¼¼°èÀÇ DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀå
DBC Ceramic Substrates
»óǰÄÚµå : 1745048
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 268 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀåÀº 2030³â±îÁö 3¾ï 6,140¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 2¾ï 1,680¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â DBC ¼¼¶ó¹Í ±âÆÇ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 8.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3¾ï 6,140¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ AlN DBC ¼¼¶ó¹Í ±âÆÇÀº CAGR 10.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2¾ï 4,450¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Al2O3 DBC ¼¼¶ó¹Í ±âÆÇ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5,910¸¸ ´Þ·¯, Áß±¹Àº CAGR 14.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀåÀº 2024³â¿¡´Â 5,910¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 14.1%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 8,030¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.4%¿Í 8.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.0%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

DBC ¼¼¶ó¹Í ±âÆÇÀÌ °íÀü·Â ÀüÀÚ°øÇÐ ¹ßÀüÀÇ ÇÙ½ÉÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

DBC(Direct Bonded Copper) ¼¼¶ó¹Í ±âÆÇÀº ¿­ °ü¸®, Àü±â Àý¿¬ ¹× ±â°èÀû ¾ÈÁ¤¼ºÀÌ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ °íÀü·Â ÀüÀÚ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î µîÀåÇßÀ¸¸ç, DBC ±âÆÇÀº ¼¼¶ó¹Í º£À̽º Ãþ(ÀϹÝÀûÀ¸·Î ¾Ë·ç¹Ì³ª(Al2O3) ¶Ç´Â ¾Ë·ç¹Ì´½ ÁúÈ­¹°(AlN))À» ±¸¸® Ãþ¿¡ Á÷Á¢ Á¢ÇÕÇÏ¿© ±¸¼ºµË´Ï´Ù. ¶Ç´Â ¾Ë·ç¹Ì´½ ÁúÈ­¹°(AlN))·Î ±¸¼ºµÇ¸ç, ±¸¸® Ãþ¿¡ Á÷Á¢ Á¢ÇյǾî ÀÖ½À´Ï´Ù. ÀÌ µ¶Æ¯ÇÑ ±¸Á¶´Â ¿ì¼öÇÑ ¹æ¿­¼º, °íÀü¾Ð Àý¿¬¼º, °­·ÂÇÑ Á¢Âø Ư¼ºÀ» Á¦°øÇÏ¿© ÆÄ¿ö ¸ðµâ, ÀιöÅÍ, ¸ðÅÍ µå¶óÀ̺ê, °íÁÖÆÄ ÄÁ¹öÅÍ¿¡ »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­, Àç»ý ¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ½Ã½ºÅÛÀ» ±¸ÇöÇϱâ À§ÇØ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, DBC ¼¼¶ó¹Í ±âÆÇÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â Àå¼ö¸í ¼º´ÉÀ» ½ÇÇöÇϱâ À§ÇÑ ±â¹Ý ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àü±âÀÚµ¿Â÷(EV)¿¡¼­ DBC ±âÆÇÀº ¹èÅ͸®¿¡¼­ ¸ðÅÍ·ÎÀÇ Àü·Â º¯È¯À» °ü¸®ÇÏ´Â ÀιöÅÍ ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, dz·Â ¹× ž籤 ¹ßÀü ½Ã½ºÅÛ¿¡¼­ DBC ±âÆÇÀº ÆÄ¿ö ÄÁµð¼Å´× À¯´ÖÀÇ ¿­ ºÎÇϸ¦ °ü¸®ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ³ôÀº ¿­ÀüµµÀ²°ú Àü±â Àý¿¬¼ºÀ» °âºñÇÑ Àμâ ȸ·Î ±âÆÇÀº ±âÁ¸ÀÇ Àμâ ȸ·Î ±âÆÇ(PCB)º¸´Ù ¿ì¼öÇÏ¿© °íÀü¾Ð, °íÀü·ù ¹× °í¿ÂÀÇ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÕ´Ï´Ù. Àü ¼¼°è°¡ Àü±âÈ­·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó DBC¿Í °°Àº °ß°íÇÑ ±âÆÇ¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç, Â÷¼¼´ë ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¾ÆÅ°ÅØÃ³ÀÇ Ãʼ®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

DBC ±âÆÇÀÇ ¼º´É ±âÁØÀ» ³ôÀÌ´Â ±â¼ú Çõ½ÅÀ̶õ?

