¼¼°èÀÇ ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀå
Earthquake Early Warning Systems
»óǰÄÚµå : 1786471
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 179 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 23¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀåÀº 2030³â¿¡´Â 23¾ï ´Þ·¯¿¡ ´ÞÇϸç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÁöÁø°è ±â¹Ý ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛÀº CAGR 3.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 9,500¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GPS ±â¹Ý ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 5.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 6,190¸¸ ´Þ·¯, Áß±¹Àº CAGR 4.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 4¾ï 6,190¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀ» 4.6%·Î, 2030³â±îÁö 3¾ï 7,230¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 4.1%¿Í 4.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛÀÌ ½Ã±ÞÇÑ ÀÌÀ¯, Àü ¼¼°è¿¡¼­ ÁÖ¸ñ¹Þ´Â ÀÌÀ¯´Â?

ÁöÁø À§ÇèÀÌ Àü ¼¼°è Ãë¾à Áö¿ªÀÇ Àθí°ú ÀÎÇÁ¶ó¸¦ À§ÇùÇÏ´Â °¡¿îµ¥, ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ(EEWS)Àº Àü ¼¼°èÀÇ °ü½É°ú ÅõÀÚ¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÁöÁøÀ¸·Î ÀÎÇÑ °­ÇÑ Èçµé¸²ÀÌ µµ´ÞÇϱ⠸î ÃÊ¿¡¼­ ¸î ºÐ Àü¿¡ »çÀü °æ°í¸¦ Á¦°øÇÏ´Â ÀÌ ½Ã½ºÅÛÀº ÀθíÇÇÇØ¸¦ ÃÖ¼ÒÈ­ÇÏ°í °æÁ¦Àû ¼Õ½ÇÀ» ÁÙÀ̸ç ÀÚµ¿È­µÈ ¾ÈÀü ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Áß¿äÇÑ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀϺ», ¸ß½ÃÄÚ, Æ¢¸£Å°¿¹, Àεµ³×½Ã¾Æ¿¡¼­ ¹ß»ýÇÑ °Í°ú °°Àº Ãæ°ÝÀûÀÎ ÁöÁø ÀçÇØ°¡ ºó¹øÇÏ°Ô ¹ß»ýÇϸ鼭 °­·ÂÇÑ ½Ç½Ã°£ °¨½Ã ¹× °æº¸ ÀÎÇÁ¶óÀÇ Çʿ伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ºñ»ó»çÅ °ü¸® ±â°üÀº ƯÈ÷ µµ½É, ±³Åë¸Á, ¿øÀÚ·Â ½Ã¼³, Çб³ µî¿¡¼­ Á¶±â °æº¸ ¸ÞÄ¿´ÏÁòÀ» Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. ÁöÁøÇÐ, Áö±¸¹°¸®ÇÐ, ¼¾¼­ ³×Æ®¿öÅ©ÀÇ ¹ßÀüÀ¸·Î EEWS´Â ½ÇÇèÀûÀÎ ÆÄÀÏ·µ ÇÁ·Î±×·¥¿¡¼­ ¸ð¹ÙÀÏ ¾Û, »çÀÌ·», °ø°ø ¹æ¼Û ½Ã½ºÅÛ, ¿¤¸®º£ÀÌÅÍ, ±âÂ÷, °¡½º°ü ÀÚµ¿ Á¦¾î ÀåÄ¡¸¦ ÅëÇØ ¼ö¹é¸¸ ¸í¿¡°Ô ½Ç½Ã°£À¸·Î °æº¸¸¦ ¹ß·ÉÇÒ ¼ö ÀÖ´Â ¿î¿µ °¡´ÉÇÑ ±¹°¡ ½Ã½ºÅÛÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ½Ã½ºÅÛÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÇÁ·ÎÅäÄݰú µ¥ÀÌÅÍ ±³È¯ÀÇ Ç¥ÁØÈ­¸¦ Áö¿øÇÏ´Â ±¹Á¦ÀûÀÎ Çù·Â °ü°è¿Í Áö½Ä °øÀ¯ Ç÷§Æû¿¡ ÀÇÇØ Àü ¼¼°è¿¡¼­ º¸±ÞÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÁöÁø ´Ù¹ß Áö¿ªÀÇ Àα¸ ¹Ðµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó EEWSÀÇ ¿ªÇÒÀº ¼±ÅÃÀû ¾ÈÀüÀåÄ¡¿¡¼­ Çö´ë ÀçÇØº¹±¸ Àü·«ÀÇ ±âº» ¿ä¼Ò·Î º¯È­Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº EEWSÀÇ ´É·ÂÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

