¼¼°èÀÇ µ¥ÀÌÅÍ ÃßÃâ ½ÃÀå
Data Extraction
»óǰÄÚµå : 1795814
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 565 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

µ¥ÀÌÅÍ ÃßÃâ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 89¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 47¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â µ¥ÀÌÅÍ ÃßÃâ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 89¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ö·ç¼Ç ±¸¼º¿ä¼Ò´Â CAGR 13.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 59¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ±¸¼º¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 13¾ï ´Þ·¯, Áß±¹Àº CAGR 15.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ µ¥ÀÌÅÍ ÃßÃâ ½ÃÀåÀº 2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 19¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.7%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.1%¿Í 10.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ ÃßÃâ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µ¥ÀÌÅÍ ÃßÃâÀÌ µðÁöÅÐ ºñÁî´Ï½ºÀÇ ÇÙ½ÉÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

µ¥ÀÌÅÍ ÃßÃâÀº Á¶Á÷ÀÌ »ý¼ºÇÏ°í ¼öÁýÇÏ´Â ¹æ´ëÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅÍ¿¡¼­ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ µµÃâÇϱâ À§ÇØ ³ë·ÂÇÏ´Â Çö´ë µðÁöÅÐ ±â¾÷ Àüü¿¡ ÇʼöÀûÀÎ ±â´ÉÀÌ µÇ¾ú½À´Ï´Ù. µ¥ÀÌÅͰ¡ »õ·Î¿î ¼®À¯·Î ºÒ¸®´Â ½Ã´ë¿¡ ±¸Á¶È­, ¹Ý±¸Á¶È­, ºñÁ¤Çü ¼Ò½º¿¡¼­ °ü·Ã Á¤º¸¸¦ È¿À²ÀûÀ¸·Î ÃßÃâÇÏ´Â ´É·ÂÀº ÀÇ»ç°áÁ¤, ÀÚµ¿È­, ÄÄÇöóÀ̾ð½º, °æÀï ¿ìÀ§ÀÇ ±Ù°£ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿À´Ã³¯ ºñÁî´Ï½º´Â °í°´ µ¥ÀÌÅͺ£À̽º, À̸ÞÀÏ, ¼Ò¼È ¹Ìµð¾î Çǵå, À繫 º¸°í¼­, PDF, À¥ ÄÁÅÙÃ÷, IoT ±â±â µîÀÇ ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅͰ¡ ³ÑÃijª°í ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ ÃßÃâ ¸ÞÄ¿´ÏÁòÀÌ ¾ø´Ù¸é, ÀÌ·¯ÇÑ µ¥ÀÌÅÍ´Â »çÀÏ·ÎÈ­µÇ¾î Á¢±ÙÀÌ ºÒ°¡´ÉÇϰí ÃæºÐÈ÷ Ȱ¿ëµÇÁö ¸øÇÕ´Ï´Ù. µ¥ÀÌÅÍ ÃßÃâÀ» ÅëÇØ ±â¾÷Àº ÀÌ·¯ÇÑ ´Ù¾çÇÑ Çü½Ä¿¡¼­ °¡Ä¡ ÀÖ´Â Á¤º¸¸¦ ÃßÃâÇÏ¿© Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺, ºÐ¼® µµ±¸ ¶Ç´Â ¿£ÅÍÇÁ¶óÀÌÁî ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© Ãß°¡ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º, µ¥ÀÌÅÍ ÅëÇÕ, °í°´°ü°è°ü¸®, »ç±â ŽÁö, ½ÃÀå Á¶»ç µî ´Ù¾çÇÑ ¿öÅ©Ç÷οìÀÇ Ã¹ ¹øÂ° ´Ü°è ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í ¿Â¶óÀÎ ±³·ùÀÇ Áõ°¡·Î °¡¼ÓÈ­µÇ´Â µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ³ë·ÂÀÌ ±ÞÁõÇÔ¿¡ µû¶ó ¹ÎøÇÑ ¿î¿µÀ» Áö¿øÇÏ´Â ½Ç½Ã°£ ¹× Àϰý ÃßÃâ ±â´ÉÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ETL(Extract,Transform,Load) ÆÄÀÌÇÁ¶óÀÎÀ̵ç ÃֽгëÄÚµå ¼Ö·ç¼ÇÀ̵ç, ±â¾÷µéÀº µ¥ÀÌÅÍ ÃßÃâÀ» Àß È°¿ëÇÏ´Â °ÍÀÌ ´õ ÀÌ»ó ±â¼úÀû »çÄ¡°¡ ¾Æ´Ï¶ó µ¥ÀÌÅÍ ±â¹Ý °æÁ¦¿¡¼­ ¹ø¿µÇϱâ À§ÇÑ Àü·«Àû ÇʼöǰÀ̶ó´Â °ÍÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀº µ¥ÀÌÅÍ ÃßÃâ ¼Ö·ç¼ÇÀÇ ±â´ÉÀ» ¾î¶»°Ô ¹ßÀü½Ã۰í Àִ°¡?

