세계의 ModelOps 시장 : 시장 규모, 점유율, 성장 분석 - 제공별, 모델 유형별, 용도별, 산업별, 지역별 - 예측(-2029년)
ModelOps Market Size, Share, Growth Analysis, By Offering (Platforms & Services), Application (CI/CD, Monitoring & Alerting), Model Type (ML Model, Graph Model, Agent-based Model), Vertical and Region - Global Industry Forecast to 2029
상품코드:1515615
리서치사:MarketsandMarkets
발행일:2024년 06월
페이지 정보:영문 310 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
한글목차
세계 ModelOps 시장 규모는 2024년 54억 달러에서 2029년에는 295억 달러에 달할 것으로 예상되며, 예측 기간 동안 40.2%의 CAGR을 기록할 것으로 예상됩니다.
ModelOps 시장은 프로덕션 환경에서 머신러닝 모델의 배포, 모니터링 및 관리 최적화에 초점을 맞추고 있습니다. 이 시장에는 모델 배포 자동화, 성능 및 데이터 드리프트의 지속적인 모니터링, 거버넌스 및 컴플라이언스 보장, 테스트 및 재교육 자동화 구성, 데이터 과학자와 이해관계자 간의 협업 촉진 등이 포함됩니다. AI와 ML 기술이 발전함에 따라, ModelOps는 AI 이니셔티브의 가치를 극대화하고 운영 효율성을 높이기 위한 확장성, 신뢰성, 민첩성을 갖춘 솔루션에 대한 수요로 인해 이 시장을 주도하고 있으며, AI와 ML 기술의 발전과 함께 컨테이너화, 쿠버네티스(Kubernetes) 오케스트레이션, AI 기반 자동화 등의 혁신을 통해 진화하고 있으며, 조직이 모델을 운영하고 인사이트를 도출하는 방식을 재구성하고 있습니다.
조사 범위
조사 대상 연도
2019-2029년
기준 연도
2023년
예측 기간
2024-2029년
검토 단위
달러(10억 달러)
부문
제공별, 모델 유형별, 용도별, 산업별, 지역별
대상 지역
북미, 유럽, 아시아태평양, 중동 및 아프리카, 라틴아메리카
빠르게 진화하는 모델옵스(ModelOps) 시장에서 종합적인 솔루션을 제공하는 플랫폼은 머신러닝 모델의 전체 라이프사이클을 관리하는 통합적인 접근 방식을 통해 가장 큰 시장 점유율을 차지하고 있습니다. 이러한 플랫폼은 개발, 교육, 배포, 모니터링 프로세스를 통합된 환경으로 통합하여 운영을 간소화하고 효율성과 협업을 강화하고자 하는 기업들에게 어필하고 있습니다. 강력한 인프라와 클라우드 기능을 기반으로 한 확장성은 모델을 대규모로 확장하고자 하는 수요 증가에 대응합니다. 라이프사이클 전반에 걸친 자동화 기능은 시장 출시 시간을 단축하고 일관성을 보장합니다. 또한, 내장된 거버넌스 메커니즘은 규제 산업에 중요한 컴플라이언스와 신뢰성을 보장합니다.
ModelOps 시장에서 그래프 기반 모델 관리 도구가 빠르게 성장하고 있는 이유는 최신 AI 시스템의 복잡한 특성을 잘 처리할 수 있기 때문입니다. 이러한 도구는 모델, 데이터 세트, 구성 간의 복잡한 관계를 관리하는데, 기존 데이터베이스는 이를 처리하는데 어려움을 겪었습니다. 이러한 확장성과 유연성은 빠른 진화와 대규모 데이터 처리가 일상화된 역동적인 AI 환경에 이상적입니다. 기존 AI 플랫폼과 원활하게 통합되어 모델 라이프사이클에 대한 가시성과 통제력을 높이고, 규제 기준 및 내부 거버넌스 준수를 보장합니다. 모델 및 데이터 사용 이력을 명확하고 감사 가능한 형태로 제공함으로써 도입 프로세스에서 강력한 의사결정과 자동화를 지원합니다. AI 애플리케이션이 엣지 컴퓨팅이나 개인 맞춤형 의료와 같은 새로운 분야로 확장되는 가운데, 그래프 기반 도구는 다양하고 분산된 환경을 효과적으로 관리할 수 있는 통합 솔루션을 제공합니다.
