¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : Á¶Á÷ ±Ô¸ðº°, ¹æ¹ýº°, ¾÷°èº°, ±¸¼º¿ä¼Òº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2024-2031³â)
Global Data Monetization Market Size, Share & Trends Analysis Report By Organization Size (Large Enterprises, and SMEs), By Method, By Vertical, By Component, By Regional Outlook and Forecast, 2024 - 2031
»óǰÄÚµå : 1709850
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2025³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 372 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,014,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,016,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,423,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 24.4%ÀÇ CAGR·Î Áõ°¡ÇÏ¿© 2031³â±îÁö 171¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrix - µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal matrixÀÇ ºÐ¼®¿¡ µû¸£¸é, Google LLC¿Í Microsoft CorporationÀº µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀåÀÇ ¼±±¸ÀÚÀ̸ç, 2024³â 7¿ù, Microsoft CorporationÀº ¼Ò¸Å ¹Ìµð¾îÀÇ ÆÄÆíÈ­¿¡ ´ëÀÀÇϱâ À§ÇØ ±¤°í ȸ»çÀÎ Å©¸®Å׿À¿ÍÀÇ Á¦ÈÞ¸¦ ¹ßÇ¥Çß½À´Ï´Ù. À̹ø Á¦ÈÞ¸¦ ÅëÇØ ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®ÀÇ ¼ö¿ä¿Í Å©¸®Å׿ÀÀÇ ¼¼°è ¸®Å×ÀÏ ³×Æ®¿öÅ©°¡ ÅëÇÕµÇ¾î ±¤°íÁÖÀÇ ±¸¸Å °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µË´Ï´Ù. Oracle Corporation, Cisco Systems, Inc. ¹× Siemens AG¿Í °°Àº ±â¾÷µéÀº µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å ±â¾÷À¸·Î¼­, À̹ø ÅëÇÕÀ» ÅëÇØ »õ·Î¿î ¼öÀÍ Ã¢Ãâ ±âȸ¸¦ âÃâÇϰí AI ±â¹Ý Çõ½ÅÀ» ÅëÇØ ±¤°í ¼º°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

Á¶Á÷Àº ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º °­È­, ¾÷¹« ÃÖÀûÈ­ ¹× °æÀï ¿ìÀ§ È®º¸¸¦ À§ÇØ µ¥ÀÌÅÍ È°¿ëÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ¸¶ÄÉÆÃ, °í°´ Âü¿©, °ø±Þ¸Á °ü¸® ¹× ¸®½ºÅ© Æò°¡¿¡¼­ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ±âÁ¸ÀÇ Á÷°üÀû Àü·«¿¡¼­ µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅ͸¦ ºÐ¼®ÇÔÀ¸·Î½á ±â¾÷Àº ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ ¾ò°í ´Ù¾çÇÑ ºÎ¹®ÀÇ »ý»ê¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ±â¾÷ÀÇ ¼ö¿ä Áõ°¡°¡ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀº ±â¾÷ÀÇ µ¥ÀÌÅÍ ÀúÀå, °ü¸® ¹× ó¸® ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ¼öÀÍ Ã¢Ãâ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó´Â È®À强, ºñ¿ë È¿À²¼º, Çâ»óµÈ º¸¾ÈÀ» Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ Ç÷§ÆûÀ¸·Î ´ëüµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀº Á¶Á÷ÀÌ ¿©·¯ ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ¼öÁýÇÏ°í ºÐ¼®ÇÏ¿© °¡Ä¡¸¦ âÃâÇÏ°í ÆÄÆ®³Ê ¹× °í°´°ú ÀλçÀÌÆ®¸¦ ½±°Ô °øÀ¯ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. µû¶ó¼­ Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¼öÀÍÈ­ ¼Ö·ç¼ÇÀÇ µµÀÔ Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

