¼¼°èÀÇ ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀå
Edge Artificial Intelligence Accelerators
»óǰÄÚµå : 1791647
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 183 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀåÀº 2030³â±îÁö 456¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 84¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 32.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 456¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Áß¾Ó Ã³¸®ÀåÄ¡´Â CAGR34.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 192¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×·¡ÇÈ Ã³¸® ÀåÄ¡ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR 34.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 22¾ï ´Þ·¯, Áß±¹Àº CAGR 30.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀåÀº 2024³â¿¡ 22¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 68¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 30.8%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 29.9%¿Í 28.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 22.5%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ºÐ»ê ÄÄÇ»ÆÃ ¼¼°è¿¡¼­ ¿§Áö AI °¡¼Ó±â°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

°¢ »ê¾÷ ºÐ¾ß¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ´Â °¡¿îµ¥, ¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â´Â ³×Æ®¿öÅ© ¿§Áö¿¡¼­ Àú Áö¿¬, °íÈ¿À² ÄÄÇ»ÆÃÀ» ½ÇÇöÇϱâ À§ÇÑ ÇÙ½É ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¡¼Ó±â´Â ½º¸¶Æ®Æù, °¨½Ã Ä«¸Þ¶ó, ÀÚÀ²ÁÖÇàÂ÷, µå·Ð, »ê¾÷¿ë ¼¾¼­, ¿þ¾î·¯ºí µî ¿§Áö µð¹ÙÀ̽º¿¡¼­ AI ¿öÅ©·Îµå¸¦ Á÷Á¢ ó¸®Çϵµ·Ï ¼³°èµÈ Ư¼ö Çϵå¿þ¾î ±¸¼º ¿ä¼Ò·Î, ´ëºÎºÐ Ĩ ¶Ç´Â ¸ðµâ ÇüÅ·Π¼³°èµÇ¾î ÀÖ½À´Ï´Ù. µ¥ÀÌÅ͸¦ Áß¾Ó ¼­¹ö·Î Àü¼ÛÇÏ¿© ó¸®ÇØ¾ß Çϴ Ŭ¶ó¿ìµå ±â¹Ý ¸ðµ¨°ú ´Þ¸®, ¿§Áö AI °¡¼Ó±â´Â ·ÎÄÿ¡¼­ Á¤º¸¸¦ ó¸®Çϱ⠶§¹®¿¡ ´ë±â ½Ã°£ÀÌ ´ÜÃàµÇ°í, ´ë¿ªÆø »ç¿ëÀ» ÃÖ¼ÒÈ­Çϸç, ÇÁ¶óÀ̹ö½Ã¸¦ °­È­ÇÕ´Ï´Ù. ¼Óµµ, ÀÚÀ²¼º, º¸¾ÈÀÌ ÃÖ¿ì¼±½ÃµÇ´Â ¿À´Ã³¯ÀÇ ¼¼°è¿¡¼­ ÀÌ ¾ÆÅ°ÅØÃ³´Â °ÔÀÓ Ã¼ÀÎÀú°¡ µÉ °ÍÀÓÀÌ ÀÔÁõµÇ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¹°Ã¼ °¨Áö ¹× À½¼º ÀνĺÎÅÍ ¿¹Áöº¸Àü ¹× ·Îº¿ °øÇп¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµÀÌ ÀÌ·¯ÇÑ °¡¼Ó±â¿¡ ÀÇÁ¸ÇÏ¿© ÀåÄ¡¿¡¼­ Áï°¢ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT), ½º¸¶Æ® ÀÎÇÁ¶ó, AI Áö¿ø °¡ÀüÁ¦Ç°ÀÇ Æø¹ßÀûÀÎ º¸±ÞÀ¸·Î »ó½Ã ¿¬°á ¾øÀ̵µ ¸Ó½Å·¯´×(ML) ¸ðµ¨À» È¿À²ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â ÄÄÆÑÆ®ÇÏ°í °­·ÂÇÑ Çϵå¿þ¾î¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌó·³ ¿§Áö AI ¾×¼¿·¯·¹ÀÌÅÍ´Â Áß¾ÓÁýÁßÇü¿¡¼­ ºÐ»êÇü AI ½Ã½ºÅÛÀ¸·ÎÀÇ ±¤¹üÀ§ÇÑ ÀüȯÀ» ÃËÁøÇϰí, ÇコÄɾî, ÀÚµ¿Â÷, ³ó¾÷, Á¦Á¶, ±¹¹æ µîÀÇ ºÐ¾ß¿¡¼­ ¹ÝÀÀ¼ºÀÌ ³ôÀº Áö´ÉÇü ¿§Áö »ýŰèÀÇ ±â¹ÝÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