이 보고서는 세계 ModelOps 시장을 조사하여 제공별, 모델 유형별, 용도별, 산업별, 지역별 동향, 시장 진입 기업 개요 등을 정리한 보고서입니다.
목차
제1장 소개
제2장 조사 방법
제3장 주요 요약
제4장 주요 인사이트
제5장 시장 개요와 업계 동향
소개
시장 역학
사례 연구 분석
ModelOps 시장의 진화
생태계 분석
기술 분석
공급망 분석
규제 상황
특허 분석
2024-2025년의 주요 회의와 이벤트
Porter's Five Forces 분석
가격 분석
고객 비즈니스에 영향을 미치는 동향/혼란
주요 이해관계자와 구입 기준
투자와 자금 조달 시나리오
ModelOps대 MLOPS
ModelOps 베스트 프랙티스
제6장 ModelOps 시장, 제공별
소개
플랫폼
서비스
제7장 ModelOps 시장, 모델 유형별
소개
ML 모델
그래프 기반 모델
규칙과 휴리스틱 모델
언어 모델
에이전트 기반 모델
BYO 모델
기타
제8장 ModelOps 시장, 용도별
소개
지속적 통합/지속적 디플로이먼트
감시와 경고
대시보드와 보고
모델 수명주기관리
거버넌스, 리스크, 컴플라이언스
병렬화와 분산 컴퓨팅
배치 스코어링
기타
제9장 ModelOps 시장, 업계별
소개
BFSI
통신
소매·E-Commerce
헬스케어·생명과학
정부·방위
IT/ITES
에너지·유틸리티
제조
수송·물류
기타
제10장 ModelOps 시장, 지역별
소개
북미
유럽
아시아태평양
중동 및 아프리카
라틴아메리카
제11장 경쟁 상황
개요
주요 진출 기업이 채용한 전략
매출 분석
시장 점유율 분석
제품 비교 분석
기업 평가 매트릭스 : 주요 진출 기업, 2023년
기업 평가 매트릭스 : 스타트업/중소기업, 2023년
경쟁 시나리오와 동향
주요 벤더의 기업 평가와 재무 지표
제12장 기업 개요
소개
주요 진출 기업
IBM
GOOGLE
SAS INSTITUTE
AWS
ORACLE
TERADATA
VERITONE
ALTAIR
C3.AI
PALANTIR
TIBCO SOFTWARE
DOMINO DATA LAB
DATABRICKS
GIGGSO
MODELOP
기타 기업
VERTA
COMET ML
SUPERWISE
EVIDENTLY AI
MINITAB
SELDON
INNOMINDS
DATATRON
ARTHUR AI
WEIGHTS & BIASES
XENONSTACK
CNVRG.IO
DATAKITCHEN
HAISTEN AI
SPARKLING LOGIC
LEEWAYHERTZ
제13장 인접 시장과 관련 시장
제14장 부록
ksm
영문 목차
영문목차
The global ModelOps Market is valued at USD 5.4 billion in 2024 and is estimated to reach USD 29.5 billion in 2029, registering a CAGR of 40.2% during the forecast period. The ModelOps Market focuses on optimizing the deployment, monitoring, and management of machine learning models in production. It encompasses automating model deployment, continuous monitoring for performance and data drift, ensuring governance and compliance, orchestrating automation for testing and retraining, and fostering collaboration among data scientists and stakeholders. This market is driven by the demand for scalable, reliable, and agile solutions across industries, enhancing operational efficiency and maximizing the value derived from AI initiatives. As AI and ML technologies advance, ModelOps continues to evolve with innovations in containerization, Kubernetes orchestration, and AI-driven automation, reshaping how organizations operationalize and derive insights from their models.