±×·¯³ª µ¥ÀÌÅÍ ¼öÀÍÈ­ µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó ±â¾÷Àº ´Ù¾çÇÑ »çÀ̹ö º¸¾È À§Çù¿¡ Ãë¾àÇØÁö°í ÀÖÀ¸¸ç, ±× Áß¿¡¼­µµ µ¥ÀÌÅÍ À¯ÃâÀº °¡Àå ½É°¢ÇÑ À§Çè Áß ÇϳªÀÔ´Ï´Ù. ±â¾÷ÀÌ ¹æ´ëÇÑ ¾çÀÇ ¼ÒºñÀÚ µ¥ÀÌÅÍ¿Í ºñÁî´Ï½º µ¥ÀÌÅ͸¦ ¼öÁý, ÀúÀå, ÆÇ¸ÅÇÔ¿¡ µû¶ó »çÀ̹ö ¹üÁËÀڵ鿡°Ô ÁÁÀº Ç¥ÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù. À§Çù ÇàÀ§ÀÚµéÀº µ¥ÀÌÅÍ ½ºÅ丮Áö ½Ã½ºÅÛ, Ŭ¶ó¿ìµå Ç÷§Æû, APIÀÇ Ãë¾àÁ¡À» ¾Ç¿ëÇÏ¿© ±â¹Ð Á¤º¸¿¡ ¹«´ÜÀ¸·Î Á¢±ÙÇϰí, ±ÝÀüÀû ¼Õ½Ç, ÆòÆÇ ¼Õ»ó, ¹ýÀû Ã¥ÀÓÀ» ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ µ¥ÀÌÅÍ À¯Ãâ°ú »çÀ̹ö º¸¾È À§ÇùÀÇ ³ôÀº À§ÇèÀº ¾ÈÀüÇÑ ¼öÀÍ Ã¢Ãâ¿¡ ´ëÇÑ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Á¶Á÷ ±Ô¸ð Àü¸Á

Á¶Á÷ ±Ô¸ð¿¡ µû¶ó ½ÃÀåÀº ´ë±â¾÷°ú Áß¼Ò±â¾÷À¸·Î ºÐ·ùµË´Ï´Ù. Áß¼Ò±â¾÷ ºÎ¹®Àº 2023³â Àüü ½ÃÀå¿¡¼­ 33%ÀÇ ¸ÅÃâ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. Áß¼Ò±â¾÷Àº °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ°í ºñÁî´Ï½º ¼ºÀåÀ» ÃËÁøÇϱâ À§ÇØ µ¥ÀÌÅÍ ¼öÀÍÈ­ÀÇ °¡Ä¡¸¦ Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç°ú ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ AI ±â¹Ý ºÐ¼®ÀÇ µîÀåÀ¸·Î Áß¼Ò±â¾÷Àº °í°´ µ¥ÀÌÅÍ, ÆÇ¸Å ÀλçÀÌÆ®, ¿î¿µ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ¸¶ÄÉÆÃ Àü·«À» °­È­Çϰí, °ø±Þ¸ÁÀ» ÃÖÀûÈ­Çϸç, ¼­ºñ½º Á¦°øÀ» °³¼±ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¹æ¹ý·ÐÀÇ Àü¸Á