Àç·á °úÇÐ ¹× Á¦Á¶ ±â¼úÀÇ Çõ½ÅÀº DBC ¼¼¶ó¹Í ±âÆÇÀÌ ´Þ¼ºÇÒ ¼ö ÀÖ´Â ÇѰ踦 ºü¸£°Ô ¹Ð¾îºÙÀ̰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ±âÆÇÀº ÁÖ·Î ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ¾Ë·ç¹Ì³ª¸¦ ±â¹ÝÀ¸·Î ÇÏÁö¸¸, ÁúÈ­¾Ë·ç¹Ì´½(AlN)°ú ÁúÈ­±Ô¼Ò(Si3N4)¸¦ »ç¿ëÇÑ »õ·Î¿î º¯ÇüÀÌ ¿ì¼öÇÑ ¿­ÀüµµÀ²°ú ÆÄ±« ÀμºÀ¸·Î ÀÎÇØ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÁúÈ­ ¾Ë·ç¹Ì´½ÀÇ ¿­ÀüµµÀ²Àº 170 W/mK ÀÌ»óÀ¸·Î ¾Ë·ç¹Ì³ªÀÇ °ÅÀÇ 5¹è¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. ÃÖÀûÈ­µÈ ¿¡Äª, Æòźȭ, ´ÙÃþ ÀûÃþ°ú °°Àº ±¸¸®Ãþ °¡°øÀÇ ¹ßÀüÀº ȸ·ÎÀÇ ¹Ì¼¼È­, ÀδöÅϽº °¨¼Ò, Àü·ù ¿ë·® Áõ°¡¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ·¹ÀÌÀú õ°ø ¹× ÀûÃþ ±â¼úÀ» Àû¿ëÇÏ¿© º¸´Ù º¹ÀâÇÑ ºñ¾Æ ±¸Á¶¸¦ ¸¸µé¾î ¿¬°á¼ºÀ» Çâ»ó½ÃŰ°í ±â»ý ¼Õ½ÇÀ» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ µ¹ÆÄ±¸´Â ³³¶«¼ºÀ» °³¼±ÇÏ°í »êÈ­¸¦ ÁÙÀ̱â À§ÇØ ´ÏÄÌÀ̳ª Àº°ú °°Àº ƯÁ¤ ÄÚÆÃÀÌ Àû¿ëµÈ ±Ý¼ÓÈ­ ÃþÀ» ÅëÇÕÇÏ´Â °ÍÀ̸ç, DBC¸¦ ´Ù¸¥ Àç·á¿Í °áÇÕÇÏ¿© ¼º´É°ú ºñ¿ëÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ÇÏÀ̺긮µå ±âÆÇ ½Ã½ºÅÛµµ °³¹ß ÁßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °­È­´Â DBC ±âÆÇÀÇ Àü±âÀû, ¿­Àû È¿À²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó RF(¹«¼± Á֯ļö) ¸ðµâ, Ç×°ø¿ìÁÖ ÀÏ·ºÆ®·Î´Ð½º, SiC ¹× GaN°ú °°Àº ±¤´ë¿ª °¸ ¹ÝµµÃ¼¿Í °°Àº »õ·Î¿î ¿ëµµ¿¡ ´ëÇÑ Àû¿ëÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¼³°èÀÇ º¹À⼺°ú Àü·Â ¹Ðµµ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, DBC ±âÆÇ ±â¼úÀÇ Çõ½ÅÀº ¼º´ÉÀÇ È®À强À» ½ÇÇöÇÏ´Â Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

DBCÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ½Å·Ú¼º°ú ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀº ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