Scope of the Report
Years Considered for the Study
2019-2029
Base Year
2023
Forecast Period
2024-2029
Units Considered
USD (Billion)
Segments
Offering, Model Type, Application, Vertical, and Region
Regions covered
North America, Europe, Asia Pacific, Middle East & Africa, and Latin America
"By offering, the platforms segment is projected to hold the largest market size during the forecast period."
In the rapidly evolving ModelOps market, platforms offering comprehensive solutions have seized the largest market share due to their integrated approach to managing the entire lifecycle of machine learning models. These platforms streamline operations by consolidating development, training, deployment, and monitoring processes into a unified environment, appealing to enterprises seeking efficiency and collaboration enhancements. Their scalability, supported by robust infrastructure and cloud capabilities, meets the increasing demand for deploying models at scale. Automation features throughout the lifecycle accelerate time-to-market and ensure consistency, while built-in governance mechanisms ensure compliance and reliability, crucial for regulated industries.
"By type, graph-based models are registered to grow at the highest CAGR during the forecast period."
The rapid growth of graph-based model management tools within the ModelOps market stems from their adeptness at handling the intricate nature of modern AI systems. These tools manage complex relationships between models, datasets, and configurations, which traditional databases struggle to accommodate. Their scalability and flexibility make them ideal for dynamic AI environments where rapid evolution and large-scale data handling are the norm. Integrating seamlessly with existing AI platforms enhances visibility and control over model lifecycles, ensuring compliance with regulatory standards and internal governance. They support robust decision-making and automation in deployment processes by providing a clear and auditable lineage of models and data usage. As AI applications expand into new fields like edge computing and personalized medicine, graph-based tools offer a unified solution to effectively manage diverse and distributed environments.
"By application, the continuous integration/continuous deployment segment is projected to hold the largest market size during the forecast period."
Continuous Integration and Continuous Delivery (CI/CD) holds a dominant position within the ModelOps market due to several key factors that highlight its critical role in deploying and managing machine learning models. First and foremost, CI/CD pipelines are foundational in enabling automation throughout the model development lifecycle. In the context of ModelOps, which focuses on operationalizing machine learning models at scale, CI/CD pipelines facilitate the seamless integration of new model versions into production environments. This automation streamlines the process of testing, building, packaging, and deploying models, reducing the manual effort and potential for human error, thereby increasing efficiency and reliability. Further, the demand for CI/CD in ModelOps is driven by the need for agility and speed in deploying models into production. Machine learning models often undergo iterative improvements based on real-world data feedback and evolving business requirements. CI/CD pipelines allow teams to continuously integrate these updates into the operational environment, ensuring that the latest versions of models are always available without disrupting existing processes
Breakdown of primaries
In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the ModelOps market.
By Company: Tier I: 35%, Tier II: 45%, and Tier III: 20%
By Designation: C-Level Executives: 35%, Directors: 25%, and Others: 40%
By Region: North America - 30%, Europe - 30%, Asia Pacific - 25%, Middle East & Africa - 10%, and Latin America - 5%
Major vendors offering modelOps solution and services across the globe are IBM (US), Google (US), Oracle (US), SAS Institute (US), AWS (US), Teradata (US), Palantir (US), Veritone (US), Altair (US), c3.ai (US), TIBCO (US), Databricks (US), Giggso (US), Verta (US), ModelOp (US), Comet ML (US), Superwise (Israel), Evidently Al (US), Minitab (US), Seldon (UK), Innominds (US), Datatron (US), Domino Data Lab (US), Arthur (US), Weights & Biases (US), Xenonstack (US), Cnvrg.io (Israel), DataKitchen (US), Haisten AI (US), Sparkling Logic (US), LeewayHertz (US).
Research Coverage
The market study covers modelOps across segments. It aims to estimate the market size and the growth potential across different segments, such as offering, model type, application, vertical, and region. It includes an in-depth competitive analysis of the key players in the market, their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.