±â¼ú Çõ½ÅÀ» ÅëÇØ EEWSÀÇ ±â´É, Á¤È®¼º, Á¢±Ù¼ºÀÌ ºü¸£°Ô Çâ»óµÇ°í, ½Å·Ú¼ºÀÌ ³ô¾ÆÁ³À¸¸ç, ´Ù¾çÇÑ Áö¿ªÀ¸·Î È®ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ ÁöÁø°è ³×Æ®¿öÅ©´Â ÇöÀç MEMS¿Í °°Àº Â÷¼¼´ë ¼¾¼­¿¡ ÀÇÇØ °­È­µÇ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®´Â ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ¸·Î °­È­µÇ¾î Áø¿øÁö ÆÄ¾Ç, ±Ô¸ð ÃßÁ¤, Áö¹Ýº¯µ¿ ¿¹ÃøÀÇ ¼Óµµ¿Í Á¤È®µµ°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû°ú ¿§Áö ÄÄÇ»ÆÃÀº ´ë±â ½Ã°£À» ´õ¿í ´ÜÃàÇϰí, °ø°ø ¹× ¹Î°£ ³×Æ®¿öÅ©¸¦ ÅëÇØ °æº¸¸¦ ½Å¼ÓÇÏ°Ô Àü´ÞÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ GPS¿Í GNSS(ÀüÁö±¸ À§¼ºÇ×¹ý½Ã½ºÅÛ)ÀÇ ÅëÇÕÀº ´ë±Ô¸ð ±Ô¸ðÀÇ Áö¹Ýº¯Çü °¨Áö¸¦ °­È­ÇÏ¿© º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ ¿¹Ãø¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¼¿ ¹æ¼Û, À§¼º Åë½Å, »ç¹°ÀÎÅͳÝ(IoT) ÅëÇÕ µî Åë½Å ÇÁ·ÎÅäÄÝÀÇ Çõ½ÅÀ¸·Î °æº¸°¡ Ãʱ⠴ëÀÀÀÚ³ª ÀÎÇÁ¶ó ¿î¿µÀÚ»Ó¸¸ ¾Æ´Ï¶ó ½º¸¶Æ®Æù, ½º¸¶Æ®¿öÄ¡, ´ëÁß±³ÅëÀ» ÀÌ¿ëÇÏ´Â ÃÖÁ¾»ç¿ëÀڵ鿡°Ôµµ È®½ÇÈ÷ Àü´ÞµÉ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¢±¹Àº ÁöÁø ¹ß»ý½Ã ¹× ¹ß»ý ÈÄ EEWSÀÇ Áß´Ü ¾ø´Â ¿î¿µÀ» À§ÇØ ¹é¾÷ Àü¿ø ¹× ÀÌÁßÈ­ Åë½Åȸ¼± µî °ß°íÇÑ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛµéÀÌ ´õ¿í »óÈ£ ¿¬°áµÇ°í µ¥ÀÌÅͰ¡ dzºÎÇØÁü¿¡ µû¶ó ±× À¯¿ë¼ºÀº ±ä±Þ °æº¸¿¡ ±×Ä¡Áö ¾Ê°í ÁöÁø ¹ß»ý ÈÄ ºÐ¼®, À§Çè ¸ðµ¨¸µ, ¹Ì·¡ ÁöÁø ¾ÈÀüÀ» À§ÇÑ Á¤Ã¥ ¼ö¸³À¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿¡¼­ °ø°øÁ¤Ã¥°ú »çȸÀû Áغñ´Â ¾î¶² ¿ªÇÒÀ» Çϰí Àִ°¡?

