¼¼°èÀÇ À§¼º ºÎǰ ½ÃÀå
Satellite Components
»óǰÄÚµå : 1799025
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 186 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,215,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,647,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À§¼º ºÎǰ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 43¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À§¼º ºÎǰ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 5.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 43¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾ÈÅ׳ª ±¸¼º¿ä¼Ò´Â CAGR 6.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 16¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÆÄ¿ö ½Ã½ºÅÛ ±¸¼º¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 3,480¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À§¼º ºÎǰ ½ÃÀåÀº 2024³â¿¡ 8¾ï 3,480¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 9.1%·Î 2030³â±îÁö 8¾ï 6,740¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.7%¿Í 5.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À§¼º ºÎǰ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»õ·Î¿î À§¼º ¾ÆÅ°ÅØÃ³´Â ¾î¶»°Ô ±¸¼º¿ä¼Ò ¼öÁØÀÇ Çõ½ÅÀ» ÃËÁøÇÒ ¼ö ÀÖÀ»±î?

¼¼°è À§¼º ºÎǰ ½ÃÀåÀº À§¼º ¾ÆÅ°ÅØÃ³°¡ ´ë±Ô¸ð ¸ð³î¸®½Ä ½Ã½ºÅÛ¿¡¼­ ºÐ»êÇü, ¸ðµâÇü, ´ÙÁß ±Ëµµ º°ÀÚ¸®·Î ÁøÈ­ÇÔ¿¡ µû¶ó Å« Àüȯ±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â Æ®·£½Ã¹ö, ¾ÈÅ׳ª, ž翭 ¾î·¹ÀÌ, Àü·Â °ü¸® ÀåÄ¡(PMU), ¿Âº¸µå ÄÄÇ»ÅÍ µîÀÇ ¼ÒÇüÈ­, °æ·®È­, °íÈ¿À² ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Å¥ºê»û°ú ¼ÒÇü À§¼ºÀº Å©±â, ¹«°Ô, Àü·Â ¼Òºñ(SWaP)ÀÇ ¾ö°ÝÇÑ Á¦¾à ¼Ó¿¡¼­ ÃÖÀûÀÇ ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ´Â °íµµ·Î ÅëÇÕµÈ ºÎǰ ¼³°è°¡ ¿ä±¸µË´Ï´Ù. °¢ Á¦Á¶¾÷ü´Â ½ÅÈ£ ó¸®, Á¦¾î, ÅÚ·¹¸ÞÆ®¸®¸¦ ÄÄÆÑÆ®ÇÑ ÆÐŰÁö¿¡ ÅëÇÕÇÑ ´Ù±â´É ÆäÀÌ·Îµå ¸ðµâ ¶Ç´Â À籸¼º °¡´ÉÇÑ ½Ã½ºÅÛ¿ÂĨ(SoC)À¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.

½ÅÈï À§¼º Ç÷§ÆûÀº ¿­ Á¦¾î ½Ã½ºÅÛ, °æ·® ±¸Á¶ Àç·á(ź¼Ò º¹ÇÕÀç, ƼŸ´½ ÇÕ±Ý µî), ¾ÈÅ׳ª¿Í žçÀüÁö ÆÐ³ÎÀÇ ±Ëµµ»ó È®ÀåÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Àü°³ °¡´ÉÇÑ ¸ÞÄ¿´ÏÁòÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. RF ÁõÆø±â ¹× Àü·Â ¸ðµâ¿¡ ÁúÈ­°¥·ý(GaN)°ú źȭ±Ô¼Ò(SiC)¸¦ »ç¿ëÇÏ¿© ´õ ³ôÀº Á֯ļö, Àü·Â ¹Ðµµ, ³»¹æ»ç¼±¼ºÀ» Áö¿øÇÏ¿© »ó¾÷¿ë À§¼º°ú ±¹¹æ À§¼º ¸ðµÎ¿¡¼­ ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ºÎǰ Á¦Á¶¾÷üµéÀº 3D ÇÁ¸°ÆÃ, ÀûÃþ °¡°ø, ·¡Çǵå ÇÁ·ÎÅäŸÀÌÇÎÀ» Ȱ¿ëÇÏ¿© »ý»êÀÇ ¹Îø¼ºÀ» À¯ÁöÇϸ鼭 ¼³°èÀÇ º¹À⼺À» ¹Ýº¹ÀûÀ¸·Î °³¼±Çϰí ÀÖ½À´Ï´Ù.

