.4.1.7. Industry Publications
2.4.1.8. Conferences and Seminars
2.4.1.9. Government Portals
2.4.1.10. Media and Press Releases
2.4.1.11. Newsletters
2.4.1.12. Industry Databases
2.4.1.13. Roots Proprietary Databases
2.4.1.14. Paid Databases and Sources
2.4.1.15. Social Media Portals
2.4.1.16. Other Secondary Sources
2.4.2. Primary Research
2.4.2.1. Introduction
2.4.2.2. Types
2.4.2.2.1. Qualitative
2.4.2.2.2. Quantitative
2.4.2.3. Advantages
2.4.2.4. Techniques
2.4.2.4.1. Interviews
2.4.2.4.2. Surveys
2.4.2.4.3. Focus Groups
2.4.2.4.4. Observational Research
2.4.2.4.5. Social Media Interactions
2.4.2.5. Stakeholders
2.4.2.5.1. Company Executives (CXOs)
2.4.2.5.2. Board of Directors
2.4.2.5.3. Company Presidents and Vice Presidents
2.4.2.5.4. Key Opinion Leaders
2.4.2.5.5. Research and Development Heads
2.4.2.5.6. Technical Experts
2.4.2.5.7. Subject Matter Experts
2.4.2.5.8. Scientists
2.4.2.5.9. Doctors and Other Healthcare Providers
2.4.2.6. Ethics and Integrity
2.4.2.6.1. Research Ethics
2.4.2.6.2. Data Integrity
2.4.3. Analytical Tools and Databases
3. ECONOMIC AND OTHER PROJECT SPECIFIC CONSIDERATIONS
3.1. Forecast Methodology
3.1.1. Top-Down Approach
3.1.2. Bottom-Up Approach
3.1.3. Hybrid Approach
3.2. Market Assessment Framework
3.2.1. Total Addressable Market (TAM)
3.2.2. Serviceable Addressable Market (SAM)
3.2.3. Serviceable Obtainable Market (SOM)
3.2.4. Currently Acquired Market (CAM)
3.3. Forecasting Tools and Techniques
3.3.1. Qualitative Forecasting
3.3.2. Correlation
3.3.3. Regression
3.3.4. Time Series Analysis
3.3.5. Extrapolation
3.3.6. Convergence
3.3.7. Forecast Error Analysis
3.3.8. Data Visualization
3.3.9. Scenario Planning
3.3.10. Sensitivity Analysis
3.4. Key Considerations
3.4.1. Demographics
3.4.2. Market Access
3.4.3. Reimbursement Scenarios
3.4.4. Industry Consolidation
3.5. Robust Quality Control
3.6. Key Market Segmentations
3.7. Limitations
4. MACRO-ECONOMIC INDICATORS
4.1. Chapter Overview
4.2. Market Dynamics
4.2.1. Time Period
4.2.1.1. Historical Trends
4.2.1.2. Current and Forecasted Estimates
4.2.2. Currency Coverage
4.2.2.1. Overview of Major Currencies Affecting the Market
4.2.2.2. Impact of Currency Fluctuations on the Industry
4.2.3. Foreign Exchange Impact
4.2.3.1. Evaluation of Foreign Exchange Rates and Their Impact on Market
4.2.3.2. Strategies for Mitigating Foreign Exchange Risk
4.2.4. Recession
4.2.4.1. Historical Analysis of Past Recessions and Lessons Learnt
4.2.4.2. Assessment of Current Economic Conditions and Potential Impact on the Market
4.2.5. Inflation
4.2.5.1. Measurement and Analysis of Inflationary Pressures in the Economy
4.2.5.2. Potential Impact of Inflation on the Market Evolution
4.2.6. Interest Rates
4.2.6.1. Overview of Interest Rates and Their Impact on the Market
4.2.6.2. Strategies for Managing Interest Rate Risk
4.2.7. Commodity Flow Analysis
4.2.7.1. Type of Commodity
4.2.7.2. Origins and Destinations
4.2.7.3. Values and Weights
4.2.7.4. Modes of Transportation
4.2.8. Global Trade Dynamics
4.2.8.1. Import Scenario
4.2.8.2. Export Scenario
4.2.9. War Impact Analysis
4.2.9.1. Russian-Ukraine War
4.2.9.2. Israel-Hamas War
4.2.10. COVID Impact / Related Factors
4.2.10.1. Global Economic Impact
4.2.10.2. Industry-specific Impact
4.2.10.3. Government Response and Stimulus Measures
4.2.10.4. Future Outlook and Adaptation Strategies
4.2.11. Other Indicators
4.2.11.1. Fiscal Policy
4.2.11.2. Consumer Spending
4.2.11.3. Gross Domestic Product (GDP)
4.2.11.4. Employment
4.2.11.5. Taxes
4.2.11.6. R&D Innovation
4.2.11.7. Stock Market Performance
4.2.11.8. Supply Chain
4.2.11.9. Cross-Border Dynamics
5. EXECUTIVE SUMMARY
6. INTRODUCTION
6.1. Chapter Overview
6.2. Overview of AI Hardware Market
6.2.1. Type of AI Hardware
6.2.2. Type of Deployment
6.2.3. Type of Product
6.2.4. Type of Device
6.2.5. Types of Power Consumption
6.2.6. Type of Processes
6.2.7. Type of End Users
6.3. Future Perspective
7. COMPETITIVE LANDSCAPE
7.1. Chapter Overview
7.2. AI Hardware: Overall Market Landscape
7.2.1. Analysis by Year of Establishment
7.2.2. Analysis by Company Size
7.2.3. Analysis by Location of Headquarters
7.2.4. Analysis by Ownership Structure
8. STARTUP ECOSYSTEM IN THE AI HARDWARE MARKET
8.1. AI Hardware Market: Market Landscape of Startups
8.1.1. Analysis by Year of Establishment
8.1.2. Analysis by Company Size