Ĩ ¾ÆÅ°ÅØÃ³¿Í ¼ÒÇÁÆ®¿þ¾î ÅëÇÕÀÇ Çõ½ÅÀº ¿§Áö AI ±â´ÉÀ» ¾î¶»°Ô ¹ßÀü½Ã۰í Àִ°¡?

¹ÝµµÃ¼ ¼³°è, Á¦Á¶, ¼ÒÇÁÆ®¿þ¾î ÃÖÀûÈ­ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀº ¿§Áö AI °¡¼Ó±âÀÇ ±â´É°ú äÅÃÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. TPU(Tensor Processing Units), NPU(Neural Processing Units), VPU(Vision Processing Units) µî µµ¸ÞÀΠƯȭ ¾ÆÅ°ÅØÃ³(DSA) µµÀÔÀ¸·Î À̹ÌÁö ºÐ·ù, ÀÚ¿¬¾î ó¸®, ÀÌ»ó °¨Áö µî ƯÁ¤ AI ÀÛ¾÷¿¡ ¸Â´Â AI ŽºÅ©¿¡ ¸ÂÃá Çϵå¿þ¾î °¡¼ÓÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ Ä¨Àº º´·Ä ó¸®, Àü·Â ¼Òºñ °¨¼Ò, ¿­ È¿À²¿¡ ÃÖÀûÈ­µÇ¾î ÀÖ¾î ¼ÒÇü ¹èÅ͸® ±¸µ¿ ¿§Áö µð¹ÙÀ̽º¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, 7nm ¹× 5nm °øÁ¤ ³ëµåÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µð¹ÙÀ̽º Å©±â¸¦ Ű¿ìÁö ¾Ê°íµµ Æ®·£Áö½ºÅÍ ¹Ðµµ¸¦ ³ôÀÌ°í ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Ãø¸é¿¡¼­´Â Æ®¸®¹Ö, ¾çÀÚÈ­, Áö½Ä Áõ·ù µîÀÇ AI ¸ðµ¨ ¾ÐÃà ±â¼úÀ» ÅëÇØ º¹ÀâÇÑ ½Å°æ¸Áµµ ¸®¼Ò½º¿¡ Á¦¾àÀÌ ÀÖ´Â µð¹ÙÀ̽º¿¡ ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. TensorFlow Lite, ONNX Runtime, NVIDIA Jetson SDK µîÀÇ ÇÁ·¹ÀÓ¿öÅ©´Â Çϵå¿þ¾î ½ºÅðú ¼ÒÇÁÆ®¿þ¾î ½ºÅà °£ÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» Áö¿øÇÕ´Ï´Ù. ÅøÃ¼ÀÎÀ» ÅëÇØ °³¹ßÀÚ´Â ´ë»ó Çϵå¿þ¾î¿¡ ¸Â°Ô ¸ðµ¨À» ÃÖÀûÈ­ÇÏ¿© Ãß·Ð ¼Óµµ¸¦ Çâ»ó½ÃŰ°í ¸Þ¸ð¸® »ç¿ë·®À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¸¾È ÀÎŬ·Îºê ¹× ¿ÂĨ ¾Ïȣȭ ±â´É Áö¿øÀÌ °­È­µÇ¾î ±ÝÀ¶, ÀÇ·á, ±¹¹æ µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÎ µ¥ÀÌÅÍ º¸È£ ±â´ÉÀ» °­È­Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¿§Áö¿¡¼­ AI µµÀÔÀÇ ÁøÀÔÀ庮À» ³·Ãß°í, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ÀÛµ¿ÇÏ´Â Áö´ÉÇü ÀÚÀ² ½Ã½ºÅÛÀÇ »õ·Î¿î È帧À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ½ÃÀå ¿ªÇÐÀÌ ´õ ±¤¹üÀ§ÇÑ »ó¾÷ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ äÅÃÀ» ÃËÁøÇϰí Àִ°¡?