½Å·Ú¼º°ú Àå±âÀûÀÎ ¼º´ÉÀº DBC ¼¼¶ó¹Í ±âÆÇ äÅÃÀÇ ÁÖ¿ä ¿øµ¿·ÂÀ̸ç, ƯÈ÷ ºÎǰ °íÀåÀÌ ³ôÀº ¿î¿µ ºñ¿ë°ú ¾ÈÀü À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ¿ëµµ¿¡¼­ Áß¿äÇÕ´Ï´Ù. ±âÁ¸ PCB ¼ÒÀç¿Í ´Þ¸® DBC ±âÆÇÀº Àå½Ã°£ÀÇ ÆÄ¿ö »çÀÌŬ Á¶°Ç¿¡¼­µµ ¹Ú¸®³ª ¿­È­ ¾øÀÌ ³ôÀº ¿­Àû, ±â°èÀû ½ºÆ®·¹½º¸¦ °ßµô ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ öµµ °ßÀÎ ½Ã½ºÅÛ, Ç×°ø¿ìÁÖ ÀÏ·ºÆ®·Î´Ð½º, ÀÇ·á¿ë ¿µ»ó Àåºñ, °íºÎÇÏ »ê¾÷¿ë µå¶óÀ̺ê¿Í °°Àº ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿­ÆØÃ¢ °è¼ö(CTE)´Â ½Ç¸®ÄÜ ¹ÝµµÃ¼ÀÇ ¿­ÆØÃ¢ °è¼ö¿Í ¹ÐÁ¢ÇÏ°Ô ÀÏÄ¡ÇÏ¿© ´ÙÀÌ ÀÎÅÍÆäÀ̽ºÀÇ ¿­ ÀÀ·ÂÀ» ÃÖ¼ÒÈ­Çϰí Àå±âÀûÀÎ °íÀå À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ CTE ȣȯ¼ºÀº Àü·Â ¸ðµâ, ƯÈ÷ Å« ¿Âµµ º¯È­ ¹× ºó¹øÇÑ ½Ãµ¿/Á¤Áö »çÀÌŬ¿¡¼­ ÀÛµ¿ÇÏ´Â Àü·Â ¸ðµâÀÇ ½Å·Ú¼º Çâ»ó¿¡ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ, DBC ±âÆÇÀÇ ±ä ÀÛµ¿ ¼ö¸íÀº À¯Áöº¸¼ö, ´Ù¿îŸÀÓ, Á¶±â ±³Ã¼ Çʿ伺À» ÃÖ¼ÒÈ­ÇÏ¿© ¼ö¸íÁֱ⠺ñ¿ëÀ» Àý°¨ÇÏ´Â µ¥¿¡µµ ±â¿©ÇÕ´Ï´Ù. ÃѼÒÀ¯ºñ¿ë(TCO)ÀÌ Áß¿äÇÑ ¼º´É ÁöÇ¥ÀÎ ºÐ¾ß¿¡¼­ DBC ±âÆÇ¿¡ ´ëÇÑ ¼±Çà ÅõÀÚ´Â ³»±¸¼º, ¼º´É ¹× ¿­ °ü¸® ÀÎÇÁ¶óÀÇ Çʿ伺 °¨¼Ò·Î Á¤´çÈ­µÉ ¼ö ÀÖ½À´Ï´Ù. °í¿Â ¿ª¹æÇâ ¹ÙÀ̾(HTRB), ÆÄ¿ö »çÀÌŬ, ¿­Ãæ°Ý Å×½ºÆ®¸¦ Æ÷ÇÔÇÑ ½Å·Ú¼º Å×½ºÆ® Ç¥ÁØÀº DBC ±âÆÇÀÌ µ¿±Þ ÃÖ°íÀÇ ¼ÒÀçÀÓÀ» ÀϰüµÇ°Ô °ËÁõÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ ½Ã½ºÅÛÀÌ ÇÙ½É ÀÎÇÁ¶ó¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® ÀâÀ¸¸é¼­ ÀÔÁõµÈ ½Å·Ú¼º°ú ¼ö¸íÁÖ±â È¿À²¼ºÀÌ Áß¿äÇØÁü¿¡ µû¶ó DBC ±âÆÇÀº ÀüÅë »ê¾÷°ú ½ÅÈï »ê¾÷ ¸ðµÎ¿¡¼­ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼¼°è DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀåÀÇ ¼ºÀåÀº Àü±âÈ­ Ãß¼¼, ¹ÝµµÃ¼ ÁøÈ­, ¿­ °ü¸® ¼º´É¿¡ ´ëÇÑ ±â´ëÄ¡ »ó½Â°ú °ü·ÃµÈ ¿©·¯ °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿äÀÎ Áß Çϳª´Â Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷(EV/HEV)ÀÇ ±Þ¼ÓÇÑ È®´ëÀ̸ç, ÀÌ·¯ÇÑ Â÷·®¿¡´Â ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, ¸ðÅÍ ÀιöÅÍ, Â÷·®¿ë ÃæÀü±â¿Í °°Àº ÷´Ü ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º°¡ ÇÊ¿äÇϸç, ÀÌ ¸ðµç °ÍÀÌ DBCÀÇ ¿ì¼öÇÑ ¿­Àû ¹× Àü±âÀû Ư¼ºÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, ƯÈ÷ ž籤 ¹× dz·Â ¹ßÀü¿ë ÀιöÅÍÀÇ Ã¤ÅÃÀÌ È®´ëµÊ¿¡ µû¶ó º¯µ¿ÇÏ´Â ´ëÀü·ù¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °ß°íÇÑ ¿­ ±âÆÇ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í ÁúÈ­°¥·ý(GaN)°ú °°Àº ¿ÍÀÌµå ¹êµå°¸ ¹ÝµµÃ¼·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, À̵é Àç·á´Â DBC ±âÆÇÀÌ °­Á¡À» °¡Áø ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­, ·Îº¿ °øÇÐ, °¡ÀüÁ¦Ç°ÀÇ Àü·Â ¸ðµâÀÇ ¼ÒÇüÈ­´Â ÄÄÆÑÆ®ÇÑ ÆûÆÑÅÍ¿¡¼­ ³ôÀº ¿­ ºÎÇϸ¦ °ü¸®ÇÒ ¼ö ÀÖ´Â ±âÆÇÀÇ Çʿ伺À» ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À², Áö¼Ó°¡´É¼º, ź¼Ò Á߸³¿¡ ´ëÇÑ ÁöÁ¤ÇÐÀû °ü½ÉÀº Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í °íÈ¿À² Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ¿© °£Á¢ÀûÀ¸·Î DBC ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅͼ¾ÅÍÀÇ ±Ô¸ð¿Í ÄÄÇ»ÆÃ ÆÄ¿ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü·Â º¯È¯ ½Ã½ºÅÛÀº ¿­ ¼º´É°ú ½Ã½ºÅÛ °¡µ¿ ½Ã°£À» ÃÖÀûÈ­Çϱâ À§ÇØ DBC ±â¹Ý ¸ðµâ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿î¼Û, ¿¡³ÊÁö, ÀÚµ¿È­, ÄÄÇ»ÆÃ ºÐ¾ß¿¡ °ÉÄ£ ÀÌ·¯ÇÑ ÈûÀº DBC ¼¼¶ó¹Í ±âÆÇ ½ÃÀåÀÇ ¼¼°è È®ÀåÀ» µÞ¹ÞħÇÏ´Â °­·ÂÇϰí Áö¼ÓÀûÀÎ ¸ð¸àÅÒÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(AlN DBC ¼¼¶ó¹Í ±âÆÇ, Al2O3 DBC ¼¼¶ó¹Í ±âÆÇ);¿ëµµ(IGBT ¸ðµâ, ÀÚµ¿Â÷, °¡ÀüÁ¦Ç° &CPV)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global DBC Ceramic Substrates Market to Reach US$361.4 Million by 2030

