¼¼°èÀÇ ±Ëµµ À§¼º ¼­ºñ½º ½ÃÀå
On-Orbit Satellite Servicing
»óǰÄÚµå : 1788230
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 206 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,229,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,687,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±Ëµµ À§¼º ¼­ºñ½º ½ÃÀåÀº 2030³â±îÁö 54¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 29¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ±Ëµµ À§¼º ¼­ºñ½º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 11.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 54¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ 500Kg ¹Ì¸¸Àº CAGR 11.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 32¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 501-1000Kg ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 9.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 7¾ï 5,940¸¸ ´Þ·¯, Áß±¹Àº CAGR 10.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±Ëµµ À§¼º ¼­ºñ½º ½ÃÀåÀº 2024³â¿¡ 7¾ï 5,940¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 4,770¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 10.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.3%¿Í 9.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±Ëµµ À§¼º ¼­ºñ½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿ìÁÖ¿¡¼­ À§¼ºÀ» ¼ö¸®ÇÒ ¼ö Àִ°¡? ±Ëµµ ¼­ºñ½ºÀÇ Çö½ÇÀ» ¹Ù²Ù´Â °ÔÀÓ Ã¼ÀÎÀú

°ú°Å¿¡´Â ÀÌ·ÐÀû ¸ðµ¨À̳ª ÀϺΠÁ¤ºÎ Áö¿ø ¿ìÁÖ ÀÓ¹«¿¡ ±¹ÇѵǾú´ø À§¼º ±Ëµµ ¼­ºñ½º °³³äÀº ÇöÀç Àü ¼¼°è ¿ìÁÖ »ê¾÷¿¡ º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ´É·ÂÀ¸·Î ºü¸£°Ô ¼º¼÷Çϰí ÀÖ½À´Ï´Ù. ±Ëµµ ¼­ºñ½º¿¡´Â ·Îº¿ ¶Ç´Â ¹ÝÀÚÀ²Çü ¼­ºñ½º ¿ìÁÖ¼±À» »ç¿ëÇÏ¿© À§¼º¿¡ ¿¬·á¸¦ °ø±ÞÇϰí, Àç¹èÄ¡, ¾÷±×·¹À̵å, ¼ö¸®, ½ÉÁö¾î ±Ëµµ ÀÌÅ» µîÀÇ ÀÛ¾÷ÀÌ Æ÷ÇԵ˴ϴÙ. ±âÁ¸¿¡´Â ÀΰøÀ§¼ºÀÌ ÀÏ´Ü ¹ß»çµÇ¸é ¹ß»ç Àü °èȹ, ¿¬·á ºñÃà ¶Ç´Â »ç¼ÒÇÑ ±â¼úÀû °áÇÔÀ¸·Î ÀÎÇØ ±â´É°ú ¼ö¸íÀÌ Á¦ÇѵǴ ¼Õ´î ¼ö ¾ø´Â ÀÚ»êÀ¸·Î ¿©°ÜÁ³½À´Ï´Ù. ¼­ºñ½º ¹Ì¼ÇÀÇ ÃâÇöÀº ¹Ì¼ÇÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí, ¿ìÁÖ ¾²·¹±â¸¦ ÁÙÀ̸ç, ÅõÀÚ¼öÀÍ·üÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ´Â °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÀÚÀ² ·Îº¿ °øÇÐ, AI ±â¹Ý ³»ºñ°ÔÀ̼Ç, ¸ðµâÇü À§¼º ¼³°è, ¿ìÁÖ ¶ûµ¥ºÎ ±â¼ú µîÀÇ ±â¼ú Çõ½Å¿¡ ÀÇÇØ Áö¿øµÇ°í ÀÖ½À´Ï´Ù. NASAÀÇ Restore-L, ³ë½º·Ó±×·ç¸ÕÀÇ MEV(Mission Extension Vehicle), DARPAÀÇ RSGS(Robotic Servicing of Geosynchronous Satellites)¿Í °°Àº À¯¸í ¹Ì¼ÇÀº ÀÌ ºÐ¾ßÀÇ ½Ç¿ëÀû °¡´É¼º°ú ½Å·Ú¼º Áõ°¡¸¦ ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ½Ç¿ëÀû °¡´É¼º°ú ½Å·Ú¼º Áõ°¡¸¦ ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. »ó¾÷ ¹× ±¹¹æ ÀÌÇØ°ü°èÀÚµéÀÌ ¸ðµÎ Àü·«Àû, °æÁ¦Àû ÀÌÁ¡À» ¹ß°ßÇÔ¿¡ µû¶ó À§¼º ±Ëµµ ¼­ºñ½º´Â ½ÇÇèÀûÀÎ ³ë·Â¿¡¼­ Áö¼Ó°¡´ÉÇÑ ¿ìÁÖ ÀÎÇÁ¶óÀÇ »õ·Î¿î ±âµÕÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

¿Ö »ó¾÷ ºÎ¹®°ú ±¹¹æ ºÎ¹®ÀÌ ±Ëµµ ¼­ºñ½º ´É·ÂÀ» ÁöÁöÇϴ°¡?

»ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ¿ìÁÖ ÀÚ»êÀÇ Àü·«Àû °¡Ä¡°¡ ³ô¾ÆÁü¿¡ µû¶ó Á¤ºÎ³ª ±â¾÷ ¸ðµÎ¿¡°Ô À§¼ºÀÇ º¸È£¿Í ¼ö¸í ¿¬ÀåÀº Áß¿äÇÑ ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ½À´Ï´Ù. »ó¾÷ ºÐ¾ß¿¡¼­´Â °íºÎ°¡°¡Ä¡ Åë½Å À§¼º, Áö±¸°üÃø À§¼º, ¹æ¼Û À§¼º ¿î¿µÀڴ ƯÈ÷ »õ·Î¿î Çϵå¿þ¾îÀÇ ¹ß»ç ºñ¿ëÀÌ °è¼Ó »ó½ÂÇÔ¿¡ µû¶ó ¼ö¸í ¿¬Àå ¼­ºñ½ºÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ±Ëµµ ¼­ºñ½º´Â Àüü ½Ã½ºÅÛÀ» ±³Ã¼ÇÏÁö ¾Ê°íµµ ³ëÈÄÈ­µÈ À§¼ºÀ» Àç»ýÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î, ±Ëµµ ½½·ÔÀ» È®º¸ÇÏ¿© ¿î¿µ Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿ìÁÖÀüÀï°ú Àû´ëÀû À§Çù ¼Ó¿¡¼­ À§¼ºÀÇ Ãë¾à¼º À§ÇèÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±¹¹æ ºÐ¾ß¿¡¼­µµ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼­ºñ½º ´É·ÂÀº ±â´ÉÀ» È®ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ±¹°¡ ¾Èº¸¿Í ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¿¡ ÇʼöÀûÀÎ ±âµ¿¼º°ú ÀÌÁßÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ°ø°£¿¡¼­ ¿ìÁÖ¼± ½Ã½ºÅÛÀÇ Á¶¸³, Á¦Á¶, À籸¼º¿¡ ´ëÇÑ °ü½Éµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ±Ëµµ¿¡¼­ÀÇ ¼­ºñ½º ±â¼ú°ú ÀÏÄ¡ÇÕ´Ï´Ù. À§¼º º°ÀÚ¸®°¡ ±ÞÁõÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÀÚ»êÀ» ÇöÀå¿¡¼­ °ü¸®Çϰí À¯Áöº¸¼öÇÏ´Â ´É·ÂÀÌ °æÀï Â÷º°È­ ¿ä¼Ò°¡ µÉ °ÍÀÔ´Ï´Ù. »ó¾÷¿ë Åë½Å ´ë±â¾÷°ú Á¤ºÎ ¿ìÁÖ ±â°üµé ¼ö¿ä ¼ö·ÅÀº ¿¬·á º¸±Þ¿¡¼­ ±Ëµµ ÀçÁøÀÔ¿¡ À̸£±â±îÁö À§¼ºÀÇ ´Ù¾çÇÑ ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Â ´Ù±â´É ¸ðµâÇü ¼­ºñ½º Â÷·®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

À§¼º Áö¼Ó°¡´É¼ºÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿©´Â Ã˸ÅÁ¦´Â ±â¼úÀΰ¡?