¿§Áö AI °¡¼Ó±â ½ÃÀåÀº ´õ ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ÄÄÇ»ÆÃÀ» ¿ä±¸ÇÏ´Â »ó¾÷ ¹× »ê¾÷°èÀÇ ¿ä±¸»çÇ׿¡ µû¶ó ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷°ú °°Àº »ê¾÷¿¡¼­´Â ½Ç½Ã°£ ǰÁú °Ë»ç ¹× ¿¹Áöº¸ÀüÀ» À§ÇØ ±â°è ¼öÁØ¿¡¼­ ¹Ð¸®ÃÊ ÀÌÇÏÀÇ AI Ãß·ÐÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼Ò¸Å¾÷¿¡¼­´Â ÀÚµ¿°è»ê´ë, ÇൿºÐ¼®, Àç°í°ü¸®¿¡ ¿§Áö AI°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ½º¸¶Æ®½ÃƼ¿¡¼­´Â ¿§Áö Áö¿ø Ä«¸Þ¶ó¿Í ±³Åë ½Ã½ºÅÛÀÌ ¿ø°ÝÁöÀÇ µ¥ÀÌÅͼ¾ÅÍ¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ºñµð¿À Çǵ带 ºÐ¼®ÇÏ°í µµ½ÃÀÇ È帧À» Á¶Á¤Çϱâ À§ÇØ °¡¼Ó±â¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇà Ç÷§ÆûÀº ¾ÈÀü¼º°ú ¹ÝÀÀ¼ºÀ» º¸ÀåÇϱâ À§ÇØ Â÷·® ³»¿¡¼­ ¹æ´ëÇÑ AI ¿öÅ©·Îµå¸¦ °è»êÇØ¾ß ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¿Âµð¹ÙÀ̽º Áø´Ü, ¿þ¾î·¯ºí Çコ ¸ð´ÏÅÍ, Áß¿ä Áø·á ȯ°æ¿¡¼­ °ÅÀÇ Áï°¢ÀûÀÎ ºÐ¼®À» ¼öÇàÇÏ´Â ¿µ»ó ½Ã½ºÅÛ¿¡¼­ ¿§Áö AI °¡¼Ó±â¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµÀÌ º¸ÆíÈ­µÊ¿¡ µû¶ó ±â¾÷µéÀº ½Ç½Ã°£ AI ±â´ÉÀ» Á¦°øÇÏ´Â È®Àå °¡´ÉÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¿§Áö ¼Ö·ç¼ÇÀÇ Çʿ伺À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ 5G ³×Æ®¿öÅ©ÀÇ º¸±ÞÀº Ãʰí¼Ó µ¥ÀÌÅÍ Àü¼Û, ´ë±â ½Ã°£ ´ÜÃà, µð¹ÙÀ̽º °í¹ÐµµÈ­¸¦ Áö¿øÇÔÀ¸·Î½á ¿§Áö ±¸ÃàÀÇ ½ÇÇö °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢±¹ Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀº ÇÁ¶óÀ̹ö½Ã, º¸¾È, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) ¹× HIPAA¿Í °°Àº ¹ý·ü Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ µ¥ÀÌÅÍ Ã³¸®ÀÇ ±¹¼ÒÈ­¸¦ ÃßÁøÇϰí ÀÖÀ¸¸ç, AI °¡¼Ó±â°¡ žÀçµÈ ¿§Áö Á᫐ ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿§Áö ÀΰøÁö´É(AI) °¡¼Ó±â ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çõ½Å, ¾÷°è ¿ä±¸ÀÇ º¯È­, ±¤¹üÀ§ÇÑ µðÁöÅÐ Çõ½Å °úÁ¦¿¡ »Ñ¸®¸¦ µÐ ¿äÀεéÀÌ °áÇÕÇÏ¿© ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿Í IoT ¿£µåÆ÷ÀÎÆ®ÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇØ ¿§Áö °¡¼Ó±â°¡ ½Ç½Ã°£ ¿¬»ê°ú ÀÚÀ²¼ºÀ» ½ÇÇöÇÏ´Â ¿ªÇÒÀ» ÇÏ´Â ÇöÁöÈ­µÈ AI ÇÁ·Î¼¼½Ì¿¡ ´ëÇÑ ´ë±Ô¸ð ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. Ĩ ¾ÆÅ°ÅØÃ³ÀÇ ÁøÈ­´Â °íÈ¿À²ÀÇ µµ¸ÞÀΠƯȭ ÇÁ·Î¼¼¼­ ÅëÇÕÀ» ÅëÇØ ¿§Áö AI Çϵå¿þ¾î¸¦ ´Ù¾çÇÑ ÆûÆÑÅÍ¿Í ÀÌ¿ë »ç·Ê¿¡ º¸´Ù ½±°Ô Ȱ¿ëÇϰí ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ ÀÚÀ²ÁÖÇà ³»ºñ°ÔÀ̼Ç, »ê¾÷ ÀÚµ¿È­ÀÇ ½Ç½Ã°£ ºÐ¼®, ÇコÄɾîÀÇ ºñÁ¢ÃË½Ä ¸ð´ÏÅ͸µ¿¡ À̸£±â±îÁö »ê¾÷º° ¿ä±¸»çÇ×ÀÌ °¢ ºÐ¾ßÀÇ º¸±Þ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á Áõ°¡, ´ë¿ªÆø Á¦ÇÑ, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ ±â¾÷µéÀº AI Ãß·ÐÀ» Ŭ¶ó¿ìµå¿¡¼­ ¿§Áö·Î ÀüÈ¯ÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. °­·ÂÇÑ °³¹ß µµ±¸, »çÀü ÈÆ·ÃµÈ ¸ðµ¨, AI ÃÖÀûÈ­ ¼ÒÇÁÆ®¿þ¾î µîÀÇ Áö¿ø ¿¡ÄڽýºÅÛÀº Á¦Ç° °³¹ß ¹× ¹èÆ÷ Áֱ⸦ °¡¼ÓÈ­ÇÕ´Ï´Ù. ÇÏÀÌÅ×Å© ´ë±â¾÷°ú ¹ÝµµÃ¼ Á¦Á¶¾÷üÀÇ Àü·«Àû ÅõÀÚ, Á¤ºÎ Áö¿ø µðÁöÅÐ ÀÎÇÁ¶ó °èȹµµ Çõ½Å°ú »ó¿ëÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, 5G, AI, IoTÀÇ À¶ÇÕÀº ¿§Áö ÄÄÇ»ÆÃÀÌ À¯ÀÍÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÇʼöÀûÀΠȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ °áÇÕµÇ¾î ¿§Áö AI °¡¼Ó±â¸¦ À§ÇÑ ¿ªµ¿ÀûÀÌ°í °í¼ºÀåÇϴ ȯ°æÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, Áö´ÉÇü ºÐ»ê ÄÄÇ»ÆÃÀÇ ´ÙÀ½ ¹°°áÀÇ Çٽɿ¡ ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÇÁ·Î¼¼¼­(Áß¾Ó Ã³¸® ÀåÄ¡, ±×·¡ÇÈ Ã³¸® ÀåÄ¡, ¾ÖÇø®ÄÉÀ̼Ǻ° ÁýÀû ȸ·Î, ÇöÀå ÇÁ·Î±×·¡¹Ö °¡´É °ÔÀÌÆ® ¾î·¹ÀÌ); µð¹ÙÀ̽º(½º¸¶Æ®Æù, IoT µð¹ÙÀ̽º, ·Îº¿, Ä«¸Þ¶ó); ÃÖÁ¾ ¿ëµµ(ÇコÄɾî ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ÃÖÁ¾ ¿ëµµ, ¸®Å×ÀÏ ÃÖÁ¾ ¿ëµµ, Á¦Á¶ ÃÖÁ¾ ¿ëµµ, º¸¾È ¹× °¨½Ã ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Edge Artificial Intelligence Accelerators Market to Reach US$45.6 Billion by 2030