À§¼º OEMÀÌ ºÎǰ »óÈ£¿î¿ë¼º°ú °ø±Þ¸Á ÀÌÁßÈ­¸¦ ¿ì¼±½ÃÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Àú±Ëµµ(LEO) ¹× Á߱˵µ(MEO)¿¡¼­ ¿î¿µµÇ´Â À§¼º ÄܽºÅÚ·¹À̼ÇÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ã½ºÅÛÀÇ »óÈ£¿î¿ë¼º°ú Ç÷§ÆûÀÇ È®À强ÀÌ ÇʼöÀûÀÔ´Ï´Ù. À§¼º OEMÀº ¿øÈ°ÇÑ Å©·Î½º Ç÷§Æû ȣȯ¼ºÀ» º¸ÀåÇϱâ À§ÇØ °³¹æÇü ÀÎÅÍÆäÀ̽º Ç¥Áذú Ç÷¯±× ¾Ø Ç÷¹ÀÌ ÅëÇÕÀ» Áö¿øÇÏ´Â ±¸¼º¿ä¼Ò¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ±ºÁý À§¼º ±¸¼º¿¡ »ç¿ëµÇ´Â ¸ðµâÇü ¹ö½º, ±¤ Æ®·£½Ã¹ö, GNSS ¼ö½Å±â, ÀÚ¼¼ Á¦¾î ½Ã½ºÅÛ(ACS)¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. Ç¥ÁØÈ­µÈ ÆûÆÑÅÍ¿Í ÀÎÅÍÆäÀ̽º ÇÁ·ÎÅäÄÝÀº °ø±Þ¾÷ü ´Ùº¯È­¸¦ ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¿£Áö´Ï¾î¸µ ó¸® ½Ã°£À» ´ÜÃàÇÏ°í ¿©·¯ À§¼º ÀÓ¹«¿¡ °ÉÃÄ Çϵå¿þ¾î¸¦ Àç»ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

µ¿½Ã¿¡ ¼¼°è °ø±Þ¸ÁÀÇ Ãë¾à¼ºÀ¸·Î ÀÎÇØ OEM ¹× ½Ã½ºÅÛ ÅëÇÕ ¾÷ü´Â À§¼º ºÎǰ Á¶´Þ Àü·«À» ÀçÆò°¡ÇØ¾ß ÇÕ´Ï´Ù. ÁöÁ¤ÇÐÀû ¿äÀÎ, ¼öÃâ ±ÔÁ¦, ¹ÝµµÃ¼ ºÎÁ·À¸·Î ÀÎÇØ ¸ÖƼ º¥´õ ÀÎÁõ, ±¹³» ºÎǰ Á¦Á¶, µà¾óÀ¯Áî Çϵå¿þ¾î Àü·«ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. À§¼º »ç¾÷ÀÚ´Â ¶ÇÇÑ ºÎǰ Á¦Á¶ÀÇ ÃßÀû¼º°ú ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇϱâ À§ÇØ °ø±Þ¸Á Åõ¸í¼º, µðÁöÅÐ Æ®À©, ǰÁú °ü¸® ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇÐÀº ¸®µå ŸÀÓÀÌ ±ä ºÎǰÀ̳ª Áö¸®ÀûÀ¸·Î Á¦ÇÑµÈ °ø±Þ¾÷ü¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ½Å¼ÓÇÏ°Ô ¹èÄ¡ ¹× ¾÷±×·¹À̵åÇÒ ¼ö Àִ ź·ÂÀûÀÎ ¸ðµâ½Ä À§¼º ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

´ÙÀ½ ´Ü°èÀÇ ÄÄÆ÷³ÍÆ® ·¹º§ Çõ½ÅÀ» ÁÖµµÇÒ ±â¼ú ºÐ¾ß´Â ¾îµðÀϱî?