ºÐ¼® ¹æ¹ý·Ð¿¡ µû¶ó µ¥ÀÌÅÍ ¼­ºñ½ºÇü(DaaS), ÀλçÀÌÆ® ¼­ºñ½ºÇü(IaaS), ºÐ¼® Áö¿ø Ç÷§Æû ¼­ºñ½ºÇü(PaaS), ÀÓº£µðµå ¾Ö³Î¸®Æ½½º(Embedded Analytics)·Î ºÐ·ùµË´Ï´Ù. ÀÓº£µðµå ¾Ö³Î¸®Æ½½º ºÐ¾ß´Â 2023³â ½ÃÀå ¼öÀÍÀÇ 32%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÓº£µðµå ¾Ö³Î¸®Æ½½º¸¦ ÅëÇØ ±â¾÷Àº °í±Þ µ¥ÀÌÅÍ ºÐ¼®À» ¾ÖÇø®ÄÉÀ̼Ç, ¼ÒÇÁÆ®¿þ¾î, ºñÁî´Ï½º ÇÁ·Î¼¼½º¿¡ Á÷Á¢ ÅëÇÕÇÏ¿© ½Ç½Ã°£ ÀλçÀÌÆ®¿Í µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº ÇコÄɾî, Á¦Á¶, ¼Ò¸Å ¾÷°è¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤Åõǰí ÀÖÀ¸¸ç, ¿øÈ°ÇÑ µ¥ÀÌÅÍ ÅëÇÕÀ» ÅëÇØ »ç¿ëÀÚ °æÇèÀ» °³¼±ÇÏ°í ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۰íÀÚ ÇÏ´Â Á¶Á÷ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷º° Àü¸Á

½ÃÀåÀº »ê¾÷º°·Î BFSI, BFSI, E-Commerce ¹× ¼Ò¸Å, Åë½Å ¹× IT, Á¦Á¶, ÇコÄɾî, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, ±âŸ·Î ºÐ·ùµË´Ï´Ù. Åë½Å ¹× IT ºÎ¹®Àº 2023³â ½ÃÀå ¸ÅÃâÀÇ 18%¸¦ Â÷ÁöÇß½À´Ï´Ù. Åë½Å ¹× IT ±â¾÷µéÀº °í°´°úÀÇ »óÈ£ÀÛ¿ë, ³×Æ®¿öÅ© »ç¿ë·®, µðÁöÅÐ °Å·¡¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù. À̵é Á¶Á÷Àº Ÿ°ÙÆÃ ±¤°í, ³×Æ®¿öÅ© ÃÖÀûÈ­, ¿¹Ãø ºÐ¼®À» ÅëÇØ µ¥ÀÌÅÍ·Î ¼öÀÍÀ» âÃâÇÏ°í °í°´ Âü¿©¿Í ¿î¿µ È¿À²À» Çâ»ó½Ã۰íÀÚ ÇÕ´Ï´Ù.

±¸¼º¿ä¼Ò Àü¸Á

ÀÌ ½ÃÀåÀº ±¸¼º¿ä¼Òº°·Î ÄÁ¼³ÆÃ, ±¸Çö ¹× ÅëÇÕ, ¼­ºñ½º, Áö¿ø ¹× À¯Áöº¸¼ö, R&D, µµ±¸·Î ºÐ·ùµË´Ï´Ù. ¼­ºñ½º ºÎ¹®Àº 2023³â ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÇ 18%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº Àü¹® ÄÁ¼³ÆÃ, ¸ÂÃãÇü ¼Ö·ç¼Ç, ±³À° ÇÁ·Î±×·¥À» ÇÊ¿ä·Î ÇÏ´Â ÀÌ·¯ÇÑ ¼öÀÍÈ­ Àü·«ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ºÀå¼¼¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ °Å¹ö³Í½º °­È­, ºÐ¼® ±â´É ÃÖÀûÈ­, È¿°úÀûÀÎ ¼öÀÍÈ­ Àü·« ¼ö¸³À» À§ÇØ Àü¹®ÀûÀÎ ¼­ºñ½º¸¦ ã´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, LAMEA(¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«)·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2023³â ½ÃÀå ¸ÅÃâ Á¡À¯À²ÀÇ 26%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼ºÀåÀº µðÁöÅÐ ÀüȯÀÇ ÁøÀü, ÀÎÅÍ³Ý º¸±Þ·üÀÇ Áõ°¡, E-Commerce ¹× ÇÉÅ×Å© »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡ ±âÀÎÇÕ´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡¿¡¼­´Â µ¥ÀÌÅÍ ±â¹Ý ºñÁî´Ï½º ¸ðµ¨ÀÌ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº Ÿ°Ù ¸¶ÄÉÆÃ, °í°´ Âü¿©, ¾÷¹« È¿À²È­¸¦ À§ÇØ µ¥ÀÌÅÍ ºÐ¼®À» Àû±ØÀûÀ¸·Î Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀåÀº Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ½ºÅ¸Æ®¾÷°ú Æ´»õ½ÃÀåÀ» °ø·«ÇÏ´Â ±â¾÷µé¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, Ä¡¿­ÇÑ °æÀïÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº AI ±â¹Ý ºÐ¼®, »ê¾÷º° ¼öÀÍÈ­ Àü·«, µ¥ÀÌÅÍ º¸¾È¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ ºñ¿ë È¿À²ÀûÀ̰í È®À强ÀÌ ³ôÀº ¸ðµ¨À» Ãß±¸ÇÏ°í ±ÝÀ¶, ÇコÄɾî, ¼Ò¸Å µî ´Ù¾çÇÑ ºÐ¾ßÀÇ µ¥ÀÌÅÍ¿¡¼­ °¡Ä¡¸¦ âÃâÇϱâ À§ÇØ ÆÄÆ®³Ê½Ê°ú ±â¼ú Çõ½ÅÀ» ÃßÁøÇϸ鼭 °æÀïÀº ´õ¿í Ä¡¿­ÇØÁö°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå : ¹æ¹ýº°

