¼¼°èÀÇ Ã·´Ü IC ±âÆÇ ½ÃÀå
Advanced IC Substrates
»óǰÄÚµå : 1798316
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,290,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,870,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ã·´Ü IC ±âÆÇ ½ÃÀåÀº 2030³â±îÁö 336¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 176¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Ã·´Ü IC ±âÆÇ ½ÃÀåÀº 2024-2030³â CAGR 11.4%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 336¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ FC BGA ±âÆÇÀº CAGR 12.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 237¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. FC CSP ±âÆÇ ºÎ¹®Àº ºÐ¼® ±â°£ Áß CAGR 8.4%ÀÇ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 48¾ï ´Þ·¯, Áß±¹Àº CAGR 15.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã·´Ü IC ±âÆÇ ½ÃÀåÀº 2024³â¿¡ 48¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 71¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 15.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 8.1%¿Í 10.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ã·´Ü IC ±âÆÇ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

÷´Ü IC ±âÆÇÀº ¾î¶»°Ô ¹ÝµµÃ¼ Çõ½ÅÀÇ ´ÙÀ½ ¹°°áÀ» ÀÏÀ¸Å°°í Àִ°¡?

÷´Ü IC ±âÆÇÀº ½Ç¸®ÄÜ ´ÙÀÌ¿Í Àμâȸ·Î±âÆÇ(PCB)À» ¿¬°áÇÏ´Â Áß¿äÇÑ °¡±³¿ªÇÒÀ» Çϸç, ¹ÝµµÃ¼ »ê¾÷ Àü¹ÝÀÇ Çõ½ÅÀ» ÃËÁøÇÏ´Â ±â¹Ý ºÎǰÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±âÆÇÀº ´Ù¾çÇÑ °í¼º´É ÀüÀÚ±â±â¿¡ »ç¿ëµÇ´Â º¹ÀâÇÑ ÁýÀûȸ·ÎÀÇ °í¹Ðµµ »óÈ£¿¬°á, ¿­ °ü¸®, ½ÅÈ£ ¹«°á¼ºÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. µð¹ÙÀ̽ºÀÇ ¼ÒÇüÈ­ ¹× °í¼º´ÉÈ­¿¡ µû¶ó ±âÁ¸ÀÇ Æ÷Àå ¹æ½ÄÀ¸·Î´Â ´õ ³ôÀº I/O ¹Ðµµ, ´õ ¿ì¼öÇÑ Àü±âÀû ¼º´É, ½Å·Ú¼º Çâ»ó µîÀÇ ¿ä±¸»çÇ×À» ÃæÁ·½ÃŰ±â ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÷´Ü IC ±âÆÇ, ƯÈ÷ Çø³Ä¨ º¼ ±×¸®µå ¾î·¹ÀÌ(FC-BGA) ¹× Ĩ ½ºÄÉÀÏ ÆÐŰÁö(CSP)¿¡ »ç¿ëµÇ´Â ÷´Ü IC ±âÆÇÀº ´õ ¹Ì¼¼ÇÑ ¶óÀΰú °ø°£, ´ÙÁß ºôµå¾÷ ·¹À̾î, °í¼Ó ½ÅÈ£ Àü¼Û ¹× ¹æ¿­À» Áö¿øÇÏ´Â °³¼±µÈ Àç·á ±¸¼ºÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. ÇØ°áÇϰí ÀÖ½À´Ï´Ù. 5G ÀÎÇÁ¶ó, °í¼º´É ÄÄÇ»ÆÃ(HPC), ÀΰøÁö´É(AI), µ¥ÀÌÅͼ¾ÅÍ, ÷´Ü ¸ð¹ÙÀÏ ±â±â µî ¼º´É È¿À²¼ºÀÌ °¡Àå Áß¿äÇÑ ÁÖ¿ä ¼ºÀå ºÐ¾ß¿¡¼­´Â ±× Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ƯÈ÷ ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ¹× ÀÌÁ¾ ÅëÇÕ(heterogeneous integration) ¹æ½ÄÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó IC ±âÆÇÀÇ º¹À⼺°ú ±â´É¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿©·¯ Ĩ°ú ¼öµ¿ ºÎǰÀ» ´ÜÀÏ Ç÷§Æû¿¡ žÀçÇÒ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ±âÆÇ ±â¼úÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. °í¹Ðµµ ÀÎÅÍÄ¿³ØÆ®(HDI) ±¸Á¶¿Í »õ·Î¿î À¯±â ¶Ç´Â ¹ÝÇÕ¼º Àç·áÀÇ »ç¿ëÀº Ĩ Á¦Á¶¾÷ü°¡ ÆûÆÑÅÍÀÇ Á¦¾àÀ» À¯ÁöÇϸ鼭 ¼º´ÉÀÇ ÇѰ踦 ¶Ù¾î³ÑÀ» ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¹ÝµµÃ¼ °ø±Þ¸ÁÀÌ ºü¸£°Ô º¯È­ÇÏ´Â °¡¿îµ¥, ÷´Ü IC ±âÆÇÀº CPU¿Í GPU¿¡¼­ ³×Æ®¿öÅ© ÇÁ·Î¼¼¼­¿Í ¸Þ¸ð¸® ¸ðµâ¿¡ À̸£±â±îÁö Â÷¼¼´ë µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³¸¦ ±¸ÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, ÇʼöÀûÀÎ Á¸Àç°¡ µÇ¾ú½À´Ï´Ù.