¿©·¯ ±¸¼º¿ä¼Ò ¿µ¿ª¿¡ °ÉÄ£ ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀº Â÷¼¼´ë À§¼º ½Ã½ºÅÛÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ºÐ¾ß¿¡¼­´Â ½º¸¶Æ® ¿¡³ÊÁö ºÐ¹è ¸ðµâ°ú ÃÖ´ë Àü·ÂÁ¡ ÃßÁ¾(MPPT) ±â´ÉÀ» °®Ãá ÀûÀÀÇü ž籤 ÆÐ³ÎÀÌ ¿¡³ÊÁö ¼öÈ®°ú ÀúÀåÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ÃßÁø·ÂÀº Ȧ È¿°ú ÃßÁø±â, À̿ ¿£Áø µî ¼ÒÇü Àü±â ÃßÁø ½Ã½ºÅÛÀ» ÃʼÒÇü-ÃʼÒÇü À§¼º¿ëÀ¸·Î ¼ÒÇüÈ­ÇÏ¿© ÃÖ¼ÒÇÑÀÇ ¿¬·á Áú·®À¸·Î Á¤È®ÇÑ Á¤Á¡ À¯Áö¿Í ±Ëµµ Á¦¾î¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ÀÚ¼¼ °áÁ¤ Á¦¾î ½Ã½ºÅÛ(ADCS)Àº ¼ÒÇüÈ­µÈ ½ºÅ¸ Æ®·¡Ä¿, ¸®¾×¼Ç ÈÙ, ÀÚÀ̷νºÄÚÇÁ¿Í AI ±â¹Ý ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÏ¿© °íµµ·Î ¿ªµ¿ÀûÀÎ ½Ã³ª¸®¿À¿¡¼­µµ ÀÚÀ²ÀûÀÎ ÀÚ¼¼ Á¦¾î¸¦ ½ÇÇöÇÕ´Ï´Ù.

Åë½Å ¼­ºê½Ã½ºÅÛµµ ȹ±âÀûÀÎ ¹ßÀüÀ» ÀÌ·ç¾úÀ¸¸ç, ÆòÆÇÇü À§»ó ¹è¿­ ¾ÈÅ׳ª, ±¤Åë½Å ´Ü¸»±â, Ka/Q/V ´ë¿ª Æ®·£½Ã¹ö°¡ ÁÖ·ù·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò´Â ´õ ºü¸¥ µ¥ÀÌÅÍ ´Ù¿î¸µÅ©, À§¼º °£ Åë½Å(Å©·Î½º ¸µÅ©), °í󸮷® À§¼º(HTS) ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ µ¿Àû ºö ½ºÆ¼¾î¸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¿Âº¸µå ÄÄÇ»ÆÃÀº ¹æ»ç¼± ³»¼º ÇÁ·Î¼¼¼­, À籸¼º °¡´ÉÇÑ FPGA, ±Ëµµ»ó µ¥ÀÌÅÍ Ã³¸®, À̺¥Æ® °¨Áö, ÀÌ»ó º¸Á¤À» Áö¿øÇÏ´Â ¿§Áö AI Ĩ¿¡ ÀÇÇØ ÀçÁ¤Àǵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀº º¯È­ÇÏ´Â ¿î¿µ ¿ä±¸»çÇ׿¡ ½Ç½Ã°£À¸·Î ÀûÀÀÇÒ ¼ö ÀÖ´Â º¸´Ù ÀÚÀ²ÀûÀ̰í À¯¿¬Çϸç ÀÓ¹«¿¡ ±¸¾Ö¹ÞÁö ¾Ê´Â À§¼º Ç÷§ÆûÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

»ó¾÷, ±¹¹æ, °úÇÐ ºÐ¾ß¿¡¼­ ½ÃÀå ¼ºÀåÀ» À̲ô´Â ÈûÀº ¹«¾ùÀϱî?

À§¼º ºÎǰ ½ÃÀåÀÇ ¼ºÀåÀº À§¼º º°ÀÚ¸® ¹ß»çÀÇ ±ÞÁõ, À§¼º Ç÷§ÆûÀÇ ¼ÒÇüÈ­, »ó¾÷, Á¤ºÎ ¹× ¿¬±¸ ºÐ¾ß¿¡¼­ÀÇ ÀÀ¿ë ºÐ¾ß È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Starlink, OneWeb, Amazon Kuiper¿Í °°Àº »ó¾÷¿ë ±¤´ë¿ª À§¼º Á¦°ø¾÷üµéÀº °í󸮷® LEO ½Ã½ºÅÛÀ» À§ÇÑ ´ë±Ô¸ð ºÎǰ Á¶´ÞÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§¼º º°ÀÚ¸®¿¡´Â ´ë·® »ý»êÀÌ °¡´ÉÇÏ°í ºü¸¥ ¹èÆ÷ ÀÏÁ¤À» Áö¿øÇÏ´Â ºñ¿ë È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ±¸¼º¿ä¼Ò°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³×Æ®¿öÅ©ÀÇ ±Ô¸ð°¡ È®´ëµÊ¿¡ µû¶ó Ç¥ÁØÈ­µÇ°í Å×½ºÆ® °¡´ÉÇÑ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ±¸¼º¿ä¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±¹¹æ ºÐ¾ß¿¡¼­´Â ¾ÈÀüÇÑ Åë½Å, ¿ìÁÖ ±â¹Ý °¨½Ã, ¹Ì»çÀÏ ÃßÀû¿¡ ´ëÇÑ Àü·«Àû ¿ä±¸°¡ ¹æ»ç¼± ³»¼º ¹× »çÀ̹ö ³»¼ºÀ» °®Ãá ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Î¼ö¿ë ¹× ±º¿ë À§¼ºÀº °­È­µÈ ¾Ïȣȭ ¸ðµâ, º¯Á¶ ¹æÁö ¸Þ¸ð¸®, °£¼· ¹æÁö ½ÅÈ£ ÇÁ·Î¼¼¼­ µî ¿µ¿ªÀ» ÃÊ¿ùÇÏ´Â ±¸¼º¿ä¼Ò ¿ä±¸ »çÇ×À» »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ±âÈÄ °üÃø¿¡¼­ ½É¿ìÁÖ Å½»ç¿¡ À̸£´Â °úÇÐ ÀÓ¹«´Â °í°¨µµ ¼¾¼­ ÆäÀ̷εå, °íÁ¤¹Ð ¾×Ãß¿¡ÀÌÅÍ, Àå½Ã°£ ÃßÁø ¹× ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Çʿ伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù.