±â¼ú Çõ½ÅÀº À§¼º ±Ëµµ ¼­ºñ½º ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡´ÉÇÏ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿ìÁÖ ·Îº¿ °øÇÐ, ¸Ó½Å ºñÀü, AI Áö¿ø ÀÚÀ²¼º, µµÅ· ¸ÞÄ¿´ÏÁòÀÇ ¹ßÀüÀº º¹ÀâÇÑ ¼­ºñ½º Á¶ÀÛ¿¡ µû¸¥ ¸®½ºÅ©¸¦ Å©°Ô °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. »õ·Î¿î ÃßÁø ½Ã½ºÅÛ°ú Á¶Á¾ °¡´ÉÇÑ ¼­ºñ½º ¿ìÁÖ¼±Àº °í°´ À§¼º¿¡ ³î¶ó¿î Á¤¹Ðµµ·Î Á¢±ÙÇÏ¿© °íÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. NASAÀÇ MAP(Mission Augmentation Port)¿Í °°Àº ¸ðµâ½Ä À§¼º ¼³°è¿Í Ç¥ÁØÈ­µÈ ¼­ºñ½º ÀÎÅÍÆäÀ̽º´Â ¼­·Î ´Ù¸¥ À§¼º ¸ðµ¨°ú ¼¼´ë °£ÀÇ ÅëÇÕ ¹× ¼­ºñ½º ȣȯ¼ºÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, ½Ç½Ã°£ ÅÚ·¹¸ÞÆ®¸®, ±Ëµµ ¿¹ÃøÀ» À§ÇÑ ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ¿Âº¸µå Áø´ÜÀÇ ¹ßÀüÀº ¼­ºñ½ºÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í ÀÓ¹« °èȹÀÇ º¹À⼺À» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐÀº Á¡Á¡ ´õ ÀÛ°í ¼ÕÀçÁÖ°¡ ÁÁ¾ÆÁö°í, ¿ìÁÖ¿¡¼­ »ç¿ëÇϱ⿡ ÀûÇÕÇϸç, žçÀüÁö ¾î·¹ÀÌ Á¶Á¤, ¼¾¼­ ±³Ã¼, ¿­ Â÷Æó ¼ö¸® µîÀÇ ÀÛ¾÷¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¼ÒÇü À§¼º º°ÀÚ¸®¿Í ¿ìÁÖ ÀÎÇÁ¶ó ¸Þ°¡ ÇÁ·ÎÁ§Æ®ÀÇ ºÎ»óµµ Àΰ£ÀÇ °³ÀÔ ¾øÀÌ À§¼º ³×Æ®¿öÅ©¸¦ À¯ÁöÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇϰí ÀÚÀ²ÀûÀÎ ¼­ºñ½º Â÷·®¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¹ßÀº ¹Ì¼ÇÀÇ ¼ö¸í ¿¬ÀåÀ» Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¼­ºñ½º¸¦ ÅëÇØ ±Ëµµ»óÀÇ ÀÜÇØ¹°À» ÁÙÀ̰í, ÀÚ»êÀÇ Àç»ç¿ëÀ» ÃËÁøÇϸç, ¿ìÁÖ¿¡¼­ º¸´Ù ¼øÈ¯ÀûÀÎ °æÁ¦¸¦ Áö¿øÇÏ´Â ¿ìÁÖ Áö¼Ó°¡´É¼ºÀ» ½ÇõÇÒ ¼ö ÀÖ´Â ¹ßÆÇÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ÈûÀÌ À§¼º ±Ëµµ ¼­ºñ½ºÀÇ »ó¾÷Àû ¸ð¸àÅÒÀ» ÃËÁøÇϰí Àִ°¡?