±â¼ú Çõ½ÅÀº µ¥ÀÌÅÍ ÃßÃâ µµ±¸ÀÇ È¿À²¼º, È®À强, Áö´ÉÀ» ȹ±âÀûÀ¸·Î Çâ»ó½ÃÄÑ ±â¾÷Àº Á¡Á¡ ´õ º¹ÀâÇØÁö´Â µ¥ÀÌÅͼ¼Æ®¿Í Æ÷¸ËÀ» º¸´Ù Á¤È®ÇÏ°í ºü¸£°Ô ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ½ºÄµÇÑ ¹®¼­, À̸ÞÀÏ, ¼ö±â ¸Þ¸ð, ÀÚ¿¬¾î ÄÁÅÙÃ÷ µî ºñÁ¤Çü ¼Ò½º·ÎºÎÅÍÀÇ µ¥ÀÌÅÍ ÃßÃâ ÀÚµ¿È­¿¡¼­ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº °¡Àå Çõ½ÅÀûÀÎ ¹ßÀü Áß ÇϳªÀÔ´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP)¿Í ±¤ÇÐ ¹®ÀÚ ÀνÄ(OCR) ±â¼úÀº ÇöÀç ÀϹÝÀûÀ¸·Î µ¥ÀÌÅÍ ÃßÃâ Ç÷§Æû¿¡ ÅëÇÕµÇ¾î ½Ã½ºÅÛÀÌ ´Ù¾çÇÑ ÀԷ¿¡¼­ ÅØ½ºÆ®, Ç¥, ¿£Æ¼Æ¼¸¦ ÇØ¼®Çϰí ÃßÃâÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, RPA(·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­)´Â À¥ Æ÷ÅÐ, ·¹°Å½Ã ¾ÖÇø®ÄÉÀ̼Ç, ½ºÇÁ·¹µå½ÃÆ®¿¡ °ÉÄ£ ¹Ýº¹ÀûÀÎ ÃßÃâ ÀÛ¾÷À» ¼öÀÛ¾÷ ¾øÀÌ ÀÚµ¿È­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Àο¡ÀÌºí·¯·Î µîÀåÇß½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÃßÃâ ¼Ö·ç¼ÇÀº È®À强, ¿ø°Ý Á¢±Ù¼º, CRM, ERP, ºòµ¥ÀÌÅÍ Ç÷§Æû µî ±â¾÷ »ýŰè¿ÍÀÇ ÅëÇÕÀ» Á¦°øÇϸç È®»êµÇ°í ÀÖ½À´Ï´Ù. API ±â¹Ý ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ ½ºÆ®¸®¹Ö ¼Ò½º¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ ÃßÃâÀÌ °¡´ÉÇϸç, ±ÝÀ¶ ½ÃÀå ¸ð´ÏÅ͸µ ¹× ¼Ò¼È ¹Ìµð¾îÀÇ °¨Á¤ ºÐ¼®°ú °°Àº »ç¿ë »ç·Ê¸¦ Áö¿øÇÕ´Ï´Ù. »ê¾÷º° ¹®¼­¿Í Çü½Ä¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â ±ÔÄ¢ ±â¹Ý°ú AI·Î ÈÆ·ÃµÈ ¸ðµ¨À» ÅëÇØ »ç¿ëÀÚ ¸ÂÃ㼺ÀÌ Çâ»óµÇ°í Á¤È®µµ°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ Ç°Áú °ü¸®¿Í Áߺ¹ Á¦°Å ±â´ÉÀÇ ¹ßÀüÀ¸·Î ÃßÃâµÈ Á¤º¸ÀÇ ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. º¸¾È°ú ÄÄÇöóÀ̾𽺰¡ Á¡Á¡ ´õ Áß¿äÇØÁö´Â °¡¿îµ¥, µ¥ÀÌÅÍ ÃßÃâ µµ±¸´Â ¾Ïȣȭ, ¾×¼¼½º Á¦¾î, °¨»ç ÃßÀûÀ» Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °­È­·Î µ¥ÀÌÅÍ ÃßÃâÀº ¼öÀÛ¾÷¿¡¼­ Áö´ÉÀûÀ̰í ÀÚµ¿È­µÈ Àü·«Àû ÇÁ·Î¼¼½º·Î ÁøÈ­ÇÏ¿© ´Ù¾çÇÑ ºñÁî´Ï½º ¸ñÇ¥¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷ Àü¹Ý¿¡¼­ µ¥ÀÌÅÍ ÃßÃâ äÅÃÀ» ÃËÁøÇÏ´Â ½ÃÀå µ¿ÇâÀº ¹«¾ùÀΰ¡?