À§¼º ÇöÁöÈ­, ±¹°¡ ¿ìÁÖ Àü·«, ¿ìÁÖ Å½»ç ÇÁ·Î±×·¥À» Áö¿øÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ºÎǰ °ø±Þ¾÷ü »ýŰ踦 ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Î°ü Çù·Â, º¸Á¶±Ý¿¡ ÀÇÇÑ ºÎǰ ¿¬±¸, ±¹°¡ ¾Èº¸ÀÇ Àǹ«È­´Â Ư¼ö ¼­ºê½Ã½ºÅÛ Á¦Á¶¾÷ü¿¡ »õ·Î¿î ½ÃÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. À§¼º ¹ß»ç Áõ°¡, ¸ðµâÇü ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³, ÀÌÁ¾ »ê¾÷ °£ ¼ö¿ä µî À§¼º ºÎǰ ½ÃÀåÀº ±â¼ú Çõ½Å, °ø±Þ¸Á ÁøÈ­, ¸ðµç ¿µ¿ª¿¡¼­ ¿ìÁÖ °ø°£ÀÇ Àü·«Àû Á߿伺 È®´ë¿¡ ÈûÀÔ¾î Áö¼ÓÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¾ÈÅ׳ª ±¸¼º¿ä¼Ò, ÆÄ¿ö ½Ã½ºÅÛ ±¸¼º¿ä¼Ò, ÃßÁø ½Ã½ºÅÛ ±¸¼º¿ä¼Ò, Æ®·£½ºÆù´õ ±¸¼º¿ä¼Ò, ±âŸ ±¸¼º¿ä¼Ò)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Satellite Components Market to Reach US$4.3 Billion by 2030

The global market for Satellite Components estimated at US$3.1 Billion in the year 2024, is expected to reach US$4.3 Billion by 2030, growing at a CAGR of 5.6% over the analysis period 2024-2030. Antennas Component, one of the segments analyzed in the report, is expected to record a 6.9% CAGR and reach US$1.6 Billion by the end of the analysis period. Growth in the Power Systems Component segment is estimated at 5.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$834.8 Million While China is Forecast to Grow at 9.1% CAGR

The Satellite Components market in the U.S. is estimated at US$834.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$867.4 Million by the year 2030 trailing a CAGR of 9.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.7% and 5.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.7% CAGR.

Global Satellite Components Market - Key Trends & Drivers Summarized

How Are Emerging Satellite Architectures Driving Component-Level Innovation?

The global satellite components market is undergoing a profound shift as satellite architectures evolve from large, monolithic systems to distributed, modular, and multi-orbit constellations. This transformation is spurring demand for miniaturized, lightweight, and high-efficiency components such as transceivers, antennas, solar arrays, power management units (PMUs), and onboard computers. CubeSats and small satellites, in particular, require highly integrated component designs that can deliver optimal functionality within tight size, weight, and power (SWaP) constraints. Manufacturers are responding with multi-function payload modules and reconfigurable systems-on-chip (SoCs) that consolidate signal processing, control, and telemetry into compact packages.