±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛÀÇ ¼ºÀå°ú È¿°ú´Â Á¤ºÎ Á¤Ã¥, °ø°ø ±³À°, ´ÙºÎ¹® Çù·Â°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ÀϺ», Ä¥·¹, ¸ß½ÃÄÚ, ¹Ì±¹ µî ÁöÁø À§ÇèÀÌ ³ôÀº ±¹°¡µéÀº ¹ýÀû Áö¿ø°ú Áö¼ÓÀûÀÎ ÀçÁ¤Àû Áö¿øÀ» ¹ÙÅÁÀ¸·Î Á¾ÇÕÀûÀÎ EEWS ÇÁ·Î±×·¥À» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀϺ»¿¡¼­´Â EEWS°¡ ±¹°¡ ÀÎÇÁ¶ó¿¡ ÅëÇյǾî Áß¿ä ºÎ¹®¿¡¼­´Â Àǹ«È­µÇ¾î ÀÖ½À´Ï´Ù. ´Ù¸¥ Áö¿ª¿¡¼­´Â Á¤ºÎ°¡ ½Ã¹ü ÇÁ·Î±×·¥À» ½ÃÀÛÇϰí ÇÐ°è ¹× ±¹Á¦±â±¸¿Í Çù·ÂÇÏ¿© ¿ª·®°ú Áö¿ª ƯÀ¯ÀÇ Àü¹®¼ºÀ» ±¸ÃàÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ¼º°øÀûÀ¸·Î ±¸ÃàÇϱâ À§Çؼ­´Â ½Ã¹Î È«º¸¿Í ±³À°ÀÌ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ½Ã¹ÎµéÀº °æº¸¿¡ ¾î¶»°Ô ´ëÀÀÇØ¾ß ÇÏ´ÂÁö ÀÌÇØÇØ¾ß Çϰí, ±â°üÀº ÀÚµ¿È­µÈ ´ëÀÀÀ» ¸íÈ®ÇÏ°Ô Á¤ÀÇÇØ¾ß ÇÕ´Ï´Ù. EEWS´Â µµ½Ã °èȹ, Çб³ ±³À°, ±â¾÷ÀÇ À§Çè °ü¸® ÇÁ·¹ÀÓ¿öÅ©¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, º¸Çè»ç ¹× À¯Æ¿¸®Æ¼ »ç¾÷ÀÚµµ ÀÌÇØ°ü°èÀÚ°¡ µÇ¾î ¼Õ½Ç °æ°¨¿¡ ÀÖÀ¸¸ç, EEWSÀÇ ¿ªÇÒÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ƯÈ÷ Àú¼ÒµæÃþÀ̳ª Á¤Ä¡ÀûÀ¸·Î ºÒ¾ÈÁ¤ÇÑ Áö¿ª¿¡¼­´Â »çȸ·ÎºÎÅÍÀÇ ½Å·Ú, ÀÚ±ÝÀÇ Áö¼Ó¼º, ½Ã½ºÅÛ À¯Áö°ü¸® µîÀÇ Ãø¸é¿¡¼­ ¿©ÀüÈ÷ °úÁ¦°¡ ³²¾ÆÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí ȸº¹Åº·Â¼ºÀÌ µµ½Ã °³¹ß ¹× °ø°ø¾ÈÀü Á¤Ã¥ÀÇ Ãʼ®ÀÌ µÇ¸é¼­ EEWSÀÇ »çȸÀû ¼ö¿ë°ú Á¦µµÀû ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í, ½ÃÀå ¼ºÀå°ú Çõ½Å¿¡ ´õ À¯¸®ÇÑ »ýŰ谡 Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, Àç³­ º¹¿ø·Â °èȹ, ±ÔÁ¦ °­È­, °ø°ø ¹× ¹Î°£ ºÎ¹®ÀÇ Âü¿© È®´ë¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¼¾¼­ ±â¼ú, ÀúÁö¿¬ µ¥ÀÌÅÍ Ã³¸®, AI ±â¹Ý ºÐ¼®ÀÇ Áö¼ÓÀûÀÎ °³¼±À¸·Î ½Ã½ºÅÛÀÇ Á¤È®µµ¿Í ¼Óµµ°¡ Çâ»óµÇ¾î °íÀ§Çè Áö¿ª¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁöÁø Ȱµ¿ÀÌ È°¹ßÇÑ ±¹°¡¿¡¼­´Â Á¤ºÎÀÇ Àǹ«È­ ¹× °ø°ø¾ÈÀü ±ÔÁ¤¿¡ µû¶ó ±³Åë ÀÎÇÁ¶ó, Çб³, °ø°ø½Ã¼³, µµ½É¿¡ EEWS ¼³Ä¡ ¹× ÅëÇÕÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿Í IoT »ýŰèÀÇ È®ÀåÀº ºôµù, ¿þ¾î·¯ºí, ÀÚÀ² ½Ã½ºÅÛ¿¡¼­ EEWSÀÇ »õ·Î¿î ÅëÇÕ ±âȸ¸¦ âÃâÇϰí, ½º¸¶Æ®ÆùÀÇ º¸±ÞÀ¸·Î ±¤¹üÀ§ÇÑ »ç¿ëÀÚ Ä¿¹ö¸®Áö¸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ±¹Á¦±â±¸¿Í ÀçÇØ ±¸È£ ´ÜüÀÇ ±¹Á¦ Çù·Â°ú ÀÚ±Ý Áö¿ø Áõ°¡´Â °³¹ßµµ»ó±¹µéÀÌ º¸´Ù ±¤¹üÀ§ÇÑ ±âÈÄ ¹× Àç³­ ´ëÀÀ Àü·«ÀÇ ÀÏȯÀ¸·Î EEWS¸¦ äÅÃÇϵµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ßÀü¼Ò, º´¿ø, ±³Åë Çãºê¿Í °°Àº Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ º¸È£ÇØ¾ß ÇÒ Çʿ伺°ú ÇÔ²² ÁöÁøÀ¸·Î ÀÎÇÑ ÇÇÇØ ºñ¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó º¸Çè ºÎ¹®°ú ÀÎÇÁ¶ó ºÎ¹®Àº Á¶±â °æº¸ ¼Ö·ç¼ÇÀ» ¿ËÈ£Çϰí ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ±¹¹Î ÀÎ½Ä °³¼± Ä·ÆäÀΰú ±³À° Ȱµ¿, Çൿ Áغñ¿Í Áö¿ª Â÷¿øÀÇ ´ëÀÀ ´É·ÂÀ» È®º¸ÇÏ¿© º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ±â¼ú Çõ½Å, Á¤Ã¥ Á¶Á¤, »ó¾÷Àû ÅõÀÚ¸¦ À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀÌ Çü¼ºµÇ°í ÀÖÀ¸¸ç, ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛÀº Àü ¼¼°è¿¡¼­ Áõ°¡ÇÏ´Â ÁöÁø À§Çù¿¡ ¸Â¼­±â À§ÇÑ ÇʼöÀûÀÎ ¹æ¾î °èÃþÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(ÁöÁø°è ±â¹Ý ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ, GPS ±â¹Ý ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ, °¡¼Óµµ°è ±â¹Ý ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ, ÇÏÀ̺긮µå ±ä±Þ ÁöÁø °æº¸ ½Ã½ºÅÛ), ¹èÆ÷(Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛ, ¿ÂÇÁ·¹¹Ì½º ½Ã½ºÅÛ, ¿§Áö ÄÄÇ»ÆÃ ½Ã½ºÅÛ), ÃÖÁ¾»ç¿ëÀÚ(Á¤ºÎ¡¤°ø°ø±â°ü, ¹Î°£±â¾÷, ±³À° ±â°ü, ÁÖÅÃ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Earthquake Early Warning Systems Market to Reach US$2.3 Billion by 2030