Ĩ Á¦Á¶¾÷ü¿Í ÆÄ¿îµå¸® ¾÷üµéÀÌ Ã·´Ü IC ±âÆÇ ¿ª·®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±½ÃÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Ĩ Á¦Á¶¾÷ü¿Í ¹ÝµµÃ¼ ÁÖÁ¶¾÷üµéÀº ¼º´É, È¿À²¼º, ¼ÒÇüÈ­°¡ ÁÖµµÇÏ´Â »ê¾÷¿¡¼­ Æ÷Àå ±â¼úÀÌ Áß¿äÇÑ °æÀï Â÷º°È­ ¿ä¼Ò·Î ÀÛ¿ëÇϹǷΠ÷´Ü IC ±âÆÇ ¿ª·®¿¡ ´ëÇÑ ÅõÀÚ¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ¿ª»çÀûÀ¸·Î ÇÁ·ÐÆ®¿£µå ¹ÝµµÃ¼ÀÇ ±â¼ú Çõ½ÅÀº ¹«¾îÀÇ ¹ýÄ¢¿¡ µû¸¥ Æ®·£Áö½ºÅÍ ½ºÄÉÀϸµÀÌ Áß½ÉÀ̾úÀ¸³ª, ¹°¸®Àû ÇѰè¿Í ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ ½Ç¸®ÄÜ ·¹º§¿¡¼­ÀÇ ¹Ì¼¼È­°¡ Á¦ÇѵǸ鼭 Æ÷Àå°ú ±âÆÇ ±â¼úÀÌ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÷´Ü IC ±âÆÇÀº Ĩ·¿ ¾ÆÅ°ÅØÃ³¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù. Ĩ·¿ ¾ÆÅ°ÅØÃ³¿¡¼­´Â ¿©·¯ °³ÀÇ ´ÙÀ̰¡ ÇϳªÀÇ ±âÆÇ¿¡ ÁýÀûµÇ¾î ÇϳªÀÇ °í¼º´É À¯´ÖÀ¸·Î ÀÛµ¿ÇÕ´Ï´Ù. ÀÌ´Â AI, ¸Ó½Å·¯´×, ±×·¡ÇÈ Ã³¸® µî º´·Ä ÄÄÇ»ÆÃ°ú ³ôÀº ´ë¿ªÆøÀÌ ¿ä±¸µÇ´Â ¿ëµµ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÆÄ¿îµå¸® ¹× ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü(IDM)´Â ¿ì¼öÇÑ ±âÆÇ ¼³°è°¡ Àü·Â È¿À², µ¥ÀÌÅÍ Ã³¸®·®, ¿­ ¼º´ÉÀ» Å©°Ô Çâ»ó½ÃÄÑ Á¦Ç° °æÀï¿¡¼­ ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ´Ù´Â »ç½ÇÀ» Àß ¾Ë°í ÀÖ½À´Ï´Ù. ±× °á°ú, ÃÖ÷´Ü Æ÷Àå ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®º¸Çϱâ À§ÇØ ±âÆÇ Á¦Á¶ ¼³ºñ, Ŭ¸°·ë È®Àå, ±âÆÇ º¥´õ¿ÍÀÇ Á¦ÈÞ¸¦ À§ÇÑ ¼³ºñÅõÀÚ°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ¿äÀΰú COVID-19 ÆÒµ¥¹ÍÀ¸·Î µå·¯³­ °ø±Þ¸ÁÀÇ Ãë¾à¼ºÀº ±âÆÇ °ø±ÞÀÇ ÇöÁöÈ­ ¹× È®º¸ÀÇ Àü·«Àû Á߿伺À» ´õ¿í °­Á¶Çϰí ÀÖ½À´Ï´Ù. ´ë¸¸, Çѱ¹, ÀϺ», ÀϺ», ¹Ì±¹ µîÀÇ Áö¿ª ±â¾÷Àº ź·Â¼º°ú È®À强À» È®º¸Çϱâ À§ÇØ ¶§·Î´Â Á¤ºÎÀÇ Áö¿øÀ» ¹Þ¾Æ ±¹³» ¿ª·®À» °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â Á¦Á¶»Ó¸¸ ¾Æ´Ï¶ó Â÷¼¼´ë ¼ÒÀç, ÷´Ü ·¹ÀÌÀú õ°ø ±â¼ú, ±âÆÇ ÀûÃþ ¹æ¹ýÀÇ °³¼±¿¡ ÁßÁ¡À» µÐ ¿¬±¸°³¹ß¿¡±îÁö È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼­ ÷´Ü IC ±âÆÇÀº ´õ ÀÌ»ó ¼öµ¿ÀûÀÎ ÁöÁöÃþÀÌ ¾Æ´Ñ ¹ÝµµÃ¼ÀÇ Çõ½Å°ú Â÷º°È­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ´Éµ¿ÀûÀÎ Àο¡ÀÌºí·¯·Î Àνĵǰí ÀÖ½À´Ï´Ù.