8.1.3. Analysis by Company Size and Year of Establishment
8.1.4. Analysis by Location of Headquarters
8.1.5. Analysis by Company Size and Location of Headquarters
8.1.6. Analysis by Ownership Structure
8.2. Key Findings
9. COMPANY PROFILES
9.1. Chapter Overview
9.2. Advanced Micro Devices*
9.2.1. Company Overview
9.2.2. Company Mission
9.2.3. Company Footprint
9.2.4. Management Team
9.2.5. Contact Details
9.2.6. Financial Performance
9.2.7. Operating Business Segments
9.2.8. Service / Product Portfolio (project specific)
9.2.9. MOAT Analysis
9.2.10. Recent Developments and Future Outlook
9.3. Amazon Web Services
9.4. Allied Vision Technologies
9.5. Alibaba
9.6. Baidu
9.7. Cadence Design Systems
9.8. Cerebras Design Systems
9.9. Cisco
9.10. CEVA
9.11. Fujitsu
9.12. Graphcore
9.13. Huawei
9.14. IBM
9.15. Intel
9.16. Micron
9.17. Microsoft
9.18. Mythic
9.19. NXP
9.20. NVIDIA
9.21. Oracle
9.22. Qualcomm Technologies
10. VALUE CHAIN ANALYSIS
11. SWOT ANALYSIS
12. GLOBAL AI HARDWARE MARKET
12.1. Chapter Overview
12.2. Key Assumptions and Methodology
12.3. Trends Disruption Impacting Market
12.4. Global AI Hardware Market, Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
12.5. Multivariate Scenario Analysis
12.5.1. Conservative Scenario
12.5.2. Optimistic Scenario
12.6. Key Market Segmentations
13. MARKET OPPORTUNITIES BASED ON TYPE OF AI HARDWARE
13.1. Chapter Overview
13.2. Key Assumptions and Methodology
13.3. Revenue Shift Analysis
13.4. Market Movement Analysis
13.5. Penetration-Growth (P-G) Matrix
13.6. AI Hardware Market for Embedded Sound Processor: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
13.7. AI Hardware Market for Embedded Vision Processor: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
13.8. AI Hardware Market for Stand-alone Vision Processor: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
13.9. AI Hardware Market for Stand-alone Sound Processor: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
13.10. Data Triangulation and Validation
14. MARKET OPPORTUNITIES BASED ON TYPE OF DEPLOYMENT
14.1. Chapter Overview
14.2. Key Assumptions and Methodology
14.3. Revenue Shift Analysis
14.4. Market Movement Analysis
14.5. Penetration-Growth (P-G) Matrix
14.6. AI Hardware Market for Cloud: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
14.7. AI Hardware Market for On-Premises: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
14.8. Data Triangulation and Validation
15. MARKET OPPORTUNITIES BASED ON TYPE OF PRODUCT
15.1. Chapter Overview
15.2. Key Assumptions and Methodology
15.3. Revenue Shift Analysis
15.4. Market Movement Analysis
15.5. Penetration-Growth (P-G) Matrix
15.6. AI Hardware Market for Memory: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.6.1. AI Hardware Market for DRAM: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.6.2. AI Hardware Market for NVM: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.6.3. AI Hardware Market for SRAM: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.7. AI Hardware Market for Processors: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.7.1. AI Hardware Market for CPU: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.7.2. AI Hardware Market for FPGA: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.7.3. AI Hardware Market for GPU: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.7.4. AI Hardware Market for TPU: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.8. AI Hardware Market for Networking: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.9. AI Hardware Market for Storage: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
15.10. Data Triangulation and Validation
16. MARKET OPPORTUNITIES BASED ON TYPE OF DEVICE
16.1. Chapter Overview
16.2. Key Assumptions and Methodology
16.3. Revenue Shift Analysis
16.4. Market Movement Analysis
16.5. Penetration-Growth (P-G) Matrix
16.6. AI Hardware Market for Automotive: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.7. AI Hardware Market for Cameras: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.8. AI Hardware Market for Robots: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.9. AI Hardware Market for Smartphones: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.10. AI Hardware Market for Smart Mirror: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.11. AI Hardware Market for Smart Speaker: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.12. AI Hardware Market for Wearable: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