µ¥ÀÌÅÍ ÃßÃâ ±â¼úÀÇ »ê¾÷ Àü¹ÝÀ¸·ÎÀÇ È®»êÀº ºñÁî´Ï½º ¿ä±¸ »çÇ×ÀÇ º¯È­, °í°´ ±â´ëÄ¡ÀÇ ÁøÈ­, ¿î¿µ ¹Îø¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. °¡Àå ´«¿¡ ¶ç´Â Æ®·»µå Áß Çϳª´Â µ¥ÀÌÅÍÀÇ ¹ÎÁÖÈ­·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ±â¾÷µéÀº ITÆÀ¿¡¸¸ ÀÇÁ¸ÇÏÁö ¾Ê°í, ºÎ¼­ °£ µ¥ÀÌÅÍ¿¡ Á¢±ÙÇϰí Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â º¹ÀâÇÑ µ¥ÀÌÅÍ ¼Ò½º¿¡¼­ ÀλçÀÌÆ®¸¦ µµÃâÇϱâ À§ÇØ ºñ±â¼úÀÚ »ç¿ëÀÚ¸¦ Áö¿øÇÏ´Â »ç¿ëÀÚ Ä£È­ÀûÀÎ ³ëÄÚµå ¶Ç´Â ·Î¿ìÄÚµå ÃßÃâ µµ±¸ÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. °í°´ °æÇè(°í°´ °æÇè)À» Áß½ÃÇÏ´Â °æÇâÀÌ °­ÇØÁö°í ÀÖ´Â °Íµµ ä¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ±â¾÷µéÀº Çǵå¹é, °Å·¡ ³»¿ª, Çൿ ÆÐÅÏÀ» ÃßÃâÇÏ°í ºÐ¼®ÇÏ¿© ¼­ºñ½º¸¦ °³ÀÎÈ­ÇÏ¿© °í°´ À¯ÁöÀ²À» ³ôÀ̰íÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶¾÷°è¿¡¼­´Â ±ÔÁ¦ Áؼö Àǹ«È­·Î ÀÎÇØ ±ÝÀ¶±â°üÀº °è¾à, °Å·¡, Åë½Å¿¡¼­ µ¥ÀÌÅ͸¦ ÃßÃâÇÏ¿© Åõ¸í¼º°ú °¨»ç ´ëÀÀ·ÂÀ» È®º¸ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ÇコÄÉ¾î ºÐ¾ß¿¡¼­µµ ÀÇ·á ±â·Ï°ú °Ë»ç º¸°í¼­¿¡¼­ ȯÀÚ Á¤º¸¸¦ ÃßÃâÇÏ¿© ´õ ³ªÀº Áø´Ü, Ä¡·á °èȹ, ÀÇ·á±â°ü °£ µ¥ÀÌÅÍ °øÀ¯¸¦ Áö¿øÇØ¾ß ÇÒ Çʿ伺ÀÌ ÀÖ½À´Ï´Ù. E-Commerce ¹× ¼Ò¸Å¾÷¿¡¼­´Â À¥ ½ºÅ©·¡Çΰú °æÀï»ç ¸ð´ÏÅ͸µÀ» Ȱ¿ëÇÏ¿© °¡°Ý Àü·«°ú Àç°í °èȹ¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ·ÎÆß°ú º¸Çèȸ»ç´Â µ¥ÀÌÅÍ ÃßÃâÀ» ÅëÇØ Ŭ·¹ÀÓ, °è¾à, »ç°Ç ÆÄÀÏÀ» º¸´Ù È¿À²ÀûÀ¸·Î ºÐ¼®Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« Æ®·»µå´Â ½Ç½Ã°£ ºÐ¼®ÀÇ Çʿ伺À̸ç, ÀÌ´Â ¿©·¯ ¼Ò½º¿¡¼­ ºü¸£°í Á¤È®ÇÏ°Ô µ¥ÀÌÅ͸¦ ÃßÃâÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¹Ãø, ¸®½ºÅ© ¸ðµ¨¸µ, ÀÇ»ç°áÁ¤ Áö¿øÀ» °­È­Çϱâ À§ÇØ ÃßÃâµÈ µ¥ÀÌÅ͸¦ AI ±â¹Ý ºÐ¼® µµ±¸¿Í ÅëÇÕÇÏ´Â Á¶Á÷µµ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Àû½Ã¿¡ Á¤È®ÇÑ µ¥ÀÌÅÍ ÃßÃâÀÌ °ÅÀÇ ¸ðµç ºÐ¾ß¿¡¼­ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º, Çõ½Å, ½ÃÀå ´ëÀÀ·ÂÀ» ½ÇÇöÇÏ´Â ÇÙ½É ¿ä¼Ò¶ó´Â ÀνÄÀÌ È®»êµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ÃßÃâ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