The global market for Earthquake Early Warning Systems estimated at US$1.8 Billion in the year 2024, is expected to reach US$2.3 Billion by 2030, growing at a CAGR of 4.6% over the analysis period 2024-2030. Seismometer-based Earthquake Early Warning Systems, one of the segments analyzed in the report, is expected to record a 3.5% CAGR and reach US$895.0 Million by the end of the analysis period. Growth in the GPS-based Earthquake Early Warning Systems segment is estimated at 5.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$461.9 Million While China is Forecast to Grow at 4.6% CAGR

The Earthquake Early Warning Systems market in the U.S. is estimated at US$461.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$372.3 Million by the year 2030 trailing a CAGR of 4.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.1% and 4.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.9% CAGR.

Global Earthquake Early Warning Systems Market - Key Trends & Drivers Summarized

Why Are Earthquake Early Warning Systems Gaining Urgency and Global Attention?

As seismic risks continue to threaten human life and infrastructure in vulnerable regions worldwide, Earthquake Early Warning Systems (EEWS) are drawing heightened global focus and investment. These systems, which provide seconds to minutes of advanced warning before the strongest shaking from an earthquake arrives, have become critical tools for minimizing casualties, reducing economic losses, and enabling automated safety responses. The frequency of high-impact seismic events-such as those seen in Japan, Mexico, Turkey, and Indonesia-has underscored the need for robust real-time monitoring and alerting infrastructure. Governments and emergency management agencies are increasingly mandating early warning mechanisms, especially in urban centers, transportation networks, nuclear facilities, and schools. With advances in seismology, geophysics, and sensor networks, EEWS have evolved from experimental pilot programs into operational national systems capable of issuing real-time alerts to millions via mobile apps, sirens, public address systems, and automated controls for elevators, trains, and gas lines. The global adoption is further accelerated by international collaborations and knowledge-sharing platforms that help standardize protocols and data exchange. As population density increases in seismic hotspots, the role of EEWS has shifted from being an optional safeguard to a fundamental component of modern disaster resilience strategies.