16.13. Data Triangulation and Validation
17. MARKET OPPORTUNITIES BASED ON TYPES OF POWER CONSUMPTION
17.1. Chapter Overview
17.2. Key Assumptions and Methodology
17.3. Revenue Shift Analysis
17.4. Market Movement Analysis
17.5. Penetration-Growth (P-G) Matrix
17.6. AI Hardware Market for Less than 1W: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
17.7. AI Hardware Market for 1-3W: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
17.8. AI Hardware Market for 3-5W: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
17.9. AI Hardware Market for 5-10W: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
17.10. AI Hardware Market for More than 10W: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
17.11. Data Triangulation and Validation
18. MARKET OPPORTUNITIES BASED ON TYPE OF PROCESSES
18.1. Chapter Overview
18.2. Key Assumptions and Methodology
18.3. Revenue Shift Analysis
18.4. Market Movement Analysis
18.5. Penetration-Growth (P-G) Matrix
18.6. AI Hardware Market for Inference: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
18.7. AI Hardware Market for Training: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
18.8. Data Triangulation and Validation
19. MARKET OPPORTUNITIES BASED ON TYPE OF END USERS
19.1. Chapter Overview
19.2. Key Assumptions and Methodology
19.3. Revenue Shift Analysis
19.4. Market Movement Analysis
19.5. Penetration-Growth (P-G) Matrix
19.6. AI Hardware Market for Aerospace & Defense: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.7. AI Hardware Market for Automotive & Transportation: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.8. AI Hardware Market for BFSI: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.9. AI Hardware Market for Consumer Electronics: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.10. AI Hardware Market for E-Commerce: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.11. AI Hardware Market for Education: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.12. AI Hardware Market for Energy & Utilities: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.13. AI Hardware Market for Government & Public Services: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.14. AI Hardware Market for Navigation: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.15. AI Hardware Market for Real Estate: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.16. AI Hardware Market for Smart Home: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.17. AI Hardware Market for Telecommunication & IT: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.18. AI Hardware Market for Others: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
19.19. Data Triangulation and Validation
20. MARKET OPPORTUNITIES AI HARDWARE IN NORTH AMERICA
20.1. Chapter Overview
20.2. Key Assumptions and Methodology
20.3. Revenue Shift Analysis
20.4. Market Movement Analysis
20.5. Penetration-Growth (P-G) Matrix
20.6. AI Hardware Market in North America: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
20.6.1. AI Hardware Market in the US: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
20.6.2. AI Hardware Market in Canada: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
20.6.3. AI Hardware Market in Mexico: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
20.6.4. AI Hardware Market in Other North American Countries: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
20.7. Data Triangulation and Validation
21. MARKET OPPORTUNITIES FOR AI HARDWARE IN EUROPE
21.1. Chapter Overview
21.2. Key Assumptions and Methodology
21.3. Revenue Shift Analysis
21.4. Market Movement Analysis
21.5. Penetration-Growth (P-G) Matrix