The global market for Edge Artificial Intelligence Accelerators estimated at US$8.4 Billion in the year 2024, is expected to reach US$45.6 Billion by 2030, growing at a CAGR of 32.6% over the analysis period 2024-2030. Central Processing Unit, one of the segments analyzed in the report, is expected to record a 34.0% CAGR and reach US$19.2 Billion by the end of the analysis period. Growth in the Graphics Processing Unit segment is estimated at 34.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.2 Billion While China is Forecast to Grow at 30.8% CAGR

The Edge Artificial Intelligence Accelerators market in the U.S. is estimated at US$2.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.8 Billion by the year 2030 trailing a CAGR of 30.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 29.9% and 28.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 22.5% CAGR.

Global Edge Artificial Intelligence Accelerators Market - Key Trends & Drivers Summarized

Why Are Edge AI Accelerators Becoming Essential in a Decentralized Computing World?

As the demand for real-time data processing grows exponentially across industries, Edge Artificial Intelligence (AI) accelerators have emerged as a pivotal technology for enabling low-latency, high-efficiency computing at the edge of networks. These accelerators are specialized hardware components-often in the form of chips or modules-designed to handle AI workloads directly on edge devices such as smartphones, surveillance cameras, autonomous vehicles, drones, industrial sensors, and wearables. Unlike cloud-based models that require data to be transmitted to centralized servers for processing, edge AI accelerators process information locally, reducing latency, minimizing bandwidth use, and enhancing privacy. In today’s world where speed, autonomy, and security are paramount, this architecture is proving to be a game-changer. Applications ranging from real-time object detection and voice recognition to predictive maintenance and robotics rely on these accelerators to enable instant, on-device decision-making. The explosion of Internet of Things (IoT) deployments, smart infrastructure, and AI-enabled consumer electronics is fueling the need for compact yet powerful hardware that can efficiently run machine learning (ML) models without constant connectivity. Edge AI accelerators are thus facilitating the broader shift from centralized to decentralized AI systems, laying the foundation for responsive, intelligent edge ecosystems in sectors including healthcare, automotive, agriculture, manufacturing, and defense.

How Are Innovations in Chip Architecture and Software Integration Advancing Edge AI Capabilities?