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå : ¾÷°èº°

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå : Áö¿ªº°

Á¦10Àå ±â¾÷ °³¿ä

Á¦11Àå µ¥ÀÌÅÍ ¼öÀÍÈ­ ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Data Monetization Market size is expected to reach $17.12 billion by 2031, rising at a market growth of 24.4% CAGR during the forecast period.

The North America segment recorded 39% revenue share in the market in 2023. This dominance was driven by the rapid adoption of advanced analytics, AI, and big data technologies across various industries, including banking, retail, healthcare, and telecommunications. North American enterprises increasingly leverage these monetization strategies to enhance customer insights, optimize operations, and generate new revenue streams.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In February, 2025, Cisco Systems, Inc. teamed up with NVIDIA, a computer manufacturer corporation to accelerate AI adoption in enterprises. By integrating Cisco Silicon One with NVIDIA Spectrum-X, they aim to create a unified architecture for AI-ready data centers. This collaboration will simplify deployment, improve performance, and provide enterprises with flexibility in AI infrastructure investments. Moreover, In March, 2025, Salesforce, Inc. announced the partnership with 6sense, a Revenue Intelligence Platform by integrating its AI-powered account-based orchestration platform with Salesforce Pardot, enhancing marketing automation. This integration enables users to prioritize high-potential accounts, uncover buying signals, and engage buyers through personalized campaigns, aligning sales and marketing efforts for improved pipeline growth.

KBV Cardinal Matrix - Data Monetization Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Google LLC and Microsoft Corporation are the forerunners in the Data Monetization Market. In July, 2024, Microsoft Corporation announced the partnership with Criteo, an advertisement company to address fragmentation in retail media. This partnership will integrate Microsoft's demand with Criteo's global retailer network, enhancing the buying experience for advertisers. The integration offer new revenue opportunities and tap into AI-driven innovations for better ad performance. Companies such as Oracle Corporation, Cisco Systems, Inc., and Siemens AG are some of the key innovators in Data Monetization Market.

Market Growth Factors

Organizations increasingly leverage data to enhance decision-making processes, optimize operations, and gain a competitive edge. Enterprises are moving away from traditional intuition-based strategies to data-driven approaches, enabling them to make informed choices in marketing, customer engagement, supply chain management, and risk assessment. The ability to analyze vast amounts of structured and unstructured data provides businesses with actionable insights, improving productivity and efficiency across various departments. Thus, enterprises' growing demand for data-driven decision-making drives the market's growth.

