¼¼°èÀÇ ModelOps ½ÃÀå : ½ÃÀå ±Ô¸ð, Á¡À¯À², ¼ºÀå ºÐ¼® - Á¦°øº°, ¸ðµ¨ À¯Çüº°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº° - ¿¹Ãø(-2029³â)
ModelOps Market Size, Share, Growth Analysis, By Offering (Platforms & Services), Application (CI/CD, Monitoring & Alerting), Model Type (ML Model, Graph Model, Agent-based Model), Vertical and Region - Global Industry Forecast to 2029
»óǰÄÚµå : 1515615
¸®¼­Ä¡»ç : MarketsandMarkets
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 310 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,024,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,650 £Ü 9,437,000
PDF (5-user License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,150 £Ü 11,565,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÀÌ¿ë Àοø¿¡ Á¦ÇÑÀº ¾øÀ¸³ª, ±¹³»¿¡ ÀÖ´Â »ç¾÷À常 ÇØ´çµÇ¸ç, ÇØ¿Ü ÁöÁ¡ µîÀº Æ÷ÇÔµÇÁö ¾Ê½À´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,191,000
PDF (Global License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. (100% ÀÚȸ»ç´Â µ¿ÀÏ ±â¾÷À¸·Î °£Áֵ˴ϴÙ.) Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°è ModelOps ½ÃÀå ±Ô¸ð´Â 2024³â 54¾ï ´Þ·¯¿¡¼­ 2029³â¿¡´Â 295¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 40.2%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ModelOps ½ÃÀåÀº ÇÁ·Î´ö¼Ç ȯ°æ¿¡¼­ ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ¹èÆ÷, ¸ð´ÏÅ͸µ ¹× °ü¸® ÃÖÀûÈ­¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡´Â ¸ðµ¨ ¹èÆ÷ ÀÚµ¿È­, ¼º´É ¹× µ¥ÀÌÅÍ µå¸®ÇÁÆ®ÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, °Å¹ö³Í½º ¹× ÄÄÇöóÀ̾𽺠º¸Àå, Å×½ºÆ® ¹× Àç±³À° ÀÚµ¿È­ ±¸¼º, µ¥ÀÌÅÍ °úÇÐÀÚ¿Í ÀÌÇØ°ü°èÀÚ °£ÀÇ Çù¾÷ ÃËÁø µîÀÌ Æ÷ÇԵ˴ϴÙ. AI¿Í ML ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó, ModelOps´Â AI ÀÌ´Ï¼ÅÆ¼ºêÀÇ °¡Ä¡¸¦ ±Ø´ëÈ­ÇÏ°í ¿î¿µ È¿À²¼ºÀ» ³ôÀ̱â À§ÇÑ È®À强, ½Å·Ú¼º, ¹Îø¼ºÀ» °®Ãá ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, AI¿Í ML ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÄÁÅ×À̳ÊÈ­, Äí¹ö³×Ƽ½º(Kubernetes) ¿ÀÄɽºÆ®·¹À̼Ç, AI ±â¹Ý ÀÚµ¿È­ µîÀÇ Çõ½ÅÀ» ÅëÇØ ÁøÈ­Çϰí ÀÖÀ¸¸ç, Á¶Á÷ÀÌ ¸ðµ¨À» ¿î¿µÇϰí ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2019-2029³â
±âÁØ ¿¬µµ 2023³â
¿¹Ãø ±â°£ 2024-2029³â
°ËÅä ´ÜÀ§ ´Þ·¯(10¾ï ´Þ·¯)
ºÎ¹® Á¦°øº°, ¸ðµ¨ À¯Çüº°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«

ºü¸£°Ô ÁøÈ­ÇÏ´Â ¸ðµ¨¿É½º(ModelOps) ½ÃÀå¿¡¼­ Á¾ÇÕÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â Ç÷§ÆûÀº ¸Ó½Å·¯´× ¸ðµ¨ÀÇ Àüü ¶óÀÌÇÁ»çÀÌŬÀ» °ü¸®ÇÏ´Â ÅëÇÕÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº °³¹ß, ±³À°, ¹èÆ÷, ¸ð´ÏÅ͸µ ÇÁ·Î¼¼½º¸¦ ÅëÇÕµÈ È¯°æÀ¸·Î ÅëÇÕÇÏ¿© ¿î¿µÀ» °£¼ÒÈ­Çϰí È¿À²¼º°ú Çù¾÷À» °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷µé¿¡°Ô ¾îÇÊÇϰí ÀÖ½À´Ï´Ù. °­·ÂÇÑ ÀÎÇÁ¶ó¿Í Ŭ¶ó¿ìµå ±â´ÉÀ» ±â¹ÝÀ¸·Î ÇÑ È®À强Àº ¸ðµ¨À» ´ë±Ô¸ð·Î È®ÀåÇϰíÀÚ ÇÏ´Â ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÕ´Ï´Ù. ¶óÀÌÇÁ»çÀÌŬ Àü¹Ý¿¡ °ÉÄ£ ÀÚµ¿È­ ±â´ÉÀº ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ³»ÀåµÈ °Å¹ö³Í½º ¸ÞÄ¿´ÏÁòÀº ±ÔÁ¦ »ê¾÷¿¡ Áß¿äÇÑ ÄÄÇöóÀÌ¾ð½º¿Í ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

