¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå - ½ÃÀå ±Ô¸ð, Á¡À¯À², »ê¾÷ µ¿Ç⠺м® º¸°í¼­ : ÄÄÆ÷³ÍÆ®º°, ¿ëµµº°, ±â¼úº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2023-2030³â)
Global Adaptive AI Market Size, Share & Industry Trends Analysis Report By Component (Platform, and Services), By Application, By Technology, By End-use, By Regional Outlook and Forecast, 2023 - 2030
»óǰÄÚµå : 1397543
¸®¼­Ä¡»ç : KBV Research
¹ßÇàÀÏ : 2023³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 326 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,600 £Ü 5,003,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 4,320 £Ü 6,003,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 10¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,048 £Ü 8,405,000
PDF (Corporate User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀûÀÀÇü AI ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 119¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀ̸ç, ¿¹Ãø ±â°£ Áß CAGR 42.3%ÀÇ ¼ºÀå·ü·Î »ó½ÂÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±×·¯³ª, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àû´ëÀûÀÎ °ø°ÝÀÇ ¿µÇâÀ» ¹Þ±â ½±°í, ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚ°¡ ÀÔ·ÂÀ» Á¶ÀÛÇÏ¿© ½Ã½ºÅÛÀ» ¼ÓÀδÙ. ÀÌ·Î ÀÎÇØ ¿¹ÃøÀÌ ºÎÁ¤È®Çϰųª ÆíÇâµÇ¾î AI ¸ðµ¨ÀÇ ¹«°á¼ºÀÌ ¼Õ»óµÉ ¼ö ÀÖ½À´Ï´Ù. °ø°ÝÀÚ´Â ¸ðµ¨ÀÇ Ãß·Ð Äõ¸®¸¦ ÅëÇØ AI ½Ã½ºÅÛÀ» Ž»öÇÏ¿© ÇнÀ µ¥ÀÌÅÍ ¹× ¸ðµ¨ ¸Å°³ º¯¼ö¿¡ ´ëÇÑ ±â¹Ð Á¤º¸¸¦ ²ø¾î³¾ ¼ö ÀÖ½À´Ï´Ù. À§ÀÇ ¿äÀÎÀº ¾ÕÀ¸·Î ¼ö³â°£ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±¸¼º ¿ä¼Ò Àü¸Á

±¸¼º ¿ä¼Ò¿¡ µû¶ó ½ÃÀåÀº Ç÷§Æû ¹× ¼­ºñ½º·Î ±¸ºÐµË´Ï´Ù. ¼­ºñ½º ºÎ¹®Àº 2022³â ½ÃÀå¿¡¼­ »ó´çÇÑ ¼öÀÍ °øÀ¯¸¦ ȹµæÇß½À´Ï´Ù. ¼­ºñ½º´Â °ú°Å µ¥ÀÌÅÍ¿¡¼­ ÇнÀÇϰí Á¤È®ÇÑ ¿¹ÃøÀ» ¼öÇàÇÏ°í µ¿ÇâÀ» ½Äº°ÇÏ´Â ¿¹Ãø ºÐ¼®¿¡ Ź¿ùÇÕ´Ï´Ù. ÀÌ´Â ¾÷°è µ¿Çâ ¿¹ÃøÀ» À§ÇÑ ±ÝÀ¶, Áúº´ ¿¹Èĸ¦ À§ÇÑ °Ç°­ °ü¸®, ¼ö¿ä ¿¹ÃøÀ» À§ÇÑ °ø±Þ¸Á °ü¸® µî ¾÷°è¿¡¼­ À¯¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼­ºñ½º´Â »ç±â ŽÁö ¹× À§Çù ºÐ¼®À» À§ÇÑ »çÀ̹ö º¸¾È¿¡µµ äÅõ˴ϴÙ.

¿ëµµ Àü¸Á

¿ëµµ¿¡ µû¶ó ½ÃÀåÀº ½Ç½Ã°£, ¿ÀÇÁ¶óÀÎ ÇнÀ ¹× ÀûÀÀ, ÄÁÅØ½ºÆ® ÀÎ½Ä ÀûÀÀ, ÀÚÀ²Àû ÀÇ»ç °áÁ¤ µîÀ¸·Î ¼¼ºÐÈ­µË´Ï´Ù. 2022³â¿¡´Â ¿ÀÇÁ¶óÀÎ ÇнÀ ¹× ÀûÀÀ ºÐ¾ß°¡ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ½Ã½ºÅÛÀÌ ¿ÀÇÁ¶óÀÎÀ¸·Î ÇнÀ ¹× ÀûÀÀÇÏ´Â ´É·ÂÀº Àΰ£°úÀÇ »óÈ£ ÀÛ¿ëÀ̳ª ½Ç½Ã°£ µ¥ÀÌÅÍ ¼Ò½º°¡ ¾ø´Â °æ¿ì¿¡µµ ½Ã½ºÅÛÀÌ ´õ ³ª¾ÆÁú ¼ö ÀÖµµ·Ï Çϱ⠶§¹®¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀýÂ÷´Â ¿ªµ¿ÀûÀÎ »óȲ¿¡¼­µµ AI ½Ã½ºÅÛÀÌ È¿°úÀûÀ¸·Î °è¼Ó ÀÛµ¿Çϰí ÃֽŠ»óŸ¦ À¯ÁöÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.