Additionally, Cloud computing has revolutionized how enterprises store, manage, and process data, significantly impacting monetization. Traditional on-premise infrastructure is being replaced by cloud-based data platforms that offer scalability, cost-effectiveness, and enhanced security. Cloud solutions enable organizations to seamlessly collect and analyze data across multiple sources, making extracting value and sharing insights with partners and customers easier. Therefore, the increasing adoption of cloud-based data monetization solutions propels the market's growth.

Market Restraining Factors

However, The increasing adoption of data monetization has made enterprises vulnerable to various cybersecurity threats, with data breaches among the most significant risks. As companies collect, store, and sell vast amounts of consumer and business data, they become prime targets for cybercriminals. Threat actors exploit vulnerabilities in data storage systems, cloud platforms, and APIs to gain unauthorized access to sensitive information, leading to financial losses, reputational damage, and legal consequences. Thus, the high risk of data breaches and cybersecurity threats creates challenges for secure monetization.

Organization Size Outlook

On the basis of organization size, the market is classified into large enterprises and SMEs. The SMEs segment recorded 33% revenue share in the market in 2023. Small and medium-sized enterprises (SMEs) increasingly recognize the value of data monetization in gaining a competitive edge and driving business growth. With the rise of cloud-based solutions and affordable AI-powered analytics, SMEs can leverage customer data, sales insights, and operational data to enhance marketing strategies, optimize supply chains, and improve service offerings.

Method Outlook

Based on method, the market is characterized into data as a service, insight as a service, analytics-enabled platform as a service, and embedded analytics. The embedded analytics segment procured 32% revenue share in the market in 2023. Embedded analytics allows businesses to integrate advanced data analytics directly into their applications, software, and business processes, enabling real-time insights and data-driven decision-making. This method is increasingly being adopted across healthcare, manufacturing, and retail industries, where organizations seek to enhance user experiences and improve operational efficiency through seamless data integration.

Vertical Outlook

By vertical, the market is divided into BFSI, e-commerce & retail, telecommunications & IT, manufacturing, healthcare, energy & utilities, and others. The telecommunications & IT segment garnered 18% revenue share in the market in 2023. Telecom and IT companies generate massive volumes of data from customer interactions, network usage, and digital transactions. These organizations increasingly monetize data through targeted advertising, network optimization, and predictive analytics to enhance customer engagement and operational efficiency.

Component Outlook

Based on component, the market is segmented into consulting, implementation & integration, services, supporting & maintenance, research & development, and tools. The services segment held 18% revenue share in the market in 2023. This growth is driven by the rising adoption of these monetization strategies that require expert consultation, customized solutions, and training programs. Businesses increasingly seek specialized services to enhance data governance, optimize analytics capabilities, and develop effective monetization strategies.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment witnessed 26% revenue share in the market in 2023. The region's growth is attributed to the rising digital transformation, increasing internet penetration, and the rapid expansion of e-commerce and fintech industries. Countries like China, India, and Japan are experiencing a surge in data-driven business models, with enterprises actively leveraging data analytics for targeted marketing, customer engagement, and operational efficiency.

Market Competition and Attributes

The Data Monetization Market remains highly competitive, driven by startups and niche firms offering innovative solutions. These companies focus on AI-driven analytics, industry-specific monetization strategies, and data security. Competition intensifies as businesses seek cost-effective, scalable models, fostering partnerships and technological advancements to unlock value from data across sectors like finance, healthcare, and retail.

Recent Strategies Deployed in the Market

List of Key Companies Profiled

Global Data Monetization Market Report Segmentation

By Organization Size

By Method

By Vertical

By Component

By Geography

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Competition Analysis - Global

Chapter 5. Global Data Monetization Market by Organization Size

Chapter 6. Global Data Monetization Market by Method

Chapter 7. Global Data Monetization Market by Vertical

Chapter 8. Global Data Monetization Market by Component

Chapter 9. Global Data Monetization Market by Region

Chapter 10. Company Profiles

Chapter 11. Winning Imperatives of Data Monetization Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â