Key Benefits of Buying the Report
The report would provide the market leaders/new entrants with information on the closest approximations of the revenue numbers for the overall market for modelOps and its subsegments. It would help stakeholders understand the competitive landscape and gain more insights to position their business and plan suitable go-to-market strategies. It also helps stakeholders understand the market's pulse and provides information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
Analysis of key drivers (Exponential rise of unstructured data, Rise in digitalization trend), restraints (Discrepancy among data sources impedes the advancement of modelOps, Data Security and Privacy Concerns), opportunities (Empowering modelOps through SDN-enabled network integration, Growing integration of advanced analytical functionalities), and challenges (Rise in need for training and upskilling to address the knowledge gap, Issues related to complexity and diversity of data collected)
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new solutions & service launches in the ModelOps Market.
Market Development: Comprehensive information about lucrative markets - the report analyses the ModelOps Market across varied regions.
Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in ModelOps Market strategies; the report also helps stakeholders understand the pulse of the ModelOps Market and provides them with information on key market drivers, restraints, challenges, and opportunities.
Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players such as IBM (US), Oracle (US), SAS Institute(US), Google (US), and AWS (US) among others, in the ModelOps Market.
TABLE OF CONTENTS
1 INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 MARKET DEFINITION
1.2.1 INCLUSIONS AND EXCLUSIONS
1.3 MARKET SCOPE
1.3.1 MARKET SEGMENTATION
1.3.2 REGIONS COVERED
1.3.3 YEARS CONSIDERED
1.4 CURRENCY CONSIDERED
1.5 STAKEHOLDERS
1.6 RECESSION IMPACT
2 RESEARCH METHODOLOGY
2.1 RESEARCH DATA
2.1.1 SECONDARY DATA
2.1.2 PRIMARY DATA
2.1.2.1 Breakup of primary interviews
2.1.2.2 Key industry insights
2.2 DATA TRIANGULATION
2.3 MARKET SIZE ESTIMATION
2.3.1 TOP-DOWN APPROACH
2.3.2 BOTTOM-UP APPROACH
2.4 MARKET FORECAST
2.5 RESEARCH ASSUMPTIONS
2.6 RESEARCH LIMITATIONS
2.7 IMPLICATION OF RECESSION ON GLOBAL MODELOPS MARKET
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN MODELOPS MARKET
4.2 OVERVIEW OF RECESSION IN MODELOPS MARKET
4.3 MODELOPS MARKET, BY KEY APPLICATIONS, 2024-2029
4.4 MODELOPS MARKET, BY KEY MODEL TYPES AND APPLICATIONS, 2024
4.5 MODELOPS MARKET, BY REGION, 2024
5 MARKET OVERVIEW AND INDUSTRY TRENDS
5.1 INTRODUCTION
5.2 MARKET DYNAMICS
5.2.1 DRIVERS
5.2.1.1 Integration of ModelOps with DevOps and DataOps
5.2.1.2 Rising demand for Explainable AI (XAI)
5.2.1.3 Increasing need to address model drift with ModelOps solutions
5.2.1.4 Rising demand for automated monitoring and alerting capabilities