µ¥ÀÌÅÍ ÃßÃâ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ±â¼úÀû, ±ÔÁ¦Àû, ¿î¿µÀû, Àü·«Àû ¿äÀÎÀÌ À¶ÇյǾî Á¶Á÷ÀÌ µ¥ÀÌÅ͸¦ °ü¸®Çϰí Ȱ¿ëÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎÀº µðÁöÅÐ Æ®·£Àè¼Ç, ¼¾¼­, ¼Ò¼È Ç÷§Æû, ±â¾÷ ½Ã½ºÅÛ¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇØ À¯¿ëÇÑ Á¤º¸¸¦ ÃßÃâÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀÎ µµ±¸°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. Á¶Á÷Àº °í°´ ¼­ºñ½º °­È­, °ø±Þ¸Á ÃÖÀûÈ­, ÀÌ»ó ¡ÈÄ °¨Áö µî ¿ø½Ã µ¥ÀÌÅ͸¦ ½Å¼ÓÇÏ°Ô ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®·Î ÀüÈ¯ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú SaaS Ç÷§ÆûÀÇ µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ È®´ëµÇ´Â ÇÑÆí, µ¥ÀÌÅÍ °ü¸®ÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹ÎøÇϰí È®À强ÀÌ ³ôÀº ÃßÃâ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. GDPR, HIPAA, PCI-DSS¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©´Â Á¶Á÷ÀÌ º¹ÀâÇÑ Çü½ÄÀ̳ª ºñÁ¤ÇüÈ­µÈ Çü½Ä¿¡ ¹¯Çô Àִ ƯÁ¤ µ¥ÀÌÅÍ À¯ÇüÀ» ½Äº°ÇÏ°í ¸ð´ÏÅ͸µÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. °æÀïÀÇ ¾Ð·ÂÀ¸·Î ÀÎÇØ ±â¾÷Àº °í±Þ ºÐ¼®°ú ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¸¦ µµÀÔÇØ¾ß Çϸç, ÀÌ´Â ¸ðµÎ ÀÚµ¿ ÃßÃâÀ» ÅëÇØ ¾òÀº ±ú²ýÇÏ°í ½Ã±âÀûÀýÇÑ °ü·Ã µ¥ÀÌÅÍ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É ¹× ¸Ó½Å·¯´× ¾ÖÇø®ÄÉÀ̼ÇÀÇ ºÎ»óÀ¸·Î °íǰÁú ÈÆ·Ã µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Á¾Á¾ ´Ù¾çÇÏ°í »çÀÏ·ÎÈ­µÈ ¼Ò½º¿¡¼­ ÃßÃâÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀº ÀÚµ¿È­¸¦ ÅëÇØ ºñ¿ë Àý°¨°ú È¿À²È­¸¦ Ãß±¸Çϰí ÀÖÀ¸¸ç, µ¥ÀÌÅÍ ÃßÃâÀº ¼öµ¿ ÇÁ·Î¼¼½º¸¦ Á¦°ÅÇϰí ÀλçÀÌÆ® µµÃ⠽ð£À» ´ÜÃàÇÒ ¼ö ÀÖ´Â ±ÍÁßÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ºñÁî´Ï½ºÀÇ ¼¼°èÈ­¿Í ¾ð¾î, Çü½Ä, ±ÔÁ¤ÀÇ Â÷À̸¦ ¶Ù¾î³Ñ¾î ÀÛ¾÷ÇØ¾ß ÇÏ´Â Çʿ伺Àº Á¤±³ÇÑ µ¥ÀÌÅÍ ÃßÃâ ±â¼úÀÇ ¹ßÀü°ú äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î µ¥ÀÌÅÍ ÃßÃâÀº ±â¾÷ µ¥ÀÌÅÍ °ü¸®¶ó´Â ³ÐÀº ½Ã¾ß¿¡¼­ ³ôÀº ¼ºÀå¼¼¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼Ö·ç¼Ç ±¸¼º¿ä¼Ò, ¼­ºñ½º ±¸¼º¿ä¼Ò), µ¥ÀÌÅÍ À¯Çü(ºñ±¸Á¶È­ µ¥ÀÌÅÍ, ¹Ý±¸Á¶È­ µ¥ÀÌÅÍ, ±¸Á¶È­ µ¥ÀÌÅÍ), Àü°³(¿ÂÇÁ·¹¹Ì½º Àü°³, Ŭ¶ó¿ìµå Àü°³), Á¶Á÷ ±Ô¸ð(´ë±â¾÷, Áß¼Ò±â¾÷), ¾÷°èº°(BFSI ¾÷°èº°, Á¦Á¶ ¾÷°èº°, ÇコÄÉ¾î ¾÷°èº°, °ü°øÃ» ¾÷°èº°, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ¾÷°èº°, ¿î¼Û ¾÷°èº°, ¼Ò¸Å ¹× E-Commerce ¾÷°èº°, IT ¹× Åë½Å ¾÷°èº°, ±âŸ ¾÷°èº°)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Data Extraction Market to Reach US$8.9 Billion by 2030