À§¼º ±Ëµµ ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀåÀº ±â¼úÀû ½ÇÇö °¡´É¼º, ÃÖÁ¾»ç¿ëÀÚ ´ÏÁî È®´ë, »ó¾÷Àû ºñ¿ë È¿À²¼º, ÁøÈ­ÇÏ´Â ¿ìÁÖ »ê¾÷ ¿ªÇаú °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎÀº À§¼º °³¹ß ¹× ¹ß»ç ºñ¿ëÀÇ »ó½ÂÀ̸ç, ÀÌ·Î ÀÎÇØ ¼³ºñ ÅõÀÚ ¿¬±â¸¦ ¿øÇÏ´Â À§¼º »ç¾÷ÀÚ¿¡°Ô ¼ö¸í ¿¬Àå ¹× ÀÚ»ê º¹±¸ ÀÓ¹«°¡ °æÁ¦ÀûÀ¸·Î ¸Å·ÂÀûÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ±¤´ë¿ª, Áö±¸°üÃø, Ç×¹ý ¼­ºñ½º¸¦ À§ÇÑ À§¼º ¹èÄ¡°¡ ±Þ°ÝÈ÷ Áõ°¡Çϸ鼭 Á¤±âÀûÀÎ °ü¸®, Àç¹èÄ¡, ÀÜÇØ¹° Á¦°Å°¡ ÇÊ¿äÇÑ °í¹Ðµµ ±Ëµµ ȯ°æÀÌ Çü¼ºµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. À§¼º ÀÓ´ë ¹× ±Ëµµ»ó ÀÎÇÁ¶ó °ü¸®¿Í °°Àº ¼­ºñ½ºÇü ¿ìÁÖ ºñÁî´Ï½º ¸ðµ¨ÀÇ ÁøÈ­´Â Àû½Ã Áö¿øÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ¹ÎøÇÑ ¼­ºñ½º ¿ª·®¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¹¹æ ¹× Á¤º¸±â°üÀº ºÐÀï ȯ°æ¿¡¼­ À§¼ºÀÇ º¹¿ø·ÂÀ» À¯ÁöÇϱâ À§ÇØ ÀÚÀ²ÀûÀÎ ¿ìÁÖ °ø°£¿¡¼­ÀÇ À¯Áöº¸¼ö ÅøÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö¿ë ¿ìÁÖ¼±ÀÇ ¼ÒÇüÈ­´Â ½ÂÂ÷ °øÀ¯¸¦ ÅëÇÑ ¹ß»ç ±âȸ¿Í °áÇÕÇÏ¿© ½ÅÈï ¿ìÁÖ ±â¼ú ½ºÅ¸Æ®¾÷ÀÇ ÁøÀÔ À庮À» ³·Ãß°í ±â¼ú Çõ½Å°ú °æÀï¿¡ Ȱ·ÂÀ» ºÒ¾î³Ö°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º, Æ®·¡ÇÈ °ü¸®, Àû±ØÀûÀÎ À̹°Áú Á¦°Å¸¦ Áß½ÃÇÏ´Â ¿ìÁÖ ±â°üÀÇ ±ÔÁ¦ °­È­µµ ½ÃÀåÀÇ ±àÁ¤ÀûÀÎ Àü¸Á¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ÀüÅëÀûÀÎ Ç×°ø¿ìÁÖ °è¾à¾÷ü, »ó¾÷¿ë À§¼º »ç¾÷ÀÚ, ¿ìÁÖ ±â¼ú ½ºÅ¸Æ®¾÷ °£ÀÇ ÆÄÆ®³Ê½ÊÀº Ȱ±âÂù ´ÙÁß ÀÌÇØ°ü°èÀÚ »ýŰ迡 ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, Àü·«Àû ¿ª·®À¸·Î¼­ À§¼º ±Ëµµ ¼­ºñ½ºÀÇ ¼¼°è È®Àå ¹× ÀÏ»óÈ­¸¦ °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

À§¼º À¯Çü(500Kg ¹Ì¸¸, 501-1000Kg, 1000Kg ÀÌ»ó), ¼­ºñ½º(ADR(Active Debris Removal)¡¤±Ëµµ Á¶Á¤ ¼­ºñ½º, ·Îº¿ ¼­ºñ½º, ¿¬·á º¸±Þ ¼­ºñ½º, Á¶¸³ ¼­ºñ½º), ±Ëµµ(Àú±Ëµµ, Á߱˵µ, Á¤Áö±Ëµµ), ÃÖÁ¾»ç¿ëÀÚ(»ó¾÷ ÃÖÁ¾»ç¿ëÀÚ, ±º¡¤Á¤ºÎ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø·Î ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global On-Orbit Satellite Servicing Market to Reach US$5.4 Billion by 2030

The global market for On-Orbit Satellite Servicing estimated at US$2.9 Billion in the year 2024, is expected to reach US$5.4 Billion by 2030, growing at a CAGR of 11.1% over the analysis period 2024-2030. Below 500 Kg, one of the segments analyzed in the report, is expected to record a 11.8% CAGR and reach US$3.2 Billion by the end of the analysis period. Growth in the 501 - 1000 Kg segment is estimated at 9.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$759.4 Million While China is Forecast to Grow at 10.4% CAGR

The On-Orbit Satellite Servicing market in the U.S. is estimated at US$759.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$847.7 Million by the year 2030 trailing a CAGR of 10.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.3% and 9.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.1% CAGR.

Global On-Orbit Satellite Servicing Market - Key Trends & Drivers Summarized

Can Satellites Be Repaired in Space? The Game-Changing Reality of On-Orbit Servicing

The concept of on-orbit satellite servicing-once limited to theoretical models and a few government-funded space missions-is now rapidly maturing into a commercially viable, transformative capability for the global space industry. On-orbit servicing involves operations such as refueling, repositioning, upgrading, repairing, and even de-orbiting satellites using robotic or semi-autonomous servicing spacecraft. Traditionally, once satellites were launched, they became untouchable assets whose functionality and lifespan were limited by pre-launch planning, fuel reserves, or minor technical failures. The emergence of servicing missions now offers the potential to extend mission lifespans, reduce space debris, and significantly enhance return on investment. This shift has been supported by technological breakthroughs in autonomous robotics, AI-driven navigation, modular satellite design, and space rendezvous techniques. High-profile missions like NASA's Restore-L, Northrop Grumman’s MEV (Mission Extension Vehicle), and DARPA’s RSGS (Robotic Servicing of Geosynchronous Satellites) have demonstrated the practical potential and growing confidence in this field. With both commercial and defense stakeholders seeing strategic and financial advantages, on-orbit satellite servicing is transitioning from experimental initiatives to an emerging pillar of sustainable space infrastructure.