ModelOps ½ÃÀå¿¡¼­ ±×·¡ÇÁ ±â¹Ý ¸ðµ¨ °ü¸® µµ±¸°¡ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ÀÌÀ¯´Â ÃֽŠAI ½Ã½ºÅÛÀÇ º¹ÀâÇÑ Æ¯¼ºÀ» Àß Ã³¸®ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¸ðµ¨, µ¥ÀÌÅÍ ¼¼Æ®, ±¸¼º °£ÀÇ º¹ÀâÇÑ °ü°è¸¦ °ü¸®Çϴµ¥, ±âÁ¸ µ¥ÀÌÅͺ£À̽º´Â À̸¦ ó¸®Çϴµ¥ ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ È®À强°ú À¯¿¬¼ºÀº ºü¸¥ ÁøÈ­¿Í ´ë±Ô¸ð µ¥ÀÌÅÍ Ã³¸®°¡ ÀÏ»óÈ­µÈ ¿ªµ¿ÀûÀÎ AI ȯ°æ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ±âÁ¸ AI Ç÷§Æû°ú ¿øÈ°ÇÏ°Ô ÅëÇÕµÇ¾î ¸ðµ¨ ¶óÀÌÇÁ»çÀÌŬ¿¡ ´ëÇÑ °¡½Ã¼º°ú ÅëÁ¦·ÂÀ» ³ôÀ̰í, ±ÔÁ¦ ±âÁØ ¹× ³»ºÎ °Å¹ö³Í½º Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. ¸ðµ¨ ¹× µ¥ÀÌÅÍ »ç¿ë ÀÌ·ÂÀ» ¸íÈ®ÇÏ°í °¨»ç °¡´ÉÇÑ ÇüÅ·ΠÁ¦°øÇÔÀ¸·Î½á µµÀÔ ÇÁ·Î¼¼½º¿¡¼­ °­·ÂÇÑ ÀÇ»ç°áÁ¤°ú ÀÚµ¿È­¸¦ Áö¿øÇÕ´Ï´Ù. AI ¾ÖÇø®ÄÉÀ̼ÇÀÌ ¿§Áö ÄÄÇ»ÆÃÀ̳ª °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í °°Àº »õ·Î¿î ºÐ¾ß·Î È®ÀåµÇ´Â °¡¿îµ¥, ±×·¡ÇÁ ±â¹Ý µµ±¸´Â ´Ù¾çÇÏ°í ºÐ»êµÈ ȯ°æÀ» È¿°úÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°è ModelOps ½ÃÀåÀ» Á¶»çÇÏ¿© Á¦°øº°, ¸ðµ¨ À¯Çüº°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÀÔ ±â¾÷ °³¿ä µîÀ» Á¤¸®ÇÑ º¸°í¼­ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÁÖ¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä¿Í ¾÷°è µ¿Çâ

Á¦6Àå ModelOps ½ÃÀå, Á¦°øº°

Á¦7Àå ModelOps ½ÃÀå, ¸ðµ¨ À¯Çüº°

Á¦8Àå ModelOps ½ÃÀå, ¿ëµµº°

Á¦9Àå ModelOps ½ÃÀå, ¾÷°èº°

Á¦10Àå ModelOps ½ÃÀå, Áö¿ªº°

Á¦11Àå °æÀï »óȲ

Á¦12Àå ±â¾÷ °³¿ä

Á¦13Àå ÀÎÁ¢ ½ÃÀå°ú °ü·Ã ½ÃÀå

Á¦14Àå ºÎ·Ï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The global ModelOps Market is valued at USD 5.4 billion in 2024 and is estimated to reach USD 29.5 billion in 2029, registering a CAGR of 40.2% during the forecast period. The ModelOps Market focuses on optimizing the deployment, monitoring, and management of machine learning models in production. It encompasses automating model deployment, continuous monitoring for performance and data drift, ensuring governance and compliance, orchestrating automation for testing and retraining, and fostering collaboration among data scientists and stakeholders. This market is driven by the demand for scalable, reliable, and agile solutions across industries, enhancing operational efficiency and maximizing the value derived from AI initiatives. As AI and ML technologies advance, ModelOps continues to evolve with innovations in containerization, Kubernetes orchestration, and AI-driven automation, reshaping how organizations operationalize and derive insights from their models.