±â¼ú Àü¸Á

±â¼úº°·Î º¼ ¶§ ½ÃÀåÀº ¸Ó½Å·¯´×, ½ÉÃþ ÇнÀ, ÀÚ¿¬ ¾ð¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü µîÀ¸·Î ºÐ·ùµË´Ï´Ù. ¸Ó½Å·¯´× ºÎ¹®Àº 2022³â ½ÃÀå¿¡¼­ ÇöÀúÇÑ ¼öÀÍ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº Áö¼ÓÀûÀ¸·Î ÇнÀÇϰí ÀûÀÀÇϵµ·Ï Á¶Á÷È­µÇ¾î ÀÖ½À´Ï´Ù. ÀûÀÀÇü AI¸¦ »ç¿ëÇϸé Áö¼ÓÀûÀÎ ÇнÀÀ» ÅëÇØ ½Ã½ºÅÛÀÌ ½Ç½Ã°£À¸·Î ¸ðµ¨À» ¾÷µ¥ÀÌÆ®ÇÒ ¼ö ÀÖ¾î µ¿Àû ½Ã³ª¸®¿À¿¡¼­ ÀûÀýÇϰí È¿°úÀûÀÎ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â »õ·Î¿î µ¥ÀÌÅÍ ÆÐÅÏÀ» ±â¹ÝÀ¸·Î ¸ðµ¨À» ÁøÈ­½ÃÄÑ¾ß ÇÏ´Â ¿¹Ãø ºÐ¼® ¿ëµµ¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

ÃÖÁ¾ ¿ëµµ Àü¸Á

ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ½ÃÀåÀº BFSI, ÇコÄÉ¾î »ý¸í°úÇÐ, IT ¹× Åë½Å, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, Á¦Á¶, ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® µîÀ¸·Î ºÐ·ùµË´Ï´Ù. 2022³â¿¡´Â BFSI ºÎ¹®ÀÌ ½ÃÀå¿¡¼­ °¡Àå Å« ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù. ±ÝÀ¶¾÷°è¿¡¼­ÀÇ ÀÌ¿ëÀÌ ´«¿¡ ¶ç´Â °ÍÀÌ ¿¹Ãø±â°£ Áß ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ºÎÁ¤ÇàÀ§´Â ±ÝÀ¶±â°ü¿¡°Ô »Ñ¸®±íÀº À§ÇùÀÔ´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½ºÄµÇϰí, ÆÐÅÏÀ» ã¾Æ³»°í, ½Ç½Ã°£À¸·Î ºñÁ¤»óÀ» ¹ß°ßÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» ÅëÇØ »çÀü Ȱµ¿ÀûÀÎ ºÎÁ¤ ÇàÀ§¸¦ ŽÁöÇÏ°í ¿¹¹æÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚ µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °íµµ·Î ¸ÂÃãÈ­µÈ ¹ðÅ· °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¿ªº° Àü¸Á

Áö¿ªº°·Î º¼ ¶§ ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, LAMEA¿¡¼­ ºÐ¼®µË´Ï´Ù. 2022³â¿¡´Â ºÏ¹Ì°¡ ÀÌ ½ÃÀå¿¡¼­ °¡Àå Å« ¸ÅÃâ¾× Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â °Ç°­ °ü¸®¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù. °³ÀÎÈ­µÈ Ä¡·á °èȹ, ¿¹Ãø ºÐ¼® ¹× ½Ç½Ã°£ ȯÀÚ ¸ð´ÏÅ͸µÀº ¸ðµÎ º´¿ø ¹× ±âŸ ÀÇ·á ½Ã¼³¿¡¼­ À̵éÀ» »ç¿ëÇÏ¿© °¡´ÉÇÕ´Ï´Ù. ±â¼úÀ» ÅëÇØ ÀÇ·á Àü¹®°¡´Â ÇØ´ç ºÐ¾ßÀÇ »õ·Î¿î Áö½Ä°ú ƯÁ¤ ȯÀÚ¿¡ ´ëÇÑ Á¤º¸¸¦ °í·ÁÇÏ¿© Áø´Ü ¹× Ä¡·á °èȹÀ» Áö¼ÓÀûÀ¸·Î ¼öÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§ ¹× Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

Á¦3Àå ½ÃÀå °³¿ä

Á¦4Àå ¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦5Àå ¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå : ¿ëµµº°

Á¦6Àå ¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå : ±â¼úº°

Á¦7Àå ¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

Á¦8Àå ¼¼°èÀÇ ÀûÀÀÇü AI ½ÃÀå : Áö¿ªº°

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

Á¦10Àå ½ÃÀå ¼º°ø Çʼö Á¶°Ç

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Global Adaptive AI Market size is expected to reach $11.9 billion by 2030, rising at a market growth of 42.3% CAGR during the forecast period.