¼¼°è ÷´Ü IC ±âÆÇ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ½ÃÀå ¿ëµµ´Â?

÷´Ü IC ±âÆÇ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä´Â ¿ì¼öÇÑ Àü±âÀû ¼º´É, ¼ÒÇüÈ­, ¿­ °ü¸®°¡ ÇÊ¿äÇÑ ¿ëµµ, ƯÈ÷ ÄÄÇ»ÅÍ, Åë½Å, ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º, ¼ÒºñÀÚ ±â±âÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÄÄÇ»ÆÃ ºÐ¾ß¿¡¼­´Â Ŭ¶ó¿ìµå ¼­ºñ½º, AI ¿öÅ©·Îµå, ¿§Áö ÄÄÇ»ÆÃÀÇ Æø¹ßÀûÀÎ ¼ºÀåÀ¸·Î ÀÎÇØ °­·ÂÇÑ ÇÁ·Î¼¼¼­¿Í °í¹Ðµµ ¸Þ¸ð¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀº ¼º´É°ú ½Å·Ú¼ºÀ» À§ÇØ º¹ÀâÇÑ ±âÆÇ ¾ÆÅ°ÅØÃ³¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ µ¥ÀÌÅͼ¾ÅÍ¿¡¼­´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ Ã³¸®·®°ú ¿­ºÎÇϸ¦ °¨´çÇϱâ À§ÇØ Ã·´Ü Çø³Ä¨ ±âÆÇÀ» »ç¿ëÇÑ CPU¿Í GPU·Î ±¸ÃàµÈ ¼­¹ö°¡ µµÀԵǰí ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­´Â 5G ³×Æ®¿öÅ©ÀÇ È®»êÀ¸·Î º£À̽º¹êµå Ĩ, ¹«¼± Á֯ļö(RF) ¸ðµâ, ¾ÈÅ׳ª ÀÏüÇü ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â °íÁÖÆÄ¿¡¼­ ½ÅÈ£ Ãæ½Çµµ¸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â ±âÆÇ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â Àü±âÀÚµ¿Â÷(EV), ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), ÀÎÆ÷Å×ÀÎ¸ÕÆ® ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ¸·Î ÀÚµ¿Â÷ÀÇ ÀüÀÚºÎǰ žÀç·®ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, Â÷·®¿ë ½Å·Ú¼º ¹× ³»¿­¼ºÀ» Áö¿øÇÏ´Â ±âÆÇ¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¹Î¼ö¿ë ÀüÀÚ±â±â, ƯÈ÷ ÇÏÀÌ¿£µå ½º¸¶Æ®Æù, ¿þ¾î·¯ºí, ÅÂºí¸´PC´Â ´õ ¾ã°í È¿À²ÀûÀÎ µð¹ÙÀ̽º¸¦ Áö¼ÓÀûÀ¸·Î ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀúÀü·ÂÀ» À¯ÁöÇϸ鼭 °í¹Ðµµ ½ÇÀåÀ» Áö¿øÇÏ´Â ±âÆÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR), ¾çÀÚÄÄÇ»ÆÃ µîÀÇ ½Å±â¼úÀº ±âÆÇÀÇ ¼º´É°ú ÁýÀûµµ¿¡ ´ëÇÑ µ¶ÀÚÀûÀÎ ¿ä±¸»çÇ×À» ¿ä±¸Çϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÃÖÁ¾ ¿ëµµÀÇ ´Ù¾çÈ­´Â ±âÆÇ ½ÃÀåÀ» È®´ëÇϰí ÀÖÀ¸¸ç, RF ¿ëµµÀÇ ÃÊÀúÀ¯Àü ¼Õ½Ç, ÀÚµ¿Â÷ ºÎǰÀÇ ³ôÀº ³»¿­¼º µî ƯÁ¤ »ê¾÷ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ±âÆÇ ±â´ÉÀ» ¸ÂÃãÈ­Çϵµ·Ï Á¦Á¶¾÷ü¸¦ ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ºÐ¾ß¿¡¼­ µð¹ÙÀ̽º°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÃÖÁ¾»ç¿ëÀÚÀÇ ¼º´É¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ÷´Ü IC ±âÆÇÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