Rapid innovation in semiconductor design, fabrication, and software optimization is significantly enhancing the functionality and adoption of edge AI accelerators. The introduction of domain-specific architectures (DSAs), such as Tensor Processing Units (TPUs), Neural Processing Units (NPUs), and Vision Processing Units (VPUs), has enabled hardware acceleration tailored to specific AI tasks like image classification, natural language processing, and anomaly detection. These chips are being optimized for parallel processing, reduced power consumption, and thermal efficiency-making them suitable for compact, battery-powered edge devices. Additionally, the growing use of 7nm and 5nm process nodes allows for higher transistor densities and performance gains without increasing device size. On the software side, AI model compression techniques like pruning, quantization, and knowledge distillation are enabling even complex neural networks to be deployed on resource-constrained devices. Frameworks such as TensorFlow Lite, ONNX Runtime, and NVIDIA Jetson SDK are supporting seamless integration between hardware and software stacks. Toolchains now allow developers to optimize models specifically for target hardware, improving inference speeds and reducing memory footprints. Moreover, the increasing support for secure enclaves and on-chip encryption features enhances data protection-critical for applications in finance, healthcare, and defense. These advancements are collectively lowering the entry barriers for AI adoption at the edge and encouraging a new wave of intelligent, autonomous systems that operate without dependency on cloud infrastructure.

What Market Dynamics Are Driving Broader Commercial and Industrial Adoption?

The edge AI accelerator market is being shaped by rapidly evolving commercial and industrial requirements that demand faster, more reliable, and decentralized computing. In industries like manufacturing, real-time quality inspection and predictive maintenance require sub-millisecond AI inference at the machine level. In retail, edge AI is being used for automated checkout, behavior analysis, and inventory management. Meanwhile, in smart cities, edge-enabled cameras and traffic systems rely on accelerators to analyze video feeds and regulate urban flows without relying on remote data centers. The automotive industry is one of the most influential adopters, with advanced driver-assistance systems (ADAS) and autonomous driving platforms requiring vast AI workloads to be computed in-vehicle to ensure safety and responsiveness. Similarly, the healthcare sector is leveraging edge AI accelerators for on-device diagnostics, wearable health monitors, and imaging systems that offer near-instant analysis in critical care environments. As these applications become more ubiquitous, businesses are recognizing the need for scalable and energy-efficient edge solutions that offer real-time AI capabilities. In parallel, the proliferation of 5G networks is enhancing the feasibility of edge deployment by supporting ultra-fast data transmission, reduced latency, and device densification. Governments and regulatory bodies are also pushing for localized data processing to ensure privacy, security, and compliance with laws like GDPR and HIPAA-further reinforcing the shift to edge-centric architectures powered by AI accelerators.

What Factors Are Driving the Growth of the Edge Artificial Intelligence Accelerators Market?

The growth in the Edge Artificial Intelligence Accelerators market is driven by a confluence of factors rooted in technological innovation, shifting industry needs, and broader digital transformation agendas. The exponential increase in connected devices and IoT endpoints has created massive demand for localized AI processing, where edge accelerators serve as enablers of real-time computation and autonomy. The evolution of chip architecture-through the integration of high-efficiency, domain-specific processors-is making edge AI hardware more accessible and adaptable across a wide range of form factors and use cases. Industry-specific demands, from autonomous navigation in vehicles to real-time analytics in industrial automation and contactless monitoring in healthcare, are fueling widespread adoption across sectors. Additionally, growing concerns over data privacy, bandwidth limitations, and the rising cost of cloud infrastructure are compelling enterprises to shift AI inference from the cloud to the edge. Supportive ecosystems-including robust development tools, pre-trained models, and AI optimization software-are accelerating product development and deployment cycles. Strategic investments from tech giants and semiconductor manufacturers, alongside government-backed digital infrastructure initiatives, are also catalyzing innovation and commercialization. Finally, the convergence of 5G, AI, and IoT is creating an environment where edge computing is not just beneficial, but essential. Together, these drivers are shaping a dynamic and high-growth landscape for edge AI accelerators, positioning them at the core of the next wave of intelligent, distributed computing.

SCOPE OF STUDY:

The report analyzes the Edge Artificial Intelligence Accelerators market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Processor (Central Processing Unit, Graphics Processing Unit, Application-Specific Integrated Circuits, Field-Programmable Gate Array); Device (Smartphones, IoT Devices, Robots, Cameras); End-Use (Healthcare End-Use, Automotive End-Use, Retail End-Use, Manufacturing End-Use, Security & Surveillance End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â