Why Are Commercial and Defense Sectors Rallying Behind On-Orbit Servicing Capabilities?

The growing strategic value of space assets across industries has made the protection and longevity of satellites a critical priority for governments and enterprises alike. In the commercial sector, operators of high-value communication, Earth observation, and broadcasting satellites stand to benefit immensely from life-extension services, especially as the cost of launching new hardware continues to rise. On-orbit servicing presents a cost-effective solution to revitalize aging satellites without replacing entire systems-preserving orbital slots and minimizing operational disruptions. The defense sector has also shown rising interest due to the increasing risk of satellite vulnerability in the context of space warfare and adversarial threats. Servicing capabilities not only extend functionality but enable maneuverability and redundancy, which are crucial for national security and real-time intelligence. There’s also growing interest in in-space assembly, manufacturing, and reconfiguration of spacecraft systems, which aligns with on-orbit servicing technologies. As satellite constellations proliferate, the ability to manage and maintain these assets in situ becomes a competitive differentiator. The convergence of demand from both commercial telecom giants and government space agencies is driving investment in multi-functional, modular servicing vehicles capable of handling a range of satellite tasks, from fuel replenishment to orbital repositioning.

Is Technology the Catalyst for Unlocking a New Age of Satellite Sustainability?

Technological innovation is not only enabling but accelerating the adoption of on-orbit satellite servicing solutions. Advancements in space robotics, machine vision, AI-assisted autonomy, and docking mechanisms have significantly lowered the risk associated with complex servicing maneuvers. New propulsion systems and maneuverable service spacecraft are capable of approaching and anchoring to client satellites with extraordinary precision. Modular satellite designs and standardized servicing interfaces, such as NASA’s Mission Augmentation Port (MAP), are facilitating easier integration and servicing compatibility across different satellite models and generations. Meanwhile, advancements in real-time telemetry, machine learning algorithms for orbital prediction, and onboard diagnostics are enhancing service reliability and reducing mission planning complexity. Robotics are becoming more compact, dexterous, and space-hardened, making them ideal for tasks such as solar array adjustments, sensor replacements, and thermal shielding repairs. The rise of small satellite constellations and space infrastructure megaprojects is also pushing demand for scalable, autonomous servicing fleets capable of maintaining networks of satellites without human intervention. These technological developments are not only supporting longer mission life but are setting the stage for space sustainability practices, where servicing reduces orbital debris, promotes asset reuse, and supports a more circular economy in space.

What Forces Are Driving the Commercial Momentum of On-Orbit Satellite Servicing?

The growth in the on-orbit satellite servicing market is driven by several factors related to technological feasibility, expanding end-user needs, commercial cost-efficiency, and evolving space industry dynamics. A major driver is the rising cost of satellite development and launch, which has made life-extension and asset-repair missions economically attractive for satellite operators seeking to defer capital expenditure. Another key factor is the dramatic increase in satellite deployment for broadband, Earth observation, and navigation services-creating a dense orbital environment in need of regular management, repositioning, and debris mitigation. The evolution of space-as-a-service business models, including satellite leasing and in-orbit infrastructure management, is creating demand for agile servicing capabilities that can deliver just-in-time support. Additionally, defense and intelligence agencies are pushing for autonomous, in-space maintenance tools to maintain satellite resilience in contested environments. The miniaturization of servicing spacecraft, paired with rideshare launch opportunities, has lowered entry barriers for emerging space tech startups, adding momentum to innovation and competition. Increasing regulatory encouragement from space agencies-emphasizing sustainability, traffic management, and active debris removal-has also contributed to the positive market outlook. Lastly, partnerships between traditional aerospace contractors, commercial satellite operators, and space tech startups are fueling a vibrant, multi-stakeholder ecosystem that is expected to accelerate the global expansion and normalization of on-orbit satellite servicing as a strategic capability.

SCOPE OF STUDY:

The report analyzes the On-Orbit Satellite Servicing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Satellite Type (Below 500 Kg, 501 - 1000 Kg, Above 1000 Kg); Service (Active Debris Removal & Orbit Adjustment Service, Robotic Service, Refueling Service, Assembly Service); Orbit (Low Earth Orbits, Medium Earth Orbits, Geostationary Orbits); End-Use (Commercial End-Use, Military & Government End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â