21.6. AI Hardware Market in Europe: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.1. AI Hardware Market in Austria: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.2. AI Hardware Market in Belgium: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.3. AI Hardware Market in Denmark: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.4. AI Hardware Market in France: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.5. AI Hardware Market in Germany: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.6. AI Hardware Market in Ireland: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.7. AI Hardware Market in Italy: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.8. AI Hardware Market in Netherlands: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.9. AI Hardware Market in Norway: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.10. AI Hardware Market in Russia: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.11. AI Hardware Market in Spain: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.12. AI Hardware Market in Sweden: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.13. AI Hardware Market in Sweden: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.14. AI Hardware Market in Switzerland: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.15. AI Hardware Market in the UK: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.6.16. AI Hardware Market in Other European Countries: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
21.7. Data Triangulation and Validation
22. MARKET OPPORTUNITIES FOR AI HARDWARE IN ASIA
22.1. Chapter Overview
22.2. Key Assumptions and Methodology
22.3. Revenue Shift Analysis
22.4. Market Movement Analysis
22.5. Penetration-Growth (P-G) Matrix
22.6. AI Hardware Market in Asia: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.1. AI Hardware Market in China: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.2. AI Hardware Market in India: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.3. AI Hardware Market in Japan: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.4. AI Hardware Market in Singapore: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.5. AI Hardware Market in South Korea: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.6.6. AI Hardware Market in Other Asian Countries: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
22.7. Data Triangulation and Validation
23. MARKET OPPORTUNITIES FOR AI HARDWARE IN MIDDLE EAST AND NORTH AFRICA (MENA)
23.1. Chapter Overview
23.2. Key Assumptions and Methodology
23.3. Revenue Shift Analysis
23.4. Market Movement Analysis
23.5. Penetration-Growth (P-G) Matrix
23.6. AI Hardware Market in Middle East and North Africa (MENA): Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.1. AI Hardware Market in Egypt: Historical Trends (Since 2019) and Forecasted Estimates (Till 205)
23.6.2. AI Hardware Market in Iran: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.3. AI Hardware Market in Iraq: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.4. AI Hardware Market in Israel: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.5. AI Hardware Market in Kuwait: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.6. AI Hardware Market in Saudi Arabia: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.7. AI Hardware Market in United Arab Emirates (UAE): Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.6.8. AI Hardware Market in Other MENA Countries: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
23.7. Data Triangulation and Validation
24. MARKET OPPORTUNITIES FOR AI HARDWARE IN LATIN AMERICA
24.1. Chapter Overview
24.2. Key Assumptions and Methodology
24.3. Revenue Shift Analysis
24.4. Market Movement Analysis
24.5. Penetration-Growth (P-G) Matrix
24.6. AI Hardware Market in Latin America: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.1. AI Hardware Market in Argentina: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.2. AI Hardware Market in Brazil: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.3. AI Hardware Market in Chile: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.4. AI Hardware Market in Colombia Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.5. AI Hardware Market in Venezuela: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.6.6. AI Hardware Market in Other Latin American Countries: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
24.7. Data Triangulation and Validation
25. MARKET OPPORTUNITIES FOR AI HARDWARE IN REST OF THE WORLD
25.1. Chapter Overview
25.2. Key Assumptions and Methodology
25.3. Revenue Shift Analysis
25.4. Market Movement Analysis
25.5. Penetration-Growth (P-G) Matrix
25.6. AI Hardware Market in Rest of the World: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
25.6.1. AI Hardware Market in Australia: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)
25.6.2. AI Hardware Market in New Zealand: Historical Trends (Since 2019) and Forecasted Estimates (Till 2035)