Emerging satellite platforms are also driving advancements in thermal control systems, lightweight structural materials (e.g., carbon composites, titanium alloys), and deployable mechanisms that allow in-orbit expansion of antennas and solar panels. The use of gallium nitride (GaN) and silicon carbide (SiC) in RF amplifiers and power modules is enhancing performance across both commercial and defense satellites by supporting higher frequencies, increased power density, and greater radiation resistance. Component makers are leveraging 3D printing, additive manufacturing, and rapid prototyping to iterate on design complexity while maintaining production agility-particularly vital for NewSpace ventures operating on compressed timelines.

Why Are Satellite OEMs Prioritizing Component Interoperability and Supply Chain Redundancy?

With the rise of satellite constellations operating in low Earth orbit (LEO) and medium Earth orbit (MEO), system interoperability and platform scalability have become essential. Satellite OEMs are demanding components that support open interface standards and plug-and-play integration to ensure seamless cross-platform compatibility. This is particularly critical for modular buses, optical transceivers, GNSS receivers, and attitude control systems (ACS) used in swarm satellite configurations. Standardized form factors and interface protocols not only facilitate supplier diversification but also reduce engineering turnaround time and enable hardware reuse across multiple satellite missions.

At the same time, global supply chain fragility is prompting OEMs and system integrators to re-evaluate their sourcing strategies for satellite components. Geopolitical factors, export control regulations, and semiconductor shortages have intensified the need for multi-vendor qualification, domestic component manufacturing, and dual-use hardware strategies. Satellite operators are also investing in supply chain transparency, digital twins, and quality management systems to ensure traceability and compliance in component manufacturing. These dynamics are reinforcing the shift toward resilient, modular satellite systems that can be rapidly deployed and upgraded without reliance on long-lead-time components or geographically restricted suppliers.

Which Technology Segments Are Leading the Next Wave of Component-Level Breakthroughs?

Rapid innovation across several component domains is shaping the next generation of satellite systems. In power electronics, smart energy distribution modules and adaptive solar panels with maximum power point tracking (MPPT) are optimizing energy harvesting and storage. In propulsion, compact electric propulsion systems such as Hall-effect thrusters and ion engines are being scaled down for micro- and nano-satellites, offering precise station-keeping and orbital maneuvering with minimal fuel mass. Attitude determination and control systems (ADCS) are integrating miniaturized star trackers, reaction wheels, and gyroscopes with AI-based algorithms to deliver autonomous orientation control even in high-dynamic scenarios.

Communication subsystems are also seeing breakthroughs, with flat-panel phased array antennas, optical communication terminals, and Ka-/Q/V-band transceivers becoming increasingly mainstream. These components are enabling faster data downlinks, inter-satellite communication (crosslinks), and dynamic beam steering for high-throughput satellite (HTS) applications. Onboard computing is being redefined by radiation-hardened processors, reconfigurable FPGAs, and edge AI chips that support in-orbit data processing, event detection, and anomaly correction. These technologies are driving a shift toward more autonomous, flexible, and mission-agnostic satellite platforms capable of adapting in real time to changing operational requirements.

What Forces Are Driving Market Growth Across Commercial, Defense, and Scientific Domains?

The growth in the satellite components market is driven by several factors, including the surge in satellite constellation launches, the miniaturization of satellite platforms, and the expanding range of applications across commercial, governmental, and research sectors. Commercial broadband satellite providers such as Starlink, OneWeb, and Amazon Kuiper are driving large-scale component procurement for high-throughput LEO systems. These constellations require cost-effective, high-reliability components that can be mass-produced and support rapid deployment schedules. As these networks scale, the demand for standardized, testable, and software-defined components is projected to rise significantly.

In the defense sector, strategic imperatives around secure communication, space-based surveillance, and missile tracking are fueling demand for radiation-hardened and cyber-resilient components. Dual-use satellites, serving both civilian and military functions, are generating cross-domain component requirements that include enhanced encryption modules, tamper-proof memory, and interference-resistant signal processors. Meanwhile, scientific missions-ranging from climate observation to deep-space exploration-are driving the need for highly sensitive sensor payloads, precision actuators, and long-duration propulsion and energy systems.

Government initiatives supporting satellite localization, national space strategies, and space exploration programs are further boosting the component supplier ecosystem. Public-private partnerships, grant-funded component research, and national security mandates are creating new market opportunities for specialized subsystem manufacturers. With rising satellite launch cadence, modular system architectures, and cross-industry demand, the satellite components market is set for sustained growth, underpinned by technology innovation, supply chain evolution, and the expanding strategic importance of space across all domains.

SCOPE OF STUDY:

The report analyzes the Satellite Components market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Antennas Component, Power Systems Component, Propulsion Systems Component, Transponders Component, Other Components)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â