The global market for Data Extraction estimated at US$4.7 Billion in the year 2024, is expected to reach US$8.9 Billion by 2030, growing at a CAGR of 11.4% over the analysis period 2024-2030. Solutions Component, one of the segments analyzed in the report, is expected to record a 13.0% CAGR and reach US$5.9 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 8.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.3 Billion While China is Forecast to Grow at 15.7% CAGR

The Data Extraction market in the U.S. is estimated at US$1.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.9 Billion by the year 2030 trailing a CAGR of 15.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 10.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.1% CAGR.

Global Data Extraction Market - Key Trends & Drivers Summarized

Why Is Data Extraction Becoming a Cornerstone of Digital Business Operations?

Data extraction has become an essential function across modern digital enterprises as organizations strive to unlock actionable insights from the vast and varied data they generate and collect. In an era where data is often described as the new oil, the ability to efficiently extract relevant information from structured, semi-structured, and unstructured sources is fundamental to decision-making, automation, compliance, and competitive advantage. Businesses today are inundated with data from sources such as customer databases, emails, social media feeds, financial reports, PDFs, web content, and IoT devices. Without effective extraction mechanisms, this data remains siloed, inaccessible, and underutilized. Data extraction enables organizations to pull valuable information from these diverse formats and consolidate it into centralized data warehouses, analytics tools, or enterprise systems for further processing. It serves as the first step in many workflows, including business intelligence, data integration, customer relationship management, fraud detection, and market research. The surge in digital transformation efforts, accelerated by remote work and increasing online interactions, has magnified the need for real-time and batch extraction capabilities that can support agile operations. Whether through traditional ETL (Extract, Transform, Load) pipelines or modern no-code solutions, businesses recognize that mastering data extraction is no longer a technical luxury but a strategic necessity for thriving in a data-driven economy.

How Is Technology Advancing the Capabilities of Data Extraction Solutions?