5.2.2 RESTRAINTS
5.2.2.1 Shortage of skilled professionals
5.2.2.2 Model interpretability and explainability
5.2.3 OPPORTUNITIES
5.2.3.1 Integration of automated Continuous Integration/Continuous Deployment (CI/CD) pipelines
5.2.3.2 Enhancements in model versioning and lifecycle management
5.2.4 CHALLENGES
5.2.4.1 Difficulty in managing intricate dependencies
5.2.4.2 Complexities of integrating with existing systems
5.2.4.3 Disconnect between insights and action
5.3 CASE STUDY ANALYSIS
5.3.1 CASE STUDY 1: SCRIBD ACCELERATES MODEL DELIVERY USING VERTA'S MACHINE LEARNING OPERATIONS PLATFORM
5.3.2 CASE STUDY 2: EXSCIENTIA SHORTENS MODEL MONITORING AND PREPARATION FROM DAYS TO HOURS
5.3.3 CASE STUDY 3: RBC CAPITAL MARKETS ENHANCES BOND TRADING EFFICIENCY USING AI AND MODELOPS CENTER
5.3.4 CASE STUDY 4: M-KOPA REVOLUTIONIZES MODEL MANAGEMENT PROCESS WITH ASSISTANCE OF W&B
5.3.5 CASE STUDY 5: CLEARSCAPE ANALYTICS EXPEDITES DEVELOPMENT OF CREDIT RISK PORTFOLIO MODELS FOR SICREDI
5.3.6 CASE STUDY 6: ENHANCING ML EXPERIMENT MANAGEMENT AT UBER WITH COMET
5.3.7 CASE STUDY 7: ACCELERATED AI INTEGRATION FOR ENHANCED EVENT RECOMMENDATIONS BY CNVRG.IO
5.4 EVOLUTION OF MODELOPS MARKET
5.5 ECOSYSTEM ANALYSIS
5.5.1 PLATFORM PROVIDERS
5.5.2 SERVICE PROVIDERS
5.5.3 END USERS
5.5.4 REGULATORY BODIES
5.6 TECHNOLOGY ANALYSIS
5.6.1 KEY TECHNOLOGIES
5.6.1.1 Artificial intelligence
5.6.1.2 Cloud computing
5.6.1.3 Knowledge graphs
5.6.1.4 No code
5.6.2 ADJACENT TECHNOLOGIES
5.6.2.1 Big data & analytics
5.6.2.2 Edge computing
5.7 SUPPLY CHAIN ANALYSIS
5.8 REGULATORY LANDSCAPE
5.8.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
5.8.2 REGULATIONS: MODELOPS
5.8.2.1 North America
5.8.2.1.1 US
5.8.2.1.2 Canada
5.8.2.2 Europe
5.8.2.3 Asia Pacific
5.8.2.3.1 Singapore
5.8.2.3.2 China
5.8.2.3.3 India
5.8.2.3.4 Japan
5.8.2.4 Middle East & Africa
5.8.2.4.1 UAE
5.8.2.4.2 KSA
5.8.2.4.3 South Africa
5.8.2.5 Latin America
5.8.2.5.1 Brazil
5.8.2.5.2 Mexico
5.9 PATENT ANALYSIS
5.9.1 METHODOLOGY
5.9.2 PATENTS FILED, BY DOCUMENT TYPE
5.9.3 INNOVATIONS AND PATENT APPLICATIONS
5.9.3.1 Patent applicants
5.10 KEY CONFERENCES AND EVENTS, 2024-2025
5.11 PORTER'S FIVE FORCES ANALYSIS
5.11.1 THREAT FROM NEW ENTRANTS
5.11.2 THREAT OF SUBSTITUTES
5.11.3 BARGAINING POWER OF SUPPLIERS
5.11.4 BARGAINING POWER OF BUYERS
5.11.5 INTENSITY OF COMPETITIVE RIVALRY
5.12 PRICING ANALYSIS
5.12.1 AVERAGE SELLING PRICE TREND OF KEY PLAYERS, BY APPLICATION
5.12.2 INDICATIVE PRICING ANALYSIS, BY OFFERING
5.13 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
5.14 KEY STAKEHOLDERS AND BUYING CRITERIA
5.14.1 KEY STAKEHOLDERS IN BUYING PROCESS
5.14.2 BUYING CRITERIA
5.15 INVESTMENT AND FUNDING SCENARIO
5.16 MODELOPS VS. MLOPS
5.17 MODELOPS BEST PRACTICES
6 MODELOPS MARKET, BY OFFERING
6.1 INTRODUCTION
6.1.1 OFFERING: MODELOPS MARKET DRIVERS
6.2 PLATFORMS
6.2.1 OPTIMIZING MACHINE LEARNING MODEL LIFECYCLE MANAGEMENT WITH MODELOPS PLATFORMS