The global market for DBC Ceramic Substrates estimated at US$216.8 Million in the year 2024, is expected to reach US$361.4 Million by 2030, growing at a CAGR of 8.9% over the analysis period 2024-2030. AlN DBC Ceramic Substrate, one of the segments analyzed in the report, is expected to record a 10.4% CAGR and reach US$244.5 Million by the end of the analysis period. Growth in the Al2O3 DBC Ceramic Substrate segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$59.1 Million While China is Forecast to Grow at 14.1% CAGR

The DBC Ceramic Substrates market in the U.S. is estimated at US$59.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$80.3 Million by the year 2030 trailing a CAGR of 14.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.4% and 8.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.0% CAGR.

Global DBC Ceramic Substrates Market - Key Trends & Drivers Summarized

Why Are DBC Ceramic Substrates Central to High-Power Electronic Advancements?

Direct Bonded Copper (DBC) ceramic substrates have emerged as an indispensable component in high-power electronic systems, where thermal management, electrical insulation, and mechanical stability are mission-critical. DBC substrates consist of a ceramic base layer-typically alumina (Al2O3) or aluminum nitride (AlN)-directly bonded to a layer of copper. This unique structure provides excellent heat dissipation, high voltage insulation, and strong adhesion properties, making it ideal for use in power modules, inverters, motor drives, and high-frequency converters. As industries increasingly adopt power electronics for energy-efficient systems, particularly in automotive, industrial automation, and renewable energy sectors, DBC ceramic substrates are becoming foundational materials for reliable, long-life performance. In electric vehicles (EVs), for instance, DBC substrates are critical in the inverter systems that manage power conversion from battery to motor. Similarly, in wind and solar energy systems, they play a key role in managing the thermal load in power conditioning units. Their combination of high thermal conductivity and electrical insulation outperforms traditional printed circuit boards (PCBs), making them a preferred choice for high-voltage, high-current, and high-temperature applications. As the global transition toward electrification intensifies, the demand for robust substrates like DBC continues to rise, establishing them as a cornerstone in the architecture of next-generation power electronics.