Technological innovation is dramatically enhancing the effectiveness, scalability, and intelligence of data extraction tools, enabling organizations to handle increasingly complex datasets and formats with greater accuracy and speed. One of the most transformative advancements has been the integration of artificial intelligence and machine learning, particularly in automating the extraction of data from unstructured sources like scanned documents, emails, handwritten notes, and natural language content. Natural language processing (NLP) and optical character recognition (OCR) technologies are now commonly embedded in data extraction platforms, allowing systems to interpret and extract text, tables, and entities from diverse inputs. Robotic process automation (RPA) has also emerged as a key enabler, helping to automate repetitive extraction tasks across web portals, legacy applications, and spreadsheets without manual intervention. Cloud-based extraction solutions are becoming more prevalent, offering scalability, remote accessibility, and integration with enterprise ecosystems like CRM, ERP, and big data platforms. API-driven architectures allow real-time data extraction from streaming sources, supporting use cases such as financial market monitoring and social media sentiment analysis. Customization has improved with rule-based and AI-trained models that can adapt to industry-specific documents and formats, enhancing precision. Additionally, advances in data quality management and deduplication features are improving the reliability of extracted information. With security and compliance becoming more critical, data extraction tools are now designed to include encryption, access controls, and audit trails. These technological enhancements are collectively elevating data extraction from a manual task to an intelligent, automated, and strategic process that supports a wide array of business goals.

What Market Trends Are Driving the Adoption of Data Extraction Across Industries?

The widespread adoption of data extraction technologies across industries is being driven by changing business needs, evolving customer expectations, and the growing demand for operational agility. One of the most prominent trends is the shift toward data democratization, where businesses aim to make data accessible and actionable across departments without relying solely on IT teams. This trend is encouraging the use of user-friendly, no-code or low-code extraction tools that empower non-technical users to derive insights from complex data sources. The growing emphasis on customer experience is also influencing adoption, as companies seek to extract and analyze feedback, transaction history, and behavioral patterns to personalize services and improve retention. In the financial sector, regulatory compliance mandates are pushing institutions to extract data from contracts, transactions, and correspondence to ensure transparency and audit readiness. Similarly, in healthcare, the need to extract patient information from medical records and lab reports supports better diagnosis, treatment planning, and data sharing between providers. E-commerce and retail players are leveraging web scraping and competitor monitoring to inform pricing strategies and inventory planning. Legal and insurance firms are adopting data extraction to analyze claims, contracts, and case files more efficiently. Another major trend is the need for real-time analytics, which depends heavily on the ability to extract data quickly and accurately from multiple sources. Organizations are also increasingly integrating extracted data with AI-driven analytics tools to enhance forecasting, risk modeling, and decision support. These trends highlight the growing recognition that timely and accurate data extraction is a critical enabler of business intelligence, innovation, and market responsiveness across nearly every sector.

What Are the Key Drivers Behind the Rapid Growth of the Data Extraction Market Globally?

The growth in the data extraction market is driven by a convergence of technological, regulatory, operational, and strategic factors that are transforming how organizations manage and utilize data. A primary driver is the exponential growth of data being generated by digital transactions, sensors, social platforms, and enterprise systems, which necessitates efficient tools for extracting useful information. Organizations are increasingly under pressure to turn raw data into actionable insights quickly, whether for enhancing customer service, optimizing supply chains, or detecting anomalies. The growing adoption of cloud computing and SaaS platforms has expanded the accessibility of data, but it has also increased the complexity of managing it, further fueling demand for agile and scalable extraction solutions. Regulatory compliance is another significant driver, with frameworks like GDPR, HIPAA, and PCI-DSS requiring organizations to identify and monitor specific data types, often buried in complex or unstructured formats. Competitive pressure is pushing companies to adopt advanced analytics and real-time intelligence, both of which rely on clean, timely, and relevant data sourced through automated extraction. Additionally, the rise of artificial intelligence and machine learning applications is creating demand for high-quality training data, which often needs to be extracted from varied and siloed sources. Businesses are also seeking to reduce costs and improve efficiency through automation, making data extraction a valuable tool for eliminating manual processes and accelerating time to insight. Finally, the globalization of business operations and the need to work across languages, formats, and regulatory contexts are further driving the evolution and adoption of sophisticated data extraction technologies. These combined drivers ensure that data extraction remains a high-growth segment within the broader landscape of enterprise data management.

SCOPE OF STUDY:

The report analyzes the Data Extraction market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions Component, Services Component); Data Type (Unstructured Data, Semi-Structured & Structured Data); Deployment (On-Premise Deployment, Cloud Deployment); Organization Size (Large Enterprises, SMEs); Vertical (BFSI Vertical, Manufacturing Vertical, Healthcare Vertical, Government Vertical, Energy & Utilities Vertical, Transportation Vertical, Retail & E-Commerce Vertical, IT & Telecom Vertical, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â