How Are Technology Advancements Transforming the Capabilities of EEWS?

Technological innovation is rapidly expanding the functionality, accuracy, and accessibility of Earthquake Early Warning Systems, making them more reliable and scalable across diverse geographies. Traditional seismometer networks are now being augmented by next-generation sensors such as MEMS (Micro-Electro-Mechanical Systems), which are compact, cost-effective, and capable of wide deployment in dense urban grids. Real-time data processing is being enhanced by artificial intelligence and machine learning algorithms, which improve the speed and precision of epicenter localization, magnitude estimation, and ground motion prediction. Cloud-based platforms and edge computing are further reducing latency, enabling faster communication of alerts across public and private networks. Additionally, GPS and GNSS (Global Navigation Satellite Systems) integration is enhancing the detection of ground deformation in large-magnitude events, contributing to faster and more accurate forecasting. Innovations in communication protocols-such as cell broadcast, satellite communication, and internet-of-things (IoT) integration-are ensuring that warnings reach not only first responders and infrastructure operators but also end-users on smartphones, smartwatches, and public transit systems. Furthermore, countries are investing in resilient infrastructure, including backup power and redundant communication lines, to ensure uninterrupted operation of EEWS during and after earthquakes. As these systems become more interconnected and data-rich, their utility is extending beyond emergency alerting to include post-event analytics, risk modeling, and policy planning for future seismic safety.

What Role Are Public Policies and Societal Readiness Playing in Market Growth?

The growth and effectiveness of Earthquake Early Warning Systems are closely tied to government policy, public education, and multi-sectoral coordination. Countries with high seismic risk-such as Japan, Chile, Mexico, and the United States-have established comprehensive EEWS programs backed by legislative support and continuous funding. In Japan, for instance, EEWS is embedded into national infrastructure with mandatory compliance in critical sectors. In other regions, governments are launching pilot programs and collaborating with academic institutions and international organizations to build capacity and localized expertise. Public outreach and education play a pivotal role in the successful deployment of these systems; citizens must understand how to react to alerts, and institutions must have clearly defined automated responses in place. Increasingly, EEWS are being integrated into urban planning, school drills, and corporate risk management frameworks. At the same time, insurance companies and utility providers are becoming stakeholders, recognizing the role of EEWS in loss mitigation. However, challenges remain in terms of public trust, funding continuity, and system maintenance-especially in lower-income or politically unstable regions. Nevertheless, as resilience becomes a cornerstone of urban development and public safety policy, the societal acceptance and institutional integration of EEWS are accelerating, creating a more favorable ecosystem for market growth and innovation.

What Are the Key Factors Driving the Expansion of the Earthquake Early Warning Systems Market?

The growth in the Earthquake Early Warning Systems market is driven by several factors related to technological advancement, disaster resilience planning, regulatory enforcement, and growing public and private sector engagement. Continuous improvements in sensor technology, low-latency data processing, and AI-driven analytics have enhanced system accuracy and speed, encouraging broader deployment in high-risk zones. Government mandates and public safety regulations in seismically active countries are pushing for the installation and integration of EEWS into transport infrastructure, schools, utilities, and urban centers. The expansion of smart cities and IoT ecosystems has created new integration opportunities for EEWS in buildings, wearables, and autonomous systems, while the proliferation of smartphones ensures broad user coverage. Increased international collaboration and funding support from global institutions and disaster relief organizations are helping developing nations adopt EEWS as part of broader climate and disaster preparedness strategies. Moreover, the rising costs of earthquake damage-alongside the need to protect critical infrastructure such as power plants, hospitals, and transport hubs-are prompting insurance and infrastructure sectors to advocate for and invest in early warning solutions. Public awareness campaigns and educational efforts are also boosting adoption by ensuring behavioral readiness and community-level response capability. Together, these drivers are creating a fertile ground for technological innovation, policy alignment, and commercial investment, positioning Earthquake Early Warning Systems as an essential layer of protection in the face of increasing seismic threats worldwide.

SCOPE OF STUDY:

The report analyzes the Earthquake Early Warning Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Seismometer-based Earthquake Early Warning Systems, GPS-based Earthquake Early Warning Systems, Accelerometer-based Earthquake Early Warning Systems, Hybrid Earthquake Early Warning Systems); Deployment (Cloud-based Systems Deployment, On-Premise Systems Deployment, Edge Computing Systems Deployment); End-User (Government & Public Sector End-User, Private Sector End-User, Educational Institutions End-User, Residential End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â