How Are Technological Innovations Elevating Performance Standards in DBC Substrates?

Technological innovations in materials science and fabrication techniques are rapidly pushing the boundaries of what DBC ceramic substrates can achieve. While traditional substrates were based primarily on alumina due to its cost-effectiveness, newer variants using aluminum nitride (AlN) and silicon nitride (Si3N4) are gaining ground due to their superior thermal conductivity and fracture toughness. AlN, for instance, offers thermal conductivity rates over 170 W/mK-almost five times higher than alumina-making it ideal for high-density power applications that demand efficient heat dissipation. Advancements in copper layer processing, such as optimized etching, planarization, and multilayer stacking, are enabling finer circuitry, reduced inductance, and higher current-carrying capacities. Furthermore, laser drilling and additive manufacturing techniques are being applied to create more intricate via structures, improving connectivity and reducing parasitic losses. Another breakthrough is the integration of metallization layers with specific coatings-such as nickel or silver-to improve solderability and reduce oxidation. Hybrid substrate systems are also under development, where DBC is combined with other materials to balance performance with cost. These technological enhancements are not just improving the electrical and thermal efficiency of DBC substrates but also expanding their applicability into RF (radio frequency) modules, aerospace electronics, and emerging applications in wide bandgap semiconductors like SiC and GaN. As design complexity and power density requirements increase, innovation in DBC substrate technology is becoming a critical enabler of performance scalability.

What Role Does Reliability and Lifecycle Cost Play in Driving DBC Adoption?

Reliability and long-term performance are major drivers in the adoption of DBC ceramic substrates, particularly in applications where component failure can lead to high operational costs or safety risks. Unlike conventional PCB materials, DBC substrates can withstand high thermal and mechanical stresses without delamination or degradation, even under extended power cycling conditions. This makes them ideal for mission-critical applications such as railway traction systems, aerospace electronics, medical imaging equipment, and heavy-duty industrial drives. Their coefficient of thermal expansion (CTE) is closely matched with that of silicon semiconductors, which minimizes thermal stress at the die interface and reduces the risk of failure over time. This CTE compatibility contributes to higher reliability in power modules, particularly those operating under wide temperature swings or frequent start-stop cycles. Additionally, the long operational lifespan of DBC substrates helps reduce lifecycle costs by minimizing maintenance, downtime, and the need for premature replacements. In sectors where total cost of ownership (TCO) is a key performance indicator, the upfront investment in DBC substrates is justified by their durability, performance, and reduced need for thermal management infrastructure. Reliability testing standards, including high-temperature reverse bias (HTRB), power cycling, and thermal shock tests, consistently validate DBC substrates as best-in-class materials. As electronic systems become more integral to critical infrastructure, the emphasis on proven reliability and lifecycle efficiency is making DBC substrates a preferred choice across both traditional and emerging industries.

What Are the Key Growth Drivers Accelerating the Global DBC Ceramic Substrates Market?

The growth in the DBC ceramic substrates market is driven by several interrelated factors linked to electrification trends, semiconductor evolution, and heightened performance expectations in thermal management. One of the most significant drivers is the rapid expansion of electric vehicles and hybrid electric vehicles (EV/HEVs), which require advanced power electronics for battery management systems, motor inverters, and on-board chargers-all of which benefit from DBC's superior thermal and electrical properties. Additionally, the growing adoption of renewable energy systems, particularly inverters for solar and wind power, is increasing demand for robust thermal substrates capable of handling fluctuating high currents. The ongoing transition to wide bandgap semiconductors like silicon carbide (SiC) and gallium nitride (GaN) is also fueling demand, as these materials operate at higher voltages and temperatures-conditions under which DBC substrates excel. The miniaturization of power modules in industrial automation, robotics, and consumer electronics further enhances the need for substrates that can manage high thermal loads in compact form factors. Geopolitical emphasis on energy efficiency, sustainability, and carbon neutrality is driving governmental incentives and investment in high-efficiency power infrastructure, indirectly boosting demand for DBC solutions. Moreover, as data centers grow in size and computing power, their power conversion systems increasingly rely on DBC-based modules to optimize thermal performance and system uptime. These converging forces-across transportation, energy, automation, and computing-are creating a strong, sustained momentum behind the global expansion of the DBC ceramic substrates market.

SCOPE OF STUDY:

The report analyzes the DBC Ceramic Substrates market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (AlN DBC Ceramic Substrate, Al2O3 DBC Ceramic Substrate); Application (IGBT Modules, Automotive, Home Appliances & CPV)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â