÷´Ü IC ±âÆÇ ½ÃÀåÀÇ ¼¼°è È®ÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

÷´Ü IC ±âÆÇ ½ÃÀåÀÇ ¼¼°è È®´ë´Â ±â¼ú Çõ½ÅÀÇ ¼ö·Å, ¹ÝµµÃ¼ÀÇ º¹À⼺, ÀüÀÚÁ¦Ç° °ø±Þ¸Á³» Àü·«Àû º¯È­·Î ÀÎÇØ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀº À̱âÁ¾ ÁýÀûÈ­ÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌÁ¾ ÁýÀûÀº Á¾Á¾ ¼­·Î ´Ù¸¥ °øÁ¤ ³ëµå¿¡¼­ Á¦Á¶µÈ ¿©·¯ ±â´ÉÀÇ Ä¨À» ÷´Ü ±âÆÇÀ» »ç¿ëÇÏ¿© ´ÜÀÏ ÆÐŰÁö¿¡ ÁýÀûÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ Á¦Á¶¾÷ü´Â ¸ðµç ±¸¼º ¿ä¼Ò¸¦ ÃֽаøÁ¤ ³ëµå¿¡ ¸ÂÃßÁö ¾Ê°íµµ ¼º´É ÃÖÀûÈ­, ºñ¿ë Àý°¨, °³¹ß ±â°£ ´ÜÃàÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº AI, °í¼º´É ÄÄÇ»ÆÃ, °í±Þ °ÔÀÓ µî ´ë¿ªÆøÀ» ¸¹ÀÌ »ç¿ëÇÏ´Â ¿ëµµ ¼ö¿äÀ̸ç, ÀÌ·¯ÇÑ ¿ëµµ´Â °í¼Ó ½ÅÈ£ Àü¼Û, Àü·Â °ø±Þ, ¹æ¿­¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ±âÆÇ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ 5GÀÇ º¸±Þ°ú ÇâÈÄ 6G °³¹ß·Î ÀÎÇØ ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ¿¡¼­ ½ÅÈ£ ¹«°á¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â Àú¼Õ½Ç, °íÁÖÆÄ ±âÆÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Æ÷Àå R& D ¹× ±âÆÇ »ý»ê¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø µî ±¹³» ¹ÝµµÃ¼ »ýŰ迡 ´ëÇÑ Áö¿ª Á¤ºÎÀÇ Áö¿øµµ ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ºÏ¹Ì ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä IDM ¹× OSAT(¹ÝµµÃ¼ Á¶¸³ ¹× Å×½ºÆ® ¼öŹÁ¦Á¶) ¾÷üµéÀº °ø±Þ¸ÁÀÇ °ß°í¼ºÀ» È®º¸Çϱâ À§ÇØ ±âÆÇ °ø±Þ¾÷ü¿Í ¼öÁ÷Àû È®Àå ¹× ÇÕÀÛȸ»ç¸¦ ¼³¸³Çϰí ÀÖ½À´Ï´Ù. ¹Ý ÀûÃþ °øÁ¤, ºôµå¾÷ ·¹À̾î, ÀÓº£µðµå ´ÙÀÌ Æ÷ÀåÀÇ ±â¼ú ¹ßÀüÀº ±âÆÇÀÌ ±¸ÇöÇÒ ¼ö ÀÖ´Â »õ·Î¿î ÁöÆòÀ» ¿­¾î ´õ ³ôÀº ¹è¼± ¹Ðµµ¿Í ±â»ý ¼Õ½ÇÀ» ÁÙÀÌ´Â ¼³°è¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ȯ°æ°ú ±ÔÁ¦¿¡ ´ëÇÑ °í·Á´Â Áö¼Ó°¡´ÉÇÑ ±âÆÇ ¼ÒÀç¿Í ģȯ°æ »ý»ê ¹æ½ÄÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ¼º´É°ú Æ÷ÀåÀÇ °íµµÈ­°¡ Á¡Á¡ ´õ ¿¬°áµÇ¸é¼­ ÷´Ü IC ±âÆÇÀº ±â¼ú Çõ½Å°ú ÅõÀÚÀÇ ÃÊÁ¡ÀÌ µÇ°í ÀÖÀ¸¸ç, ¿©·¯ ±â¼ú ÇÁ·ÐƼ¾î¿¡ °ÉÃÄ Áö¼ÓÀûÀÎ ½ÃÀå È®´ëÀÇ ¹«´ë°¡ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±âÆÇ À¯Çü(FC BGA ±âÆÇ, FC CSP ±âÆÇ), ¾ÖÇø®ÄÉÀ̼Ç(¸ð¹ÙÀÏ & ¼ÒºñÀÚ ¾ÖÇø®ÄÉÀ̼Ç, ÀÚµ¿Â÷ & ¿î¼Û ¾ÖÇø®ÄÉÀ̼Ç, IT & Åë½Å ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Advanced IC Substrates Market to Reach US$33.6 Billion by 2030