Scope of the Report
Years Considered for the Study2019-2029
Base Year2023
Forecast Period2024-2029
Units ConsideredUSD (Billion)
SegmentsOffering, Model Type, Application, Vertical, and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

"By offering, the platforms segment is projected to hold the largest market size during the forecast period."

In the rapidly evolving ModelOps market, platforms offering comprehensive solutions have seized the largest market share due to their integrated approach to managing the entire lifecycle of machine learning models. These platforms streamline operations by consolidating development, training, deployment, and monitoring processes into a unified environment, appealing to enterprises seeking efficiency and collaboration enhancements. Their scalability, supported by robust infrastructure and cloud capabilities, meets the increasing demand for deploying models at scale. Automation features throughout the lifecycle accelerate time-to-market and ensure consistency, while built-in governance mechanisms ensure compliance and reliability, crucial for regulated industries.

"By type, graph-based models are registered to grow at the highest CAGR during the forecast period."

The rapid growth of graph-based model management tools within the ModelOps market stems from their adeptness at handling the intricate nature of modern AI systems. These tools manage complex relationships between models, datasets, and configurations, which traditional databases struggle to accommodate. Their scalability and flexibility make them ideal for dynamic AI environments where rapid evolution and large-scale data handling are the norm. Integrating seamlessly with existing AI platforms enhances visibility and control over model lifecycles, ensuring compliance with regulatory standards and internal governance. They support robust decision-making and automation in deployment processes by providing a clear and auditable lineage of models and data usage. As AI applications expand into new fields like edge computing and personalized medicine, graph-based tools offer a unified solution to effectively manage diverse and distributed environments.

"By application, the continuous integration/continuous deployment segment is projected to hold the largest market size during the forecast period."

Continuous Integration and Continuous Delivery (CI/CD) holds a dominant position within the ModelOps market due to several key factors that highlight its critical role in deploying and managing machine learning models. First and foremost, CI/CD pipelines are foundational in enabling automation throughout the model development lifecycle. In the context of ModelOps, which focuses on operationalizing machine learning models at scale, CI/CD pipelines facilitate the seamless integration of new model versions into production environments. This automation streamlines the process of testing, building, packaging, and deploying models, reducing the manual effort and potential for human error, thereby increasing efficiency and reliability. Further, the demand for CI/CD in ModelOps is driven by the need for agility and speed in deploying models into production. Machine learning models often undergo iterative improvements based on real-world data feedback and evolving business requirements. CI/CD pipelines allow teams to continuously integrate these updates into the operational environment, ensuring that the latest versions of models are always available without disrupting existing processes

Breakdown of primaries

In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the ModelOps market.

Major vendors offering modelOps solution and services across the globe are IBM (US), Google (US), Oracle (US), SAS Institute (US), AWS (US), Teradata (US), Palantir (US), Veritone (US), Altair (US), c3.ai (US), TIBCO (US), Databricks (US), Giggso (US), Verta (US), ModelOp (US), Comet ML (US), Superwise (Israel), Evidently Al (US), Minitab (US), Seldon (UK), Innominds (US), Datatron (US), Domino Data Lab (US), Arthur (US), Weights & Biases (US), Xenonstack (US), Cnvrg.io (Israel), DataKitchen (US), Haisten AI (US), Sparkling Logic (US), LeewayHertz (US).

Research Coverage

The market study covers modelOps across segments. It aims to estimate the market size and the growth potential across different segments, such as offering, model type, application, vertical, and region. It includes an in-depth competitive analysis of the key players in the market, their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.

Key Benefits of Buying the Report

The report would provide the market leaders/new entrants with information on the closest approximations of the revenue numbers for the overall market for modelOps and its subsegments. It would help stakeholders understand the competitive landscape and gain more insights to position their business and plan suitable go-to-market strategies. It also helps stakeholders understand the market's pulse and provides information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

TABLE OF CONTENTS

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

5 MARKET OVERVIEW AND INDUSTRY TRENDS

6 MODELOPS MARKET, BY OFFERING

7 MODELOPS MARKET, BY MODEL TYPE

8 MODELOPS MARKET, BY APPLICATION

9 MODELOPS MARKET, BY VERTICAL

10 MODELOPS MARKET, BY REGION

11 COMPETITIVE LANDSCAPE

12 COMPANY PROFILES

*Details on Business Overview, Products/Solutions/Services offered, Recent Developments, MnM View might not be captured in case of unlisted companies.

13 ADJACENT AND RELATED MARKETS

14 APPENDIX

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â