¼¼°èÀÇ ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ½ÃÀå
Disaster Preparedness Systems
»óǰÄÚµå : 1791779
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 603 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 2,771¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1,869¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 2,771¾ï ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÀ±Þ ±¸Á¶´ë Åø ±â¼úÀº CAGR 5.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,052¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À§¼º ÀüÈ­ ±â¼ú ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 8.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 509¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 509¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 568¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 3.5%¿Í 6.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

±â¼ú Çõ½ÅÀº Àç³­ ´ëÀÀ Àü·«À» º¯È­½Ãų °ÍÀΰ¡?

ÀÚ¿¬ÀçÇØ¿Í ÀÎÀ§Àû ÀçÇØÀÇ ºóµµ¿Í ½É°¢¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÷´Ü ¹æÀç½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, ±â¾÷, ÀεµÁÖÀÇ ´ÜüµéÀº Á¶±â °æº¸ ½Ã½ºÅÛ, ºñ»ó ´ëÀÀ Á¶Á¤, ÀçÇØ °æ°¨ Àü·«À» °³¼±Çϱâ À§ÇØ ±â¼ú ±â¹Ý ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI), À§¼º»çÁø, ÁöÇü°ø°£ ºÐ¼® µîÀÇ ±â¼ú Çõ½ÅÀº ¿¹Ãø ´É·ÂÀ» °­È­ÇÏ¿© ´ç±¹ÀÌ Àç³­À» ¹Ì¸® ¿¹ÃøÇÏ°í ´ëºñÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¾Ë°í¸®ÁòÀº ±â»ó ÆÐÅÏ, ÁöÁø Ȱµ¿, È«¼ö À§ÇèÀ» ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ ºñ»ó °èȹÀ» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, IoT Áö¿ø ¼¾¼­¿Í ÀÚµ¿ °æº¸ ½Ã½ºÅÛÀ» ÅëÇØ Àç³­ ¹ß»ý ½Ã Ä¿¹Â´ÏÄÉÀ̼ÇÀÌ °³¼±µÇ¾î ÇÇÇØÀÚ°¡ Àû½Ã¿¡ °æ°í¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀº Å« ÀÌÁ¡À» °¡Á®´Ù ÁÖÁö¸¸, ÀÚ±Ý Á¶´ÞÀÇ ÇѰè, µ¥ÀÌÅÍ ÅëÇÕÀÇ º¹À⼺, ÀÎÇÁ¶ó Á¦¾à µîÀÇ ¹®Á¦°¡ ¿©ÀüÈ÷ º¸±ÞÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À庮¿¡µµ ºÒ±¸Çϰí AI, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº Àç³­ ´ëºñ¸¦ Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í, ´ëÀÀ Ȱµ¿À» º¸´Ù È¿À²ÀûÀÌ°í ´Éµ¿ÀûÀ¸·Î º¯È­½Ãų °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

±âÈÄ º¯È­´Â ¾î¶»°Ô °­·ÂÇÑ ´ëºñ ½Ã½ºÅÛÀÇ Çʿ伺À» ³ôÀ̰í Àִ°¡?