The global market for Advanced IC Substrates estimated at US$17.6 Billion in the year 2024, is expected to reach US$33.6 Billion by 2030, growing at a CAGR of 11.4% over the analysis period 2024-2030. FC BGA Substrate, one of the segments analyzed in the report, is expected to record a 12.9% CAGR and reach US$23.7 Billion by the end of the analysis period. Growth in the FC CSP Substrate segment is estimated at 8.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.8 Billion While China is Forecast to Grow at 15.7% CAGR

The Advanced IC Substrates market in the U.S. is estimated at US$4.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$7.1 Billion by the year 2030 trailing a CAGR of 15.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 10.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.0% CAGR.

Global Advanced IC Substrates Market - Key Trends & Drivers Summarized

How Are Advanced IC Substrates Enabling the Next Wave of Semiconductor Innovation?

Advanced IC substrates have become a foundational component in driving innovation across the semiconductor industry, acting as the crucial bridge between silicon dies and printed circuit boards (PCBs). These substrates play a critical role in facilitating high-density interconnections, thermal management, and signal integrity for complex integrated circuits used in a wide array of high-performance electronics. As devices become smaller yet more powerful, traditional packaging methods have struggled to keep pace with the demands for higher I/O density, better electrical performance, and enhanced reliability. Advanced IC substrates, especially those used in flip-chip ball grid arrays (FC-BGA) and chip scale packages (CSP), are addressing these challenges by offering finer lines and spaces, multiple build-up layers, and improved material compositions that support high-speed signal transmission and heat dissipation. Their importance is magnified in key growth areas like 5G infrastructure, high-performance computing (HPC), artificial intelligence (AI), data centers, and advanced mobile devices, where performance efficiency is paramount. In particular, the growing integration of system-in-package (SiP) and heterogeneous integration approaches is elevating the complexity and functionality of IC substrates, requiring innovative substrate technologies to accommodate multiple chips and passive components on a single platform. The use of high-density interconnect (HDI) structures and new organic or semi-additive materials is enabling chipmakers to push performance boundaries while maintaining form factor constraints. As the semiconductor supply chain undergoes rapid transformation, advanced IC substrates are proving indispensable in enabling next-generation device architectures, from CPUs and GPUs to network processors and memory modules.

Why Are Chipmakers and Foundries Prioritizing Investment in Advanced IC Substrate Capabilities?