Context-aware adaptation leads to more personalized and relevant user experiences. By considering the context, systems can provide information and services better aligned with user needs and preferences. Adaptive systems can optimize processes and resource allocation by responding to changing conditions. Therefore, the context-aware adaptation segment captured $ 118.8 million revenue in the market in 2022. This can increase efficiency in various domains, from supply chain management to energy consumption. Context-aware adaptation contributes to the automation of decision-making processes. Systems can autonomously adjust settings and behaviors, reducing the need for constant manual intervention. Some of the factors impacting the market are rapid technological advancements of adaptive AI, proliferation of data from various sources, and rising security concerns of data.

Ongoing developments in machine learning algorithms, including deep learning and reinforcement learning, contribute to increased efficiency and effectiveness in these systems. These algorithms enable AI models to learn from complex data patterns, adapt to diverse environments, and make more accurate predictions. Improvements in natural language processing techniques contribute to expanding these in applications involving human-machine interaction. Additionally, the availability of large and diverse datasets provides these systems with abundant training data. This allows these systems to learn from various examples, improving their ability to recognize patterns, make predictions, and adapt to different contexts. The availability of domain-specific data enables these systems to fine-tune their models for specific contexts. The market is poised for further growth and innovation as the digital ecosystem generates vast data.

However, these systems are susceptible to adversarial attacks, where malicious actors manipulate inputs to deceive the system. This can lead to incorrect or biased predictions, compromising the integrity of the AI model. Attackers may attempt to extract sensitive information about the training data or model parameters by probing the AI system through model inference queries. The above factors will hamper market growth in the coming years.

Component Outlook

On the basis of component, the market is segmented into platform and services. The services segment acquired a substantial revenue share in the market in 2022. Its services excel in predictive analytics by learning from historical data to make accurate forecasts and identify trends. This is valuable in industries such as finance for predicting industry trends, healthcare for disease prognosis, and supply chain management for demand forecasting. These services are employed in cybersecurity for fraud detection and threat analysis.

Application Outlook

Based on application, the market is fragmented into real-time, offline learning & adaptation, context-aware adaptation, autonomous decision-making, and others. In 2022, the offline learning and adaptation segment held the highest revenue share in the market. The system's ability to learn and adapt offline is crucial as it allows the system to keep becoming better even in the absence of human interactions or real-time data sources. These procedures guarantee that, in dynamic contexts, the AI system can continue to function effectively and stay current.

Technology Outlook

By technology, the market is categorized into machine learning, deep learning, natural language processing (NLP), computer vision, and others. The machine learning segment recorded a remarkable revenue share in the market in 2022. Machine learning algorithms are organized to learn and adapt continuously. In adaptive AI, continuous learning enables systems to update their models in real-time, ensuring they remain relevant and effective in dynamic scenarios. This is particularly important in predictive analytics applications, where models must evolve based on new data patterns.

End-Use Outlook

Based on end-use, the market is classified into BFSI, healthcare & life sciences, IT & telecommunications, aerospace & defense, manufacturing, retail & e-commerce, media & entertainment, and others. In 2022, the BFSI segment generated the largest revenue share in the market. Prominent use of this in financial industries is driving market growth over the projection period. Fraudulent activity is a persistent threat to financial institutions. Proactive fraud detection and prevention are made possible by its ability to scan enormous volumes of data, spot patterns, and spot abnormalities in real time. Moreover, using consumer data analysis, these systems may provide highly customized banking experiences.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. In 2022, the North America region witnessed the largest revenue share in the market. It is being widely used in healthcare in North America. Personalized treatment plans, predictive analytics, and real-time patient monitoring are all made possible by using these in hospitals and other medical facilities. Due to technology, medical professionals can always modify their diagnostic and treatment plans considering new findings in the field and information about specific patients.

The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include RisingMax Inc., Suffescom Solutions Inc., Markovate Inc., Cisco Systems, Inc., LeewayHertz, Cygnus Softwares, Inc., Ness Group of Companies, Softura, Tech Mahindra Limited, and Apexon.

Scope of the Study

Market Segments covered in the Report:

By Component

By Application

By Technology

By End-use

By Geography

Companies Profiled

Unique Offerings from KBV Research

Table of Contents

Chapter 1. Market Scope & Methodology

Chapter 2. Market at a Glance

Chapter 3. Market Overview

Chapter 4. Global Adaptive AI Market by Component

Chapter 5. Global Adaptive AI Market by Application

Chapter 6. Global Adaptive AI Market by Technology

Chapter 7. Global Adaptive AI Market by End-use

Chapter 8. Global Adaptive AI Market by Region

Chapter 9. Company Profiles

Chapter 10. Winning Imperatives of Adaptive AI Market

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â