±âÈÄ º¯È­ÀÇ ¿µÇâÀÌ ½É°¢ÇØÁü¿¡ µû¶ó Àç³­ ´ëºñ´Â Àü ¼¼°è Á¤ºÎ¿Í ±â¾÷ÀÇ ÃÖ¿ì¼± °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ±â¿Â »ó½Â, ÀÌ»ó±âÈÄ, ¿¹Ãø ºÒ°¡´ÉÇÑ ±âÈÄ ÆÐÅÏÀº Ç㸮ÄÉÀÎ, »êºÒ, °¡¹³, È«¼öÀÇ ºó¹øÇÑ ¹ß»ýÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ º¯È­·Î ÀÎÇØ ÇÇÇØ¸¦ ÃÖ¼ÒÈ­Çϰí Ãë¾àÇÑ Áö¿ª»çȸ¸¦ º¸È£Çϱâ À§ÇØ À§Çè Æò°¡ µµ±¸¸¦ °­È­ÇÏ°í °­·ÂÇÑ ÀÎÇÁ¶ó¸¦ ±¸ÃàÇØ¾ß ÇÕ´Ï´Ù. µµ½Ã°èȹ °³Çõ, È«¼ö ¹æÁö °ÇÃà, ½º¸¶Æ® ±×¸®µå ½Ã½ºÅÛ µî ±âÈÄ ÀûÀÀ Àü·«Àº ÀçÇØ ´ëÃ¥ ±â¼ú°ú ÅëÇյǰí ÀÖ½À´Ï´Ù. Á¤ºÎ´Â ¸®½ºÅ© ¿ÏÈ­ Á¶Ä¡¸¦ Àǹ«È­Çϱâ À§ÇØ º¸´Ù ¾ö°ÝÇÑ Á¤Ã¥À» ½ÃÇàÇϰí ÀÖÀ¸¸ç, ¹Î°£ ºÎ¹®Àº ±âÈÄ º¯È­¿¡ ´ëÇÑ ³»¼ºÀ» Æ÷ÇÔÇÑ ºñÁî´Ï½º ¿¬¼Ó¼º °èȹ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ±âÈÄ·Î ÀÎÇÑ ÀçÇØ ¿¹ÃøÀÇ º¹À⼺°ú ÀçÇØ¿¡ °­ÇÑ ÀÎÇÁ¶ó ±¸Ãà¿¡ µû¸¥ ³ôÀº ºñ¿ëÀº ¿©ÀüÈ÷ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ±âÈÄ À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÷´Ü Àç³­ ´ëÀÀ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí, È®Àå °¡´ÉÇÑ µ¥ÀÌÅÍ ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI¿Í ºòµ¥ÀÌÅͰ¡ Àç³­ ´ëÀÀ°ú Á¶Á¤À» °³¼±ÇÒ ¼ö ÀÖÀ»±î?

ÀΰøÁö´É(AI)°ú ºòµ¥ÀÌÅÍ ºÐ¼®Àº Àç³­ ´ëºñ¿Í ±ä±Þ ´ëÀÀÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ Ãªº¿, ÀÚµ¿ ±ä±Þ Ã⵿ ½Ã½ºÅÛ, ¿¹Ãø ºÐ¼®À¸·Î ½Ç½Ã°£ Àç³­ ´ëÀÀ ´É·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ Ç÷§ÆûÀº ¼Ò¼È ¹Ìµð¾î, À§¼º Çǵå, ¸ð¹ÙÀÏ ³×Æ®¿öÅ© µî ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ ¹æ´ëÇÑ ¾çÀÇ Á¤º¸¸¦ ¼öÁýÇϰí ó¸®ÇÏ¿© ±ä±Þ ´ëÀÀ ´ã´çÀÚ¿¡°Ô »óȲ Àνİú ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¸Ó½Å·¯´× ¸ðµ¨Àº °ú°Å Àç³­ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀû À§ÇèÀ» ¿¹ÃøÇϰí, Á¤ºÎ°¡ ÀÚ¿øÀ» º¸´Ù È¿°úÀûÀ¸·Î ¹èºÐÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À© ±â¼úÀº Àç³­ ½Ã³ª¸®¿À ½Ã¹Ä·¹À̼ǿ¡ Ȱ¿ëµÇ¾î µµ½Ã °èȹ°¡¿Í Á¤Ã¥ ÀÔ¾ÈÀÚµéÀÌ º¸´Ù °ß°íÇÑ µµ½Ã¸¦ ¼³°èÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀü¿¡µµ ºÒ±¸ÇÏ°í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, »çÀ̹ö º¸¾È À§Çù, AI ¿¹ÃøÀÇ ½Å·Ú¼º¿¡ ´ëÇÑ ¿ì·Á´Â ¿©ÀüÈ÷ Áß¿äÇÑ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª AI¸¦ Ȱ¿ëÇÑ Àç³­ ´ëÀÀ ¼Ö·ç¼ÇÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó, Çù¾÷À» °³¼±ÇÏ°í ´ëÀÀ ½Ã°£À» ´ÜÃàÇϸç ÀθíÀ» ±¸ÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀçÇØ ´ëÃ¥ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Àç³­ ´ëÀÀ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº AI¸¦ Ȱ¿ëÇÑ Á¶±â °æº¸ ½Ã½ºÅÛÀÇ ¹ßÀü, Àç³­ À§Çè °ü¸®¿¡ ´ëÇÑ Á¤ºÎ ±ÔÁ¦ °­È­, ±âÈÄ º¯È­°¡ Àü ¼¼°è ÀÎÇÁ¶ó¿¡ ¹ÌÄ¡´Â ¿µÇâ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁú °ÍÀÔ´Ï´Ù. IoT ´ëÀÀ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç°ú À§¼ºÀ» Ȱ¿ëÇÑ Àç³­ ¿¹ÃøÀÇ È®´ë°¡ ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý ºñ»ó°ü¸® Ç÷§Æû°ú ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼ÇÀÇ µµÀÔÀ¸·Î Àç³­ ¹ß»ý ½Ã Ä¿¹Â´ÏÄÉÀ̼ǰú ½Ã¹Î Âü¿©°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷ÀÇ ¸®½ºÅ© °æ°¨ ¹× ºñÁî´Ï½º ¿¬¼Ó¼º °èȹÀ» Áß½ÃÇÏ´Â °æÇâÀÌ °­È­µÇ°í ÀÖ´Â °Íµµ ÀçÇØ ´ëÃ¥ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºñ¿ë Á¦¾à°ú »óÈ£¿î¿ë¼º ¹®Á¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖÁö¸¸, Àü ¼¼°èÀûÀ¸·Î ȸº¹Åº·Â¼º°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àç³­ ´ëÀÀ ½Ã½ºÅÛ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Çö´ëÀÇ ºñ»ó ´ëÀÀ Àü·«¿¡ ÀÖ¾î Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Åë½Å ±â¼ú(ÀÀ±Þ ±¸Á¶´ë µµ±¸ ±â¼ú, À§¼º ÀüÈ­ ±â¼ú, ºñ»ó ´ëÀÀ ·¹ÀÌ´õ ±â¼ú, Â÷·® Áö¿ø °ÔÀÌÆ®¿þÀÌ ±â¼ú, ±âŸ Åë½Å ±â¼ú); À¯Çü(ºñ»ó/´ë·® ¾Ë¸² ½Ã½ºÅÛ, °¨½Ã ½Ã½ºÅÛ, ¾ÈÀü °ü¸® ½Ã½ºÅÛ, ÁöÁø/ÁöÁø °æº¸ ½Ã½ºÅÛ, ÀçÇØ º¹±¸ ¹× ¹é¾÷ ½Ã½ºÅÛ, ±âŸ À¯Çü); ¼Ö·ç¼Ç(Áö¸®°ø°£ ¼Ö·ç¼Ç, Àç³­ º¹±¸ ¼Ö·ç¼Ç, »óȲ ÀÎ½Ä ¼Ö·ç¼Ç); ¼­ºñ½º(±³À° ¹× ±³À° ¼­ºñ½º, ÄÁ¼³ÆÃ ¼­ºñ½º, ¼³°è ¹× ÅëÇÕ ¼­ºñ½º, Áö¿ø ¹× À¯Áöº¸¼ö ¼­ºñ½º); ÃÖÁ¾ ¿ëµµ(BFSI ÃÖÁ¾ ¿ëµµ, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ÃÖÁ¾ ¿ëµµ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÃÖÁ¾ ¿ëµµ, Á¦Á¶ ÃÖÁ¾ ¿ëµµ, IT ¹× Åë½Å ÃÖÁ¾ ¿ëµµ, °ø°ø ºÎ¹® ÃÖÁ¾ ¿ëµµ, ¿î¼Û ¹× ¹°·ù ÃÖÁ¾ ¿ëµµ, ÀÇ·á ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ).

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Disaster Preparedness Systems Market to Reach US$277.1 Billion by 2030

The global market for Disaster Preparedness Systems estimated at US$186.9 Billion in the year 2024, is expected to reach US$277.1 Billion by 2030, growing at a CAGR of 6.8% over the analysis period 2024-2030. First Responder Tools Technology, one of the segments analyzed in the report, is expected to record a 5.3% CAGR and reach US$105.2 Billion by the end of the analysis period. Growth in the Satellite Phones Technology segment is estimated at 8.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$50.9 Billion While China is Forecast to Grow at 10.4% CAGR

The Disaster Preparedness Systems market in the U.S. is estimated at US$50.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$56.8 Billion by the year 2030 trailing a CAGR of 10.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 6.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.4% CAGR.

Global Disaster Preparedness Systems Market - Key Trends & Drivers Summarized

Are Technological Innovations Transforming Disaster Preparedness Strategies?

The increasing frequency and severity of natural and man-made disasters are driving the demand for advanced disaster preparedness systems. Governments, corporations, and humanitarian organizations are investing in technology-driven solutions to improve early warning systems, emergency response coordination, and disaster mitigation strategies. Innovations such as artificial intelligence (AI), satellite imaging, and geospatial analytics are enhancing predictive capabilities, allowing authorities to anticipate and prepare for disasters before they occur. AI-powered algorithms analyze weather patterns, seismic activities, and flood risks in real time, enabling faster and more accurate emergency planning. Additionally, IoT-enabled sensors and automated alert systems are improving disaster communication, ensuring that affected populations receive timely warnings. While these technological advancements offer significant benefits, challenges such as funding limitations, data integration complexities, and infrastructure constraints still hinder widespread adoption. Despite these barriers, continued advancements in AI, cloud computing, and real-time monitoring systems are expected to revolutionize disaster preparedness, making response efforts more efficient and proactive.

How Is Climate Change Increasing the Need for Robust Preparedness Systems?

The escalating impact of climate change is making disaster preparedness a top priority for governments and businesses worldwide. Rising global temperatures, extreme weather events, and unpredictable climate patterns are leading to more frequent hurricanes, wildfires, droughts, and flooding. These environmental changes necessitate enhanced risk assessment tools and resilient infrastructure to minimize damage and protect vulnerable communities. Climate adaptation strategies, including urban planning reforms, flood-resistant construction, and smart grid systems, are being integrated with disaster preparedness technologies. Governments are implementing stricter policies to mandate risk mitigation measures, while the private sector is investing in business continuity plans that incorporate climate resilience. However, the complexity of forecasting climate-induced disasters and the high costs associated with building resilient infrastructure remain key challenges. As global awareness of climate risks grows, investment in advanced disaster preparedness systems is expected to rise, driving demand for scalable and data-driven solutions.

Can AI and Big Data Improve Disaster Response and Coordination?

Artificial intelligence (AI) and big data analytics are playing a crucial role in optimizing disaster preparedness and emergency response. AI-powered chatbots, automated emergency dispatch systems, and predictive analytics are enhancing real-time disaster response capabilities. Big data platforms collect and process vast amounts of information from multiple sources, including social media, satellite feeds, and mobile networks, providing emergency responders with situational awareness and actionable insights. Machine learning models can analyze past disaster data to predict potential risks, enabling governments to allocate resources more effectively. Additionally, digital twin technology is being used to simulate disaster scenarios, helping urban planners and policymakers design more resilient cities. Despite these technological advancements, concerns regarding data privacy, cybersecurity threats, and the reliability of AI predictions remain key obstacles. However, as AI-driven disaster preparedness solutions continue to evolve, their ability to improve coordination, reduce response times, and save lives is expected to drive market growth.

What Is Driving the Growth of the Disaster Preparedness Systems Market?

The growth in the disaster preparedness systems market is driven by several factors, including advancements in AI-powered early warning systems, increased government regulations on disaster risk management, and the rising impact of climate change on global infrastructure. The expansion of IoT-enabled monitoring solutions and satellite-based disaster forecasting is further fueling market demand. Additionally, the adoption of cloud-based emergency management platforms and mobile applications is improving disaster communication and citizen engagement. The growing emphasis on corporate risk mitigation and business continuity planning is also boosting investments in disaster preparedness technologies. While challenges such as cost constraints and interoperability issues persist, the increasing global focus on resilience and sustainability is expected to drive continued growth in the disaster preparedness systems market, positioning it as a critical component of modern emergency response strategies.

SCOPE OF STUDY:

The report analyzes the Disaster Preparedness Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Communication Technology (First Responder Tools Technology, Satellite Phones Technology, Emergency Response Radars Technology, Vehicle-Ready Gateways Technology, Other Communication Technologies); Type (Emergency / Mass Notification System, Surveillance System, Safety Management System, Earthquake / Seismic Warning System, Disaster Recovery & Backup Systems, Other Types); Solution (Geospatial Solutions, Disaster Recovery Solutions, Situational Awareness Solutions); Services (Training & Education Services, Consulting Services, Design & Integration Services, Support & Maintenance Services); End-Use (BFSI End-Use, Energy & Utilities End-Use, Aerospace & Defense End-Use, Manufacturing End-Use, IT & Telecom End-Use, Public Sector End-Use, Transportation & Logistics End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â