Chipmakers and semiconductor foundries are intensifying their investment in advanced IC substrate capabilities as packaging technology becomes a key competitive differentiator in an industry driven by performance, efficiency, and miniaturization. Historically, front-end semiconductor innovation centered around transistor scaling in line with Moore’s Law, but as physical limitations and rising costs constrain further miniaturization at the silicon level, packaging and substrate technology have taken center stage. Advanced IC substrates offer the flexibility to support chiplet architectures, where multiple dies are integrated on a single substrate to function as one high-performance unit. This is particularly valuable for applications like AI, machine learning, and graphics processing, where parallel computing and high bandwidth are required. Foundries and integrated device manufacturers (IDMs) are recognizing that superior substrate design can yield substantial gains in power efficiency, data throughput, and thermal performance, often making the difference in product competitiveness. As a result, there has been a surge in capital expenditure directed at substrate production facilities, cleanroom expansions, and partnerships with substrate vendors to secure access to leading-edge packaging technologies. Geopolitical factors and supply chain vulnerabilities exposed during the COVID-19 pandemic have further emphasized the strategic importance of localizing and securing substrate supply. Companies in regions such as Taiwan, South Korea, Japan, and the United States are ramping up domestic capabilities, sometimes with governmental support, to ensure resilience and scalability. These investments are not limited to manufacturing but also include R&D efforts focused on next-generation materials, advanced laser drilling techniques, and improved substrate stacking methods. In this environment, advanced IC substrates are no longer viewed as passive support layers but as active enablers of semiconductor innovation and differentiation.

What Market Applications Are Fueling the Demand for Advanced IC Substrates Worldwide?

The global demand for advanced IC substrates is being fueled by rapid growth in applications that require superior electrical performance, miniaturization, and thermal management, particularly in computing, telecommunications, automotive electronics, and consumer devices. In computing, the explosive growth of cloud services, AI workloads, and edge computing has led to soaring demand for powerful processors and high-density memory solutions, all of which rely on complex substrate architectures for performance and reliability. Data centers, in particular, are deploying servers built on CPUs and GPUs that use advanced flip-chip substrates to handle massive data throughput and heat loads. In telecommunications, the rollout of 5G networks is accelerating the need for baseband chips, radio frequency (RF) modules, and antenna-integrated components that depend on substrates capable of managing signal fidelity at higher frequencies. In the automotive sector, the shift toward electric vehicles (EVs), advanced driver-assistance systems (ADAS), and infotainment solutions is increasing the electronic content in vehicles, thereby expanding the demand for substrates that can support automotive-grade reliability and temperature tolerance. Consumer electronics, especially high-end smartphones, wearables, and tablets, continue to push for thinner and more efficient devices, necessitating substrates that support high-density packaging while maintaining low power consumption. Additionally, emerging technologies such as augmented reality (AR), virtual reality (VR), and quantum computing are beginning to place unique demands on substrate performance and integration. This diversification of end-use applications is broadening the substrate market, prompting manufacturers to tailor substrate features to meet specific industry requirements, whether it's ultra-low dielectric loss for RF applications or high heat resistance for automotive components. Across all sectors, the role of advanced IC substrates is becoming increasingly central as devices grow more complex and the performance expectations of end users continue to rise.

What Are the Primary Drivers Accelerating the Global Expansion of the Advanced IC Substrates Market?

The global expansion of the advanced IC substrates market is being accelerated by a convergence of technological innovation, increased semiconductor complexity, and strategic shifts within the electronics supply chain. A key driver is the growing adoption of heterogeneous integration, where multiple functional chips, often built on different process nodes, are integrated onto a single package using advanced substrates. This approach enables manufacturers to optimize performance, reduce cost, and shorten development timelines without needing to scale every component to the latest process node. Another significant factor is the demand for bandwidth-intensive applications such as AI, high-performance computing, and advanced gaming, which require substrate solutions that can handle high-speed signaling, power delivery, and thermal dissipation. Additionally, the proliferation of 5G and future 6G development is pushing the need for low-loss, high-frequency substrates that can maintain signal integrity in compact form factors. Regional government support for domestic semiconductor ecosystems, including funding for packaging R&D and substrate production, is also spurring market growth, particularly in Asia-Pacific and North America. Major IDMs and OSAT (Outsourced Semiconductor Assembly and Test) companies are expanding vertically or forming joint ventures with substrate suppliers to ensure supply chain resilience. Technological advances in semi-additive processes, build-up layers, and embedded die packaging are also opening new frontiers for what substrates can achieve, enabling designs with higher interconnect density and reduced parasitic loss. At the same time, environmental and regulatory considerations are prompting innovation in sustainable substrate materials and greener production methods. As semiconductor performance becomes increasingly linked to packaging sophistication, advanced IC substrates are becoming a focal point of innovation and investment, setting the stage for continued market expansion across multiple technology frontiers.

SCOPE OF STUDY:

The report analyzes the Advanced IC Substrates market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Substrate Type (FC BGA Substrate, FC CSP Substrate); Application (Mobile & Consumer Application, Automotive & Transportation Application